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Abstract: Two fractional Stefan problems are considered. The �rst one by using
the Caputo1 derivative of order α ∈ (0, 1):

(i) C
0 D

α
t u(x, t) = λ2 ∂

∂x2
u(x, t), 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = f(x), 0 ≤ x ≤ b = s(0),
(iii) u(0, t) = g(t), 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,
(v) C

0 D
αs(t) = −ux(s(t), t), 0 < t ≤ T,

(1)

and the second one by using the Riemann-Liouville2 derivative of order α ∈ (0, 1):

(i) ∂
∂t
u(x, t) = λ ∂

∂x

(
RL
0 D1−α

t
∂
∂x
u(x, t)

)
, 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = f(x), 0 ≤ x ≤ b = s(0),
(iii) u(0, t) = g(t), 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,
(v) d

dt
s(t) = − RL

0 D1−α
t

∂
∂x
u(x, t)

∣∣
(s(t),t)

, 0 < t ≤ T.

(2)

In the limit case (α = 1) both problems coincide with the same classical Stefan prob-
lem. Some works foccused in problems like these are [1, 3, 4, 6, 7]. Fractional di�usion
equations like (1 − i) or (2 − i)), are linked to the modeling of di�usive processes in
heterogeneous media, such called sub or super di�usive processes (see [2, 5, 8]).

The Riemann�Liouville fractional derivative RL
0 D1−α

t is the left inverse operator of
the fractional Riemann�Liouville integral 0I

1−α
t

3, so we can apply RL
0 D1−α

t to both
sides of equation (1− i) obtaining the fractional di�usion equation (2− i). But, what

1The Caputo derivative is de�ned by

C
0 D

α
t u(x, t) =

1

Γ(1 − α)

∫ t

0

∂
∂t
u(x, τ)

(t− τ)α
dτ,

2The Riemann�Liouville derivative is de�ned by

RL
0 Dαt u(x, t) =

1

Γ(1 − α)

∂

∂t

∫ t

0

u(x, τ)

(t− τ)α
dτ,

3The fractional Riemann�Liouville integral is de�ned by

0I
β
t f(x, t) =

1

Γ(β)

∫ t

0

f(x, τ)

(t− τ)1−β
dτ,

de�ned for every β > 0, and Γ is the Gamma function.

1



happen with the fractional Stefan conditions (2− v) and (1− v)?
For example, if we apply RL

0 D1−α
t to both sides of the Stefan condition (1− v) we get

d

dt
s(t) = −RL0 D1−α

t

∂

∂x
u(s(t), t)

which is not exactly condition (2− v), unless α = 1. In fact, the right side of (2− v) is

− RL
0 D1−α

t

∂

∂x
u(x, t)

∣∣∣∣
(s(t),t)

= − lim
x→s(t)

RL
0 D1−α

t

∂

∂x
u(x, t)

= − lim
x→s(t)

∂

∂t

1

Γ(α)

∫ t

0

(t− τ)α−1 ∂

∂x
u(x, τ)dτ.

(3)

The aim of this paper is to show explicit solutions (in fact, similarity solutions which
are given in terms of Wright functions) to problems (1) and (2) respectively, and prove
that they are di�erent, which clearly implies that the �fractional Stefan conditions�
(2− v) and (1− v) are di�erent and that for fractional derivatives some limits like (3)
are not commutative.
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