A LIMITING OPTIMAL DESIGN PROBLEM GOVERNED BY NON-LOCAL DIFFUSION
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Abstract: We study a p—fractional optimal design problem under volume constraint taking special care of the case
when p is large, obtaining in the limit profile a free boundary problem modelled by the Holder Infinity Laplacian
operator. A necessary and sufficient condition is imposed in order to obtain the uniqueness of solutions to the limiting
problem, and, under such a condition, we find precisely the optimal configuration for the limit problem. We also prove
the sharp C’1 regularity for any limiting solution.
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1 INTRODUCTION

In this work we study a minimizing problem for the p-fractional energy (for p > 2) with a positive data
g prescribed outside 2 C R (a bounded and smooth domain) and a restriction on the maximum volume of
the support of the involved functions inside 2. From a mathematical point of view, fixed 0 < o < £V (Q),
we consider the following optimization problem:

£3[a] = min {[U]WW(RN) lveWw*? (RN), v=gin RV \Qand LN ({v > 0} N Q) < a} NG

where for 0 < s < 1 fixed, W*? (RY) := {u € LP(RN) : M € LP(RYN x }RN)} are the Frac-
ly—a

» 1
tional Sobolev Spaces and [ulyys,prny = ( / / | | ~ +S>J dxdy) " is the well-known Gagliardo
RN JRN y—x

semi-norm. For a modern study about Fractional Sobolev Spaces we recommend the survey [3].
Notice that any minimizer u,;, to @p is a weak solution to the following Dirichlet problem driven by
Fractional p-Laplacian operator

{—(—ARN);up(x) =0 in {u, >0} NQ
up(z) = g(x) on RN\ Q,

where

— p—2 _
(—ARN); up(z) == Cn5p.PV. /RN |up(y) Up|(:f)_ y|]\([1iz;(sy) up(x))dy.
Particularly, we are interested in the asymptotic behaviour, as p — oo, of optimal shapes to problem
. The limiting configurations for p — oo have been inspired by the works of the second author in the
local setting, see [4]] and [5] for more details. The non-local character of our problem was also motivated by
[6] and references therein. Motivated by formal considerations, we are led to consider the following limiting
configuration:

£ [a] = min {[U]Co,s(RN) |vew*> (RY), v=ginRY\ Qand £V ({v >0} NQ) < a} o OB

Finally, we prove that any sequence of minimizers u,, to}J3;|converges, up to a subsequence, to a solution
Uso Of the limiting problem Furthermore, we find the associated equation that u., verifies (in an
appropriated sense) in its positivity region, Q% := {us > 0} N Q, ie.,

—L3 [uso](x) == — | sup oo (y) = oo () + inf oo (y) = oo () =0 in QFf,
yerN |7 =yl yeRN [z —yl®

where L[] is the Holder Infinity Laplacian operator, which is a non-linear, non-local and non-integral
operator (compare with [1]).



2  MAIN THEOREMS

Next, we will present our main results which can be found in the manuscript [2].

Theorem 1 ([2, Theorem 1.1]) Let u,, be a minimizer to @) Then, up to a subsequence, U, — U as p —
o0, uniformly in § and weakly in W*9(QQ) for all 1 < q < oo, where uo minimizes (B5)). Furthermore,
the extremal values also converge

Lla] = £5]a] as p— oo.
Finally, the limit un, € Cloof(ﬂ) and fulfils
L5 Juso](x) =0 in {us >0} NQ,
in the viscosity sense.

We also provide a uniqueness result to limit solutions. For this end, a key ingredient is the following
geometric compatibility condition on the data:

a< .V U B
N 9(y)
yERN\Q [g]co,g(RN\Q)

It is worth to highlighting that such a condition (Comp. Assump.) turns out to be necessary and sufficient
in order to obtain uniqueness of solutions to the limit problem.

1 (y)yNnQ|. (Comp. Assump.)

Theorem 2 ([2, Theorem 1.2]) Let vy be given by vo(x) = sup (g(y) — 9|z — y\5>

RN\Q +

1. Assume that (Comp. Assump.) holds. Let $* be the unique positive number such that
f._
o= B(M)
yeRN\Q ol

Then v is the unique minimizer for (BZ).

%(y) NQ  fulfils £N (Qﬁ) = a.

2. On the other hand, if (Comp. Assump.) does not hold. Then there exists infinitely many minimizers
Sor CBE). Moreover, v is the minimal solution, in the sense that veo () < U () in §2 for any other
minimizer U« to (B and verifies

{v>0tn02= |J B
yeRN\Q

o (¥) N Q fulfils EN({UOO >0}NQ) < a.
i
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