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It is considered a second order di¤erential equation with one delay

�x+ 
x = f(x(t� �)); (1)

where f(x) = �x+ �x2; 
; � > 0 and �; � 6= 0: This model was analyzed in the work of Campbell and LeBlanc
(1998) for 
 = 2:5 and � = 0:9 in relation with a 1:2 resonance. Now, the original model is modi�ed, just to
include four parameters, counting the delay � . Then, equation (1) can be written as

_y1 = �
y2 + f(y2(t� �)); _y2 = y1; (2)

and the equilibrium points result Y1 = (0; 0) and Y2 =
�
0; (
 � �)��1

�
. Two approaches were combined to carry

out the dynamic study of (2) analytically: one, which is more usual and we call it "in time domain" (Bellman
and Cooke, 1963), for simplicity, and other which uses concepts of control theory, named as "frequency domain"
(Moiola and Chen, 1996). Both points of view were applied, exploding the advantages of each one. Besides, the
Dde-Biftool software (Engelborghs et al., 2002) was employed to check results and show other complex stability
issues.

� Equilibrium points stability

To analyze the stability of the equilibrium points is necessary to �nd the zeroes of an equation, which in
the case of the trivial one gives �2 + 
 � �e��� = 0: This follows from the linearization of (2), evaluated at
Y1. If all its roots have negative real parts then Y1 results asymptotically stable. Changing variables: z = �� ,
the last equation becomes P1(z) = ezz2 + ez
�2 � ��2 = 0; this means that one has to locate the roots of an
exponential polynomial. Thus, the next result can be proved:

Theorem 1 It is considered the equation P1(z) = 0, where 
; � > 0 and � 6= 0: Let � > 0 and r =
�
�
�

�2
: It is

supposed that �
 < � < 
; 
 6= k2r; k 2 N [ f0g: As 
 2
1S
k=0

(k2r; (k + 1)2r); it follows that

(a) If k2r < 
 < (k + 1)2r and k is even, then P1 has all its roots with negative real parts if


 � (k + 2)2r < � < 
 � k2r; 0 < � < �
 + (k + 1)2 r:

(b) If k2r < 
 < (k + 1)2r and k is odd, then P1 has all its roots with negative real parts if


 � (k + 1)2r < � < 
 � (k � 1)2r; � 
 + k2r < � < 0:

Corollary 1 The trivial equilibrium of (1) is asymptotically stable if its parameters satisfy the conditions
given in Theorem 1.

� Hopf curves and other singularities related with the trivial equilibrium Y1

1. Fixing a value of the parameter � (in the 
 � � plane)

To detect the Hopf bifurcations related with Y1; one must solve the system �!2 + 
 � � cos!� = 0;
� sin!� = 0: Therefore, one obtains the Hopf bifurcation curves, which in this case are the straight lines

��k(
) = (�1)k
 + (�1)k+1k2r; where k 2 N and r =
��
�

�2
: (3)

Moreover, in the 
 � � plane in�nite points can be found where resonant double Hopf points appear, which
result as the intersection of two ��k lines, choosing an odd k1 and an even k2 6= 0.

2. Fixing a value of the parameter 
 (in the � � � plane)



Setting 
 > 0, the conditions of (a) and (b) of Theorem 1 are depicted, in general, as areas between
hyperbolas. In this case, the Hopf curves which now depend on � are

�(k)(�) = (�1)k
 + (�1)k+1k2r2; k 2 N.

� Limit cycles stability

The stability in the birth of a branch of the periodic solutions, arising from a Hopf bifurcation, is established
through the named stability or curvature coe¢ cient �0 in the frequency domain. Thus, according with the sign
of �0, the Hopf bifurcation can be classi�ed as supercritical (�0 < 0) or subcritical (�0 > 0). Moreover, one
complex number �1, associated with �0, is computed. Notation: �1(!) = �1;O(!) if k is odd or �1(!) = �1;E(!)
when k is even. Then, it has been attained that

�1;O(!) =
�2

2�

5
 + 11�

(
 � �) (3
 + 5�) ; �1;E(!) =
5

6

�2

� (
 � �) ;

and sign(�0) = sign(�1). Taking into account the previous formulas of �1; it can be shown that:

Theorem 2 Given a Hopf bifurcation point of (2), where 
; � > 0; �; � 6= 0 and
�
 < � < 
; which satis�es (3) with
1. k odd. Then
(a) If �
 < � < � 3

5
 or �
11
5 < � < 0; the Hopf bifurcation is supercritical.

(b) If � 3
5
 < � < �

5
11
 or 0 < � < 
; the Hopf bifurcation is subcritical.

2. k even. Then
(a) If �
 < � < 0; the Hopf bifurcation is supercritical.
(b) If 0 < � < 
; the Hopf bifurcation is subcritical.

Remark: Thereby, by means of the last theorem, the stability of an emergent orbit, coming from a Hopf
bifurcation, can be obtained in the whole parameter space of model (2).

� Bifurcations of limit cycles

It has been analyzed deeply the complex dynamic in the neighborhood of a 1:2 resonance. Fold of cycles,
associated with the existence of singularities where �0 = 0, period doubling bifurcations, which are typical of
a 1:2 resonance and also torus or Neimark-Sacker bifurcations were found analytically and checked numerically
through Dde-Biftool.

Procedure for the analytical determination of cycles bifurcations:

1. Fourth order approximations for the orbits, which are born at a Hopf bifurcation point, are built. This
is attained through the Graphical Hopf theorem and its generalizations, in the frequency domain.
2. Using the results of the �rst item and a Tchebyschev collocation method (with polynomials of grade

10-12) a �nite approximation of the cycle monodromy operator is achieved (Butcher and Mann, 2009).
3. From the second point outcomes, relevant Floquet multipliers are computed for one periodic orbit. These

results allow to check the accuracy of the approximation as well as place its possible bifurcations.
4. In agreement with the third point conclusions, di¤erent cycle bifurcations curves are depicted in the

parameter space.

Acknowledgements

This work was supported by UNRN (PI 40/A389), UNS (PGI 24/K064), ANPCyT (PICT 2014-2161) and
CONICET (PIP 112-201201-00144).

References

R. Bellman and K. Cooke, Di¤erential-Di¤erence Equations, Academic Press, New York, 1963.
E. Butcher and B. Mann, Stability analysis and control of linear periodic delayed systems using Chebyshev and

temporal �nite element methods, en B. Balachandran et al. (eds), Delay Di¤erential Equations, Springer, pp. 93-129,
2009.

S. Campbell and V. LeBlanc, Resonant Hopf-Hopf Interactions in Delay Di¤erential Equations, Journal of Dynamical
and Di¤erential Equations, Vol. 10 No. 2, pp. 327-345, 1998.

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay di¤erential equations using
DDE-BIFTOOL, ACM Trans. on Math. Software, Vol. 28 No. 1, pp. 1-21, 2002.

J.L. Moiola and G. Chen, Hopf Bifurcation Analysis: A Frequency-Domain Approach, Vol. 21, World Scienti�c,
Singapore, 1996.


