Periodic solutions of Euler-Lagrange equations in an anisotropic Orlicz-Sobolev space setting

Authors: Sonia Ester Acinas (UNLPam, sonia.acinas@gmail.com); Fernando Mazzone (UNRC, UNLPam and CONICET, fdmazzone@exa.unr.edu.ar)

Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a differentiable, convex function such that $\Phi(0) = 0$, $\Phi(y) > 0$ if $y \neq 0$, $\Phi(-y) = \Phi(y)$, and $\lim_{|y|\to\infty} \frac{\Phi(y)}{|y|} = +\infty$.

For T > 0, we assume that $F : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ with F and $\nabla_x F$ Carathéodory functions satisfying

$$|F(t,x)| + |\nabla_x F(t,x)| \le a(x)b(t)$$
, for a.e. $t \in [0,T]$,

where $a \in C(\mathbb{R}^d, [0, +\infty))$ and $0 \leq b \in L^1([0, T], \mathbb{R})$.

Our goal is to set conditions that guarantee existence of solutions of the problem

$$\begin{cases} \frac{d}{dt} \nabla \Phi(u'(t)) = \nabla_x F(t, u(t)), & \text{for a.e. } t \in (0, T), \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
(P_Φ)

minimizing the functional

$$I(u) := \int_0^T \Phi(u'(t)) + F(t, u(t)) \, dt,$$

on the set $H := \{ u \in W^1 L^{\Phi} | u(0) = u(T) \}$, where $W^1 L^{\Phi}$ is the anisotropic Orlicz-Sobolev space associated to Φ .

We denote by Φ^* the complementary function of Φ in the sense of convex analysis.

We say that $\Phi \in \Delta_2$, if there exists a constant C > 0 such that

$$\Phi(2x) \le C\Phi(x) + 1, \quad x \in \mathbb{R}^d$$

We write $\Phi_0 \prec \Phi$ if for every k > 0 there exists C = C(k) > 0 such that

$$\Phi_1(x) \le C + \Phi_2(kx), \quad x \in \mathbb{R}^d.$$

The following is our main theorem which contains, as a particular case, known results of existence of periodic solutions of p-laplacian and (p,q)-laplacian systems.

Theorem 1. Let $\Phi^* \in \Delta_2$.

1. If there exist Φ_0 with $\Phi_0 \prec \Phi$ and a function $d \in L^1([0,T],\mathbb{R})$, with $d \ge 1$, such that

$$\Phi^{\star}(d^{-1}(t)\nabla_x F) \le \Phi_0(x) + 1 \quad and \quad \lim_{|x| \to \infty} \frac{\int_0^T F(t,x) \, dt}{\Phi_0(2x)} = +\infty,$$

then I attains a minimum on H.

2. If u is a minimum and $d(u', L^{\infty}([0,T], \mathbb{R}^d)) < 1$, then u is solution of (P_{Φ}) .

We also discuss conditions under which $d(u', L^{\infty}([0, T], \mathbb{R}^d)) < 1$ is satisfied.

Now, we are exploring the possibility of addressing Hamiltonian systems by the dual method, instead of the direct one applied to Euler-Lagrange equations, in an anisotropic Orlicz-Sobolev framework.