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On a Neumann Boundary Value Problem for
Painlevé II in Two Ion Electro-Diffusion

Pablo Amster1, Man Kam Kwong2, and Colin Rogers2,3

Abstract

A two-point Neumann boundary value problem for a two ion electro-diffusion model
reducible to the Painlevé II equation is investigated. The problem is unconventional in
that the model equation involves yet-to-be determined boundary values of the solution.
In prior work by Thompson, the existence of a solution was established subject to an
inequality on the physical parameters. Here, a two-dimensional shooting method is used
to show that this restriction may be removed. A practical algorithm for the solution of
the boundary value problem is presented in an appendix.

1 Introduction

In [10], a two-point boundary value problem was investigated which arises in the study
of two ions of the same valency migrating across a liquid junction such as a membrane. The
relevant model equations are derived in [1, 2] and , in a more general multi-ion context, in
[7]. Their underlying Painlevé structure has recently been analyzed in [3].

Elimination of the ionic concentrations in the two-ion problem leads to a nonlinear
equation for the unknown y, proportional to the electric field E, namely [10]

y′′(x) = f(x, y(x); y(0), y(1)), x ∈ (0, 1) (1.1)

where

f(x, y; y(0), y(1)) := y

�
λ−

�
y(0)2 − y2

�

2
+Ax

�
−AD, (1.2)

with

A = lλ+

�
y(0)2 − y(1)2

�

2
, (1.3)

and the liquid junction occupies the region 0 ≤ x ≤ 1. The quantities l > 0, λ > 0 and D
with −1 < D < 1 are parameters as described in [10]. As noted in [10], if y is a solution
of (1.1) for the parameters l, λ,D then −y is a solution for l, λ,−D. It is also easy to see
that, when D = 0, the only solution is y(x) ≡ 0. Hence, it may be assumed, without
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loss of generality, that D > 0. Electrical neutrality in the reservoirs imposes the Neumann
boundary conditions

y′(0) = y′(1) = 0. (1.4)

The boundary value problem determined by (1.1) − (1.4) is unconventional in that the
nonlinear model equation (1.1) involves the solution-dependent quantities y(0) and y(1).
Accordingly, traditional existence theory and numerical methods are not appropriate to
treat this problem.

Thompson in [10] used degree theory and the well-established method of upper and
lower solutions (see e.g. [4]) to prove the existence of a positive solution to the boundary
value problem (1.1) − (1.4) when D > 0 and subject to the constraint

λ ≥ 2l
�
1− 1

(1 + l)2

�
D2. (1.5)

Here, our object is to establish that this restriction may be removed. The method adopted
involves the reduction of the original problem to an equivalent one amenable to a two-
dimensional shooting method, which is an extension of the well-known one-dimensional
shooting method. The latter has recently been applied successfully by the second author
[5, 6] to study a variety of boundary value problems.

2 A Painlevé II Reduction

The two ion model equation (1.1) adopts the form

y′′ = y
�
ζ +

y2

2
+ µx

�
+ ν (2.1)

and, on introduction of the scaling and translation

y = ξU, x = ηX + δ (2.2)

with
ξη = ±2, δ = −ζ/µ, η = µ−1/3 (2.3)

reduction is obtained to the canonical Painlevé II equation

d2U

dX2
= 2U3 +XU + ᾱ (2.4)

where the parameter ᾱ is given by

ᾱ = νη2 = −µ1/3D (2.5)

Here,

µ = lλ+
y2
0 − y2

1

2
= lλ+ 2µ1/3

�
U2

0 − U2
1

�
(2.6)
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with the notation y |x=0 = y0 , y |x=1 = y1 , U |x=0 = U0 , U |x=1 = U1 . Thus, (2.6) provides
a cubic equation for the Painlevé parameter ᾱ in terms of the physical parameters l, λ,D
and the boundary terms U0 = U

��
X=−δ/η , U1 = U

��
X=(1−δ)/η . In general, the study of

the existence properties for the original boundary value problem under the above Painlevé
II reduction is not tractable in view of the complicated nature of the dependence of ᾱ on
the boundary terms and the transition x = 0 → X = −δ/η, x = 1 → X = (1 − δ)/η.
However, it is noted that if δ = 1, η = −1 so that ζ = 1, µ = −1 then x = 0 → X = 1,
x = 1→ X = 0 and ᾱ = D under the canonical reduction. Thus, a Neumann problem for
the conventional Painlevé II equation where ᾱ is independent of the boundary conditions is
obtained. Existence results for the Painlevé II equation under Dirichlet and periodic-type
boundary conditions have been investigated in [8], while the application of boundary value
problems has been undertaken in [9]. Here, however, in view of the intractable nature of the
Neumann boundary value problem (1.1) − (1.4) under the above reduction, an alternative
formulation is adopted which allows a novel application of an exact shooting method.

3 An Equivalent Problem. Two Dimensional Shooting. A
Result in Differential Inequalities

The scaled quantity

z(x) =
y(x)
y(0)

(3.1)

is introduced so that (1.1) yields

z′′(x) = g(x, z(x), γ, z(1)), x ∈ (0, 1), (3.2)

where

g(x, z, γ, z1) = z(x)
�
λ− γ

2

2
(1− z(x)2) +

�
lλ+

γ2

2
(1− z21)

�
x

�
− [lλ+ γ2

2 (1− z21)]D
γ

(3.3)
with γ = y0 = y(0) > 0, z1 = z(1). If we set

α =
lλ+ γ2

2 (1− z21)
γ

(3.4)

then the model equation adopts the compact form

z′′(x) =
�
λ− γ

2

2
(1− z(x)2) + γαx

�
z(x)− αD (3.5)

where, if α is specified, then l can be recovered via

l =
γα− γ2

2 (1− z21)
2

(3.6)
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and z now satisfies the boundary conditions

z(0) = 1, z′(0) = 0, (3.7)

and
z′(1) = 0. (3.8)

The following observation turns out to be useful in the sequel:

Lemma 1 Let x0 < x1 be two points in [0, 1] such that z(x0) ≤ z(x1). Then z′′(x0) <
z′′(x1).

Proof. This is a consequence of the fact that the righthand side of (3.5) is an increasing
function of z for fixed x and a strictly increasing function of x for fixed z.

In the original problem, given the physical parameters λ, l > 0 andD, we seek a function
y(x) that satisfies (1.1) − (1.4). This is equivalent to finding a suitable γ > 0 and a function
z(x) that satisfies (3.5), (3.7), and (3.8). As it stands, the latter problem is as difficult as the
original one since the differential equation (3.5) contains the undetermined parameter γ as
well as the parameter α dependent on the yet-to-be-determined value z1. Here, the problem
is modified by not specifying a value for the constant l at the outset, but rather, by starting
with two given constants α > 0 and γ ≥ 0. Note that we allow γ to be 0 for convenience,
even though γ > 0 in the boundary value problem (3.1) − (3.3). Here, we proceed without
the requirement that the boundary condition (3.8) hold ‘a priori’. Accordingly, instead of
a boundary value problem, we are concerned with an initial value problem, namely, (3.5) −
(3.7). Suppose that a positive solution z(x) exists (it must be unique) on the whole interval
[0, 1]. We can then compute the pair of values z′(1) and l (recovered using (3.6)). This
defines a continuous operator T (α, γ) = (z′(1), l) from R2 → R2. The original boundary
value problem will have a solution if and only if the operator equation T (α, γ) = (0, l), with
α > 0 and γ > 0, where l now equals the value prescribed in the original problem. We term
this technique the two-dimensional shooting method.

It is known that a solution of the initial value problem always exists in a neighborhood
of the origin, but there may not be a positive solution defined on the whole of [0, 1]. Firstly,
the solution may become zero at some point in (0, 1] and then becomes negative beyond
that. Secondly, due to the existence of the term z2 on the right hand side of the equation
(3.5), the solution may blow up at some point in (0, 1] and then z′(1) is not defined. In the
next section, it is shown how the operator T can be modified to take care of such adverse
circumstances.

In what follows, we describe the topological degree result to be used in proving our main
result.

Let Ω be an open subset of the plane R2 with boundary ∂Ω a simple curve (see Figure 1).
T is a continuous mapping from Ω = Ω ∪ ∂Ω to R2. Let (c, d) ∈ R2 be a point not in the
image of ∂Ω. Denote by A a variable point on the boundary ∂Ω. As A traverses the
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Ω

∂Ω

A T (A)
T

+
(c, d)

Figure 1:

boundary (in a chosen, e.g. counterclockwise, direction), its image T (A) traces out a closed
curve that does not pass through the point (c, d). As in complex analysis, we can define the
winding number of this curve with respect to (c, d), by measuring the total change of the
argument (as a multiple of 2π) of the vector joining (c, d) and the variable point T (A). For
two-dimensional space, this number is equivalent to the topological degree of the mapping
T at (c, d).

It is useful to recall that if T is homotopic to another mapping T1 and the point (c, d)
is not on the combined image of ∂Ω under the homotopy, then the degree of T with respect
to (c, d) and that of T1 are the same.

An important result in degree theory states:

If the degree of a continuous mapping T with respect to a point (c, d) is non-zero,
then the equation T (α, γ) = (c, d) has a solution (α, γ) ∈ Ω.

To apply this result to our problem, we set (c, d) = (0, l) and proceed to find a suitable
region Ω such that the winding number of T (∂Ω) with respect to (0, l) is non-zero. In the
next section, it will be shown that if we choose two large enough numbers α∗ and γ∗, then
the interior of the rectangle with vertices P = (λ/D, 0), Q = (α∗, 0), R = (α∗, γ∗), and
S = (λ/D, γ∗) will serve as our Ω.

We now state a simple result in the theory of differential inequalities that will be useful
in the next section.

Lemma 2 Suppose Z(x) and U(x) are functions defined on an interval [0, x1] and that
they satisfy

Z ′′(x) ≥ F (x,Z(x)), (3.9)

U ′′(x) = F (x,U(x)), (3.10)

5
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where the continuous function F (x,Z) is increasing in Z for each fixed x ∈ [0, x1]. If in
addition, it is assumed that,

Z(0) ≥ U(0), Z ′(0) ≥ U ′(0). (3.11)

then
Z(x) ≥ U(x), Z ′(x) ≥ U ′(x), ∀x ∈ [0, x1]. (3.12)

Proof. This can be found in any standard monograph on differential inequalities, (e.g. [7]
or [4]). It is included here for reference purposes.

The result is first established under the stronger assumption that the inequalities in
(3.9) and (3.11) are strict, with the stronger conclusion that Z(x) > U(x) for all x ∈ [0, x1].
Suppose that the conclusion is false. Then there is a point ξ ∈ (0, x1] at which Z(ξ) = U(ξ),
while Z(x) > U(x) for all x < ξ. Then we must have

Z ′(ξ) ≤ U ′(ξ). (3.13)

On the other hand, since F is an increasing function of Z,

Z ′′(x) > F (x,Z(x)) ≥ F (x,U(x)) = U ′′(x) (3.14)

for all x < ξ. This together with the second inequality in (3.11) implies that Z ′(ξ) > U ′(ξ),
in contradiction to (3.13). This completes the proof for the special case. The conclusion
for the general situation then follows by a continuity argument.

4 The Main Result

The central result is as follows:

Theorem 1 Given any λ, l > 0 and D ∈ (0, 1], the boundary value problem (1.1) − (1.4)
has a positive solution.

The above will be established by a series of Lemmas. As indicated earlier, (3.5) is to be
first solved subject to the initial conditions (3.7) ignoring the boundary condition (3.8). We
seek to extend the solution to a maximum interval of definition (being a subset of [0, 1])
with the requirement that the solution remains positive and bounded (by a suitably chosen
number, say 2). Three possibilities exist:

(E1) The solution does not attain the value z = 2 and eventually bends down to intersect
the x-axis. Let σ0 ≤ 1 be the first point when z(σ0) = 0.

(E2) The solution eventually increases to attain the value z = 2. Let σ1 ≤ 1 be the first
point when z(σ1) = 2.

6
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(E3) The solution satisfies 0 < z(x) < 2 for all x ∈ [0, 1].

We define the “endpoint” of the solution z as the point (σ0, 0), (σ1, 2) or (1, z(1)), and
denote by σ the value σ0, σ1, or 1, respectively, according to one of the three possibilities
listed above. Once the endpoint of the solution is determined, we define

δ = z′(σ) (4.1)

and, with (3.6) in mind, set

L =
γα− γ2

2 (1− z(σ)2)
λ

. (4.2)

As we vary the parameters λ, α, and γ in the equation, the endpoint changes accordingly.
In general, the dependence of the endpoint on these parameters need not be continuous.
Such a situation can occur, for example, when a solution z(x) is non-negative and tangential
to the x-axis at σ0 < 1, but otherwise can be extended to the entire interval [0, 1]. By
varying the parameters slightly, it may be possible to elevate the graph of the solution so
that it no longer touches the x-axis. In this way, the endpoint jumps discontinuously from
the point (σ0, 0) to a point lying on the vertical line x = 1. Lemma 1 shows that this cannot
happen with our present equation (3.5).

Lemma 3 For the possibilities (E1), (E2), z satisfies:

1. z′(σ0) < 0.

2. z′(σ1) > 0.

As a consequence, the endpoint, the derivative z′(σ) at the endpoint, and the value L are
all continuous functions of the parameters λ, α and γ.

Proof. For the case (E1), we know that z′(σ0) ≤ 0, so that it is only necessary to show that
z′(σ0) �= 0. Suppose that this is false. Then z(σ0) is a local minimum (when considered
in the left neighbourhood of σ0), implying that z′′(σ0) ≥ 0. But from (3.2), we have
z′′(σ0) = −α < 0, a contradiction.

For the case (E2), let x0 ∈ [0, σ1] be where z(x) attains its minimum. Clearly, x0 cannot
be σ1. So x0 < σ1. At x0, z′(x0) = 0 and z′′(x0) ≥ 0. In [x0, σ1], z(x) is increasing. By
Lemma 1, z′′(x) > z′′(x0) ≥ 0 for all x ∈ (x0, σ1] and the desired conclusion follows.

Next, let us indicate how the continuous dependence of the endpoint on α and γ may
be established. For the case (E3), this is just the classical result of continuous dependence
of a solution on parameters. For the case (E1), z(σ0) = 0 and z′(σ0) < 0. The solution
can then be continued to a small neighborhood of x = σ0, with z(x) < 0 for x > σ0. Let
us take two points ξ1 < σ0 < ξ2, both of them are very close to σ0. Then z(ξ1) > 0 and
ζ(ξ2) < 0. If we vary λ, α, and/or γ very slightly, it can be ensured that z̄(ξ1) is still > 0

7
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and z̄(ξ2) is still < 0. Here, z̄ denotes the solution of the initial value problem using the
new parameters. By the Intermediate Value Theorem, z̄ has a zero in [ξ1, ξ2] and thus it is
very close to the original zero σ0 of z. The case (E2) can be handled in a similar manner.

We can now define the continuous operator T : R2 → R2 by

T (α, γ) := (δ, L) = (z′(σ), L). (4.3)

For the purpose of visualization, we describe the image space as the two-dimensional plane
spanned by the δ and L axes (see Figure 2). Note again that, although in the reduction of
the original boundary value problem to the new initial value problem, only γ > 0 is allowed,
the new problem can, however, be studied with γ ∈ (−∞,∞). Hence, T can be defined
even for γ ≤ 0.

If z′(σ) = 0, then by Lemma 3, we must have case (E3) and σ = 1. If, furthermore,
L = l, then (4.2) coincides with (3.6) and z is a solution of the original boundary value
problem. Therefore, the validity of Theorem 1 is equivalent to the claim that the operator
equation

T (α, γ) = (0, l) (4.4)

has a solution with α > 0 and γ > 0. In what follows, this claim is proved using the
topological degree method described in Section 3. We start by establishing:

Lemma 4 For cases (E2) or (E3), z cannot have more than one local minimum in [0, 1].
Assume that αD ≥ λ and z has a local minimum in [0, 1). Then δ > 0 and L ≥ 0.

Proof. If z has a local minimum at a point x0, then z′′(x) > 0 for x > x0. Hence, δ > 0
and z cannot have another local minimum beyond x0. For case (E2), z(σ) = 2 and from
(4.2), we see that L ≥ 0. If we have case (E3), then σ = 1. If z(1) ≥ 1, then (4.2) again
gives L ≥ 0. Now suppose that z(1) < 1. On return to the original form of (3.2) and (3.3)
and substitution of x = 1, we obtain

z′′(1) = z(1)(λ + Lλ)− αD. (4.5)

Since z′′(1) > 0, it follows that

z(1)(λ + Lλ) > αD, (4.6)

whence
Lλ >

αD

z(1)
− λ ≥ αD − λ ≥ 0, (4.7)

so that, L ≥ 0.

We now choose any number

α∗ >
λ+ lλ
D

, (4.8)

8
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and another sufficiently large number γ∗, the value of which will be specified later in
Lemma 9. Let PQRS be the rectangle with vertices P = (λ/D, 0), Q = (α∗, 0), R =
(α∗, γ∗), and S = (λ/D, γ∗). Below, we study the image of each the sides of this rectangle
under the operator T .

Lemma 5 T (A) = (δ, 0), with δ < 0 for every point A = (α, 0) on the line PQ. In
particular, the point P is mapped to P ′ = (0, 0) and P ′Q′, the image of PQ, is a line
segment contained in the negative part of the δ-axis (see Figure 2).

Proof. When γ = 0, the differential equation (3.5) reduces to z′′(x) = λz−αD while L = 0.
The assertions of the Lemma are readily verified. In particular, for the point P , α = λ/D
and z(x) = 1 is the solution of the initial value problem. It follows that T (P ) = (0, 0). It
is seen that when α increases from P to Q, the corresponding value z′(σ) decreases and is
negative. Accordingly T (A) lies on the negative part of the δ-axis.

The next Lemma shows that if z(x) satisfies also the boundary condition (3.8) at x = 1,
then z must be a decreasing function and the only critical points are x = 0 and x = 1.
Note that by Lemma 3, (3.8) implies that we are in case (E3).

Lemma 6 Suppose γ ≥ 0. If the positive function z(x) also satisfies (3.8), then z′(x) ≤ 0
for all x ∈ [0, 1], z′′(0) ≤ 0, and z′′(1) ≥ 0.

Proof. If γ = 0, then z can only satisfy (3.8) in the trivial case when α = λ/D and z ≡ 1.
Hence, we may assume that γ > 0. By Lemma 4, z(x) cannot have a local minimum in
[0,1), for otherwise δ > 0, contradicting (3.8). Hence, x = 1 is the only local minimum.
As a consequence, z(x) is a decreasing function in [0, 1]. The conclusions z′′(0) ≤ 0 and
z′′(1) ≥ 0 follow from the fact that x = 0 is a maximal critical point and z = 1 is a minimal
critical point.

Lemma 7 Let A be a point on the line QR and T (A) = (δ, L). If δ = 0, then L > l.

Proof. Since A = (α, γ) lies on QR, α = α∗. If δ = 0, then we have case (E3) and the
endpoint must be (1, z(1)). From Lemma 6, z′′(1) ≥ 0, z(1) ≤ 1. Adopting the same
arguments in the proof of Lemma 4, it is seen that at x = 1,

z′′(1) = z(1)(λ + Lλ)− α∗D, (4.9)

whence
Lλ ≥ α∗D

z(1)
− λ > α∗D − λ > lλ, (4.10)

from the definition of α∗ (3.4), and so L > l.

9
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Let us interpret the conclusion of this Lemma geometrically (see Figure 2). The image
of the line QR under T is a curve Q′R′ in the (δ, L) plane. Below, it will be shown that,
once γ∗ has been suitably chosen, the image point R′ lies in the first quadrant of the plane,
δ > 0, L > 0. The curve will, therefore, intersect the positive δ-axis at one or more points,
but all of them must lie above the point (0, l). In Figure 2, one such curve Q′R′ is depicted.
Note that the curves P ′Q′, Q′R′, R′S′, and S′P ′ in Figure 2 do not represent actual curves
computed from a numerical solution of the initial value problem. Rather, these curves are
drawn only to satisfy the assertions of the various Lemmas, but otherwise arbitrarily.

α

γ

P Q

RS

T

L

δ
P ′Q′

(0, l)

R′

S′

Figure 2:

Next we consider the line SP .

Lemma 8 The image, S ′P ′ = T (SP ), of the line SP lies in the first quadrant. Further-
more, except for the point P ′, no other points of the curve S ′P ′ lie on the L-axis.

Proof. On the line SP , α = λ/D and z(x) satisfies the differential inequality

z′′(x) ≥
�
λ− γ

2

2
(1− z(x)2)

�
z(x)− λ (4.11)

Using Lemma 2, it is readily seen that z(x) ≥W (x) ≡ 1. Hence, x = 0 is a local minimum
and the desired conclusion follows from Lemma 4.

The next Lemma deals with the remaining side RS of the rectangle.

Lemma 9 Provided that γ∗ is chosen large enough, the image of RS is contained in the
first quadrant of the (δ, L) plane.

10
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Proof. According to Lemma 4, it only remains to show that z has a local minimum at
some x0 < 1, or equivalently that, z′(x0) = 0.

By Lemma 8, we already know that S ′ is in the first quadrant. So it may be assumed
that the point A on RS under consideration is different from S. In other words, we can
assume α > λ/D. This implies that z is initially decreasing near x = 0. If z(ξ) = 1 for
some ξ > 0, then z must have a local minimum in (0, ξ) and we are done. Hence, we may
assume that z(x) ≤ 1 or all x ∈ [0, 1]. We will show below that this cannot happen if γ∗ is
sufficiently large.

Let us suppose the contrary, and that we do have z(x) ≤ 1 for all x. For points on RS,
γ = γ∗, and then

γ∗2

2
(1− z(x)2)z ≤ γ∗2(1− z(x)) (4.12)

and z satisfies the differential inequality

z′′(x) ≥ −γ∗2(1− z(x)) + (λ+ γ∗αx)z(x) − αD
≥ −γ∗2(1− z(x)) + (λ+ γ∗αx)z(x) − α. (4.13)

The fact D ≤ 1 is used above to obtain the second inequality and is the key to why
Theorem 1 cannot hold for all D ∈ (0,∞).

We show below that if γ∗ is chosen large enough, then z(x) will remain close to 1 for
all x. In particular, we make the assumption (to be justified later) that

z(x) ≥ m :=
2α∗ + λ
2(α∗ + λ)

. (4.14)

Then it follows from (4.13) that

z′′(x) ≥ −γ∗2(1− z(x)) + (λ+ γ∗αx)m− α. (4.15)

Let W (x) solves the initial value problem

W ′′(x) = −γ∗2(1−W (x)) + (λ+ γ∗αx)m− α, (4.16)

W (0) = 1, W ′(0) = 0. (4.17)

Then, by Lemma 2, z(x) ≥W (x) and z′(x) ≥W ′(x). If we can show that W (x) ≥ m, then
(4.14) will be verified, and if it can be shown that W (1) ≥ 1, then z(1) ≥ 1 and the desired
contradiction follows.

In fact, W (x) can be explicitly computed to give

W (x) = 1 + C1e
γ∗x + C2e

−γ∗x −R(x) (4.18)

11
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where C1 and C2 are constants and R(x) is a linear function of x given in turn by

C1 =
(λ+ α)m− α

2γ∗2

=
λ(2α∗ + λ− α)
4γ∗2(α∗ + λ)

, (4.19)

C2 =
(λ− α)m− α

2γ∗2
, (4.20)

R(x) =
1
γ∗

�
αmx+

λm− α
γ∗

�
. (4.21)

With the appearance of γ∗ in the denominators, |C2| and |R(x)| can be made arbitrarily
small by choosing γ∗ large enough. Hence, the last two terms in the right-hand side of
(4.18) can be made as small as necessary. On the other hand, because α < α∗,

C1 ≥
λ

4γ∗2
> 0. (4.22)

Hence the term C1e
γ∗x on the right-hand side of (4.18) is positive. We can therefore make

W (x) > m for all x by choosing γ∗ large enough and (4.14) is justified.

At x = 1, the term C1e
γ∗x is greater than

λeγ
∗

4γ∗2
which → ∞ as γ∗ → ∞. Hence

W (1)→∞ as γ∗ →∞, contradicting our assumption that z(x) ≤ 1 for all x ∈ [0, 1]. This
complete the proof of the Lemma.

Combination of Lemmas 5, 7, 9, and 8, provides adequate knowledge about the image
of the boundary of the rectangle PQRS to allow us to conclude that the winding number
of the closed curve P ′Q′R′S′P ′ with respect to the point (0, l) is −1. This fact can be
rigorously justified using homotopic deformation of the image of the boundary of PQRS
under T . We omit the details. Hence, the operator equation (4.4) has a solution (α, γ) in
the interior of the rectangle PQRS, which is equivalent to the existence of a solution to
the original boundary value problem. The proof of our main result is thus complete.

Remark: By more carefully tracking the parameter D in the calculations, one can actu-
ally show that Lemma 9 holds for values of D slightly larger than 1. More precisely, we can
prove that Lemma 9, and hence also Theorem 1, remains valid when D ≤

�
(l + 1)2 + 1− l.

We are not going to pursue in that direction, but leave the details to the readers.
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problems for Painlevé II, J. Math. Anal. Appl, 265, 1-11 (2002).

[9] C. Rogers, A. Bassom and W.K. Schief, On a Painlevé II model in steady electrolysis:
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Appendix I

A Numerical Algorithm

No numerical treatment of the two-ion boundary value problem (1.1) − (1.4) has been
undertaken in the literature and our topological existence proof does not lead directly to
a practical algorithm. Preliminary numerical studies of the problem (with D = 1) are
presented below. The algorithm is implemented in MATLAB.

The procedure adopted was as follows:
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1. Create a global variable gamma (corresponding to γ). Define a function (using a
MATLAB script file, the so-called .m file) delta(a) that takes the input value a
(corresponding to α), solves the initial value problem (3.5) and (3.7), with α = a and
γ = gamma, and returns the value of δ = z′(σ).

2. Use a nonlinear equation solver, such as fzero or bisection (which uses the bisection
method and is available in the public domain) to solve the equation delta(a) = 0.
The pair of values (gamma, a) will then be associated with a solution z(x) of the
boundary value problem (3.5), (3.7), and (3.8).

3. For each pair (gamma, a), compute the value L using the formula (4.2).

4. Considering L as the image of gamma under a nonlinear function, we can once again
use an equation solver to find a suitable gamma so that L = l.

5. Scale z by gamma (andD if necessary) to recover the solution y of the original boundary
value problem (1.1) − (1.4).

In Step 2, we mention that gamma needs to be a global variable. This is because in
MATLAB, parameters that appear in a differential equation cannot be passed directly as
function arguments to the script file that defines the differential equation. Either we have
to modify the script file every time a parameter value is changed or we let the script file
access the value of a variable parameter via a global variable. In fact, we also need to create
a global variable alpha for the parameter α used in the differential equation.

In Step 2, we make use of a convenient feature of the MATLAB ode solvers, such as
ode45, namely, one can specify a set of events to instruct the solver to stop when one of the
events becomes true. In our situation, the events arise when z(x) becomes 0 and when z(x)
becomes 2. This directs the solver to stop right at the endpoint. What would happen if
the events feature is not invoked? In the case of (E1), z(x) becomes negative but the solver
will not detect that and still return the value z′(1), which will not be what we want. In
the case of (E2), there is a possibility that the solution blows up at a point before reaching
x = 1 and the solver will become broken. What can be done if an ode solver does not have
this events feature? An alternative is to modify the differential equation by “truncating”
the nonlinear function f . For example, one can redefine f = −α when z ≤ 0, and replace
the power z2 by (min(z, 2))2.

In Step 3, the existence of an a that solves delta(a) = 0 for any given gamma can be
readily proved using a one-dimensional shooting method. One can even show that a depends
continuously on gamma. In practice, the equation solver, however, can become unstable and
fail to converge when γ is very large. Extra precaution has to be taken to check for the
exit status to make sure that the solver succeeds. The solver requires the input of either
an initial guess or an initial bounding interval, a good choice of these can help with the
convergence. The error tolerance of the ode solver and the equation solver may also need
to be fine-tuned to ensure greater accuracy. In our experiments, for example, with λ = 1
and gamma > 50, the computed a and L start to become unreliable. An asymptotic analysis
is suggested here.

14
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Numerical results indicate that the dependence of a on gamma is always monotone and so
the corresponding mapping is one-to-one, and the inverse mapping exists and is continuous.
However, we are not able to confirm this theoretically and would like to raise this as a
conjecture, as follows:

Conjecture For each given γ > 0, there exists one and only one α such that the associated
z(x) of the initial value problem (3.5) and (3.7) also satisfies the boundary condition (3.8).
The mapping from γ to α is continuous. The value L derived from α is also a monotone
function of γ. This last statement is equivalent to the assertion that the original boundary
value problem has a unique solution.

If this conjecture is true, then in Step 5, we can assert that L is a continuous function of
gamma and the existence of a suitable gamma that gives L = l is guaranteed. This amounts
to an alternative proof of our main result Theorem 1 without resort to topological degree
theory.

Figures 3 and 4 depict the numerical result of one of our experiments, with λ = 1.
Figure 3 shows the graph of a as a function of gamma, which is monotone and a → ∞ as
gamma → ∞. Figure 4 shows the graph of L as a function of gamma, which again appears
to be monotone. Note also that L → 0 as gamma → 0 and L →∞ as gamma →∞. Hence,
L traverses every possible value of l.
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Figure 3.
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γ α L γ α L

0 1.000000 0.0000
1 1.677795 1.4797 16 34.697209 301.0864
2 2.800175 3.8542 17 37.871820 356.6989
3 4.238718 7.0153 18 41.158186 418.6787
4 5.857366 11.1617 19 44.554830 487.3320
5 7.599814 16.7386 20 48.060433 562.9621
6 9.455765 24.2675 21 51.673750 645.8692
7 11.428326 34.2531 22 55.393610 736.3500
8 13.523144 47.1657 23 59.218899 834.6981
9 15.742717 63.4256 24 63.148613 941.2052

10 18.087400 83.4176 25 67.181818 1056.1613
11 20.556212 107.5023 26 71.317598 1179.8524
12 23.147429 136.0246 27 75.555081 1312.5623
13 25.858967 169.3175 28 79.893436 1454.5766
14 28.689080 207.7120 29 84.331872 1606.1723
15 31.635753 251.5289 30 88.869631 1767.6262

Table 1.
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Appendix II

Numerical Results for D > 1

We can apply the same algorithm to the problem when the parameter D takes a value
greater than 1. Figures 5 and 6 depict the results for D = 2 corresponding to those of
Figures 3 and 4, respectively. We have kept λ = 1. Note that a still depends on gamma
continuously and monotonically. However, Figure 6 shows that L is no longer monotone in
gamma. There exist a maximum value L∗ = M(l) that L can reach. In other words, there
will be no solution to the boundary value problem if l > L∗. This is equivalent to saying
that a Thompson-type condition has to be imposed to ensure the existence of a solution.
Another implication of the shape of the curve is that, in general, for some given values of
l there can be two different solutions. It would be interesting if all these observations can
be verified rigorously.

One may be curious to find out why the same proof for Theorem 1 would not work
for D > 1. Which argument breaks down? In fact, all the Lemmas in Section 3 except
Lemma 9 still hold. It is, however, interesting to note that even though Lemma 7 is
theoretically valid, for α∗ sufficiently large, it holds in a void context. The conclusion of
the Lemma is a conditional assertion: If the image curve Q′R′ intersects the δ-axis, then at
the intersection point, L > 0. The truth is that for D > 1 the curve Q′R′ may not intersect
the δ-axis at all.

For Lemma 9, a differential inequality for z(x) similar to (4.15) and the corresponding
differential equation (4.16) for W still hold, except that there is now a factor 2 in the first
term of the righthand sides. The extra factor 2 lends more weight for the negative first
term which tends to bend the graph of W downwards, so that the conclusions W (x) > m
and W (1) > 1 cannot be established. This is manifested in the fact that in the explicit
expression (4.18), the constant C1 is no longer positive.

If we try to construct a geometric visualization analogous to Figure 2 for D > 1. We
will see that the curve Q′R′ will be contained in the fourth quadrant and so it will not
cross the δ-axis. Instead, the curve R′S′ is going to intersect the δ-axis. But since R′S′

is not subjected to Lemma 7, the intersection point can be below the point (0, l). In this
way, the topological degree of the T about (0, l) will be zero and the operator equation
T (α, γ) = (0, l) may is not guaranteed to have a solution.

17



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Graph of a vs gamma

gamma

a

Figure 5.

γ α L γ α L

0.0 0.50000000 0.00000000 2.6 0.83442709 0.92754486
0.2 0.52401700 0.10417835 2.8 0.85305764 0.89139118
0.4 0.54967282 0.21474765 3.0 0.86997720 0.83651922
0.6 0.57663579 0.32840002 3.2 0.88523042 0.76389767
0.8 0.60451674 0.44151195 3.4 0.89888922 0.67469821
1.0 0.63289484 0.55036737 3.6 0.91104568 0.57022646
1.2 0.66134453 0.65137562 3.8 0.92180564 0.45186035
1.4 0.68945964 0.74125805 4.0 0.93128306 0.32099735
1.6 0.71687256 0.81718776 4.2 0.93959513 0.17901140
1.8 0.74326732 0.87687753 4.4 0.94685842 0.02721954
2.0 0.76838679 0.91861941 4.6 0.95318583 -0.13314215
2.2 0.79203501 0.94128393 4.8 0.95868432 -0.30093427
2.4 0.81407552 0.94428861 5.0 0.96345348 -0.47512266

Table 2.
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