Práctica 0 - Segunda parte

1 La ecuación lineal de segundo orden

1. Probar que el problema

$$u''(t) + a(t)u'(t) + b(t)u(t) = \psi(t)$$

con $a,b,\psi:[0,T]\to\mathbb{R}$ continuas, es equivalente a la ecuación $Lu=\varphi(t),$ en donde

$$Lu(t) = (-p(t)u'(t))' + q(t)u(t)$$

para ciertas $q, \varphi: [0,T] \to \mathbb{R}$ continuas y cierta $p: [0,T] \to \mathbb{R}_{>0}$ de clase C^1 .

- 2. Sea L como en el ejercicio anterior, y sea $\{u_1,u_2\}$ una base de soluciones del problema homogéneo Lu=0. Probar que $w=p(u_1u_2'-u_2u_1')$ es una constante no nula.
- 3. Sean L, u_1 , u_2 y w como antes, y sea $\varphi:[0,T]\to\mathbb{R}$ una función continua. Probar que todas las soluciones de la ecuación $Lu=\varphi$ son de la forma $u=c_1u_1+c_2u_2$, con

$$c_1 = k_1 + \frac{1}{w} \int_0^t u_2(s) \varphi(s) \ ds,$$

$$c_2 = k_2 - \frac{1}{w} \int_0^t u_1(s) \varphi(s) \ ds.$$

4. Sea L como antes. Probar que si el problema de Dirichlet

$$Lu = 0, \qquad u(0) = u(T) = 0$$

admite solamente la solución trivial, entonces el problema no homogéneo

$$Lu = \varphi, \qquad u(0) = u_0, \quad u(T) = u_T$$

tiene una única solución para cualquier φ continua y cualquier dato de borde $(u_0,u_T)\in\mathbb{R}^2$. Obtener conclusiones similares para las condiciones de Neumann

$$u'(0) = u_0, \qquad u'(T) = u_T$$

y periódicas

$$u(0) = u(T),$$
 $u'(0) = u'(T).$

5. Se
aLcomo antes, con $q \geq 0.$ Probar que para toda función continu
a φ el problema

$$Lu = \varphi,$$
 $u(0) = u_0,$ $u(T) = u_T,$

tiene solución única. Puede decirse lo mismo para las condiciones de Neumann o periódicas?

6. Sea L como antes, y sea $f:[0,T]\times\mathbb{R}\to\mathbb{R}$ continua y creciente en u. Probar que el problema

$$Lu = f(t, u), u(0) = u_0, u(T) = u_T$$

tiene a lo sumo una solución.

7. Desigualdad de Poincaré: existe una constante c tal que si $u:[0,T]\to\mathbb{R}$ es absolutamente continua con u(0)=u(T)=0, entonces

$$||u||_{L^2(0,T)} \le c||u'||_{L^2(0,T)}.$$

Comentario: veremos en 3 que la constante óptima es $c = \frac{T}{\pi}$.

8. Designaldad de Wirtinger: existe una constante c tal que si $u:[0,T] \to \mathbb{R}$ es absolutamente continua con u(0) = u(T) y u'(0) = u'(T), entonces

$$||u - \overline{u}||_{L^2(0,T)} \le c||u'||_{L^2(0,T)}$$

en donde \overline{u} es el promedio de u, dado por $\overline{u}:=\frac{1}{T}\int_0^T u(t)\ dt$. Comentario: en este caso, la constante óptima es $c=\frac{T}{2\pi}$.

9. Probar que existe una constante c tal que si u' es absolutamente continua y $u'(t_0)=0$ para algún t_0 entonces

$$||u'||_{L^{\infty}(0,T)} \le c||u''||_{L^{2}(0,T)}.$$

Generalizar para un operador L como antes.

2 La función de Green

En esta sección veremos que, en ocasiones, la única solución de un problema lineal $Lu = \varphi$ se puede expresar en términos de un operador integral (el inverso de L), aplicado a φ .

Vamos a encontrar esta expresión por medio de un cálculo directo cuando se trata el problema lineal

$$\{u'' = \varphi(t)u(0) = u(T) = 0.$$

En efecto, podemos escribir

$$u'(t) = c + \int_0^t \varphi(s)ds = c + \int_0^T \chi_{[0,t)}(s)\varphi(s)ds,$$

y entonces

$$\begin{split} u(t) &= \int_0^t \bigg(c + \int_0^T \chi_{[0,r)}(s)\varphi(s)ds\bigg)dr = ct + \int_0^T \chi_{[0,t}(r)\bigg(\int_0^T \chi_{[0,r)}(s)\varphi(s)ds\bigg)dr \\ &= ct + \int_0^T \varphi(s)\bigg(\int_0^T \chi_{[0,t)}(r)\chi_{[s,T]}(r)dr\bigg)ds = ct + \int_0^T \varphi(s)\psi(t,s)ds, \end{split}$$

donde

$$\psi(t,s) = \begin{cases} 0t \le s \\ t - ss < t. \end{cases}$$

Además, como u(T) = 0, vale:

$$c = -\frac{1}{T} \int_0^T \varphi(s) \psi(\alpha, s) ds = -\frac{1}{T} \int_0^T \varphi(s) (T - s) ds.$$

Luego

$$u(t) = \int_0^T G(t,s) \varphi(s) ds,$$

en donde

$$G(t,s) = \left\{-\frac{t}{T}(T-s)t \le s - \frac{s}{T}(T-t)t > s.\right\}$$

La función $G:[0,T]^2\to\mathbb{R}$ se denomina función de Green del problema.

- 1. Deducir una expresión similar para condiciones de Dirichlet no homogéneas.
- 2. Generalizar para condiciones de Neumann y periódicas.
- 3. Generalizar para un operador L como en los ejercicios anteriores, y calcular explícitamente la función de Green para el caso $Lu = u'' \lambda u$, con $\lambda > 0$.

3 Desigualdades de Poincaré y Wirtinger

En muchas de las aplicaciones que hemos visto resulta de gran importancia la llamada desigualdad de Poincaré:

$$||u||_{L^2} \le \frac{T}{\pi} ||u'||_{L^2}.$$

Esta fórmula es válida para cualquier función \boldsymbol{u} del espacio de Sobolev

$$H_0^1(0,T) := \{u : [0,T] \to \mathbb{R} \text{ abs. continua} : u(0) = u(T) = 0, u' \in L^2(0,1)\}.$$

En el ejercicio 7 se propone la existencia de "alguna" constante c que permite acotar la norma de u mediante la norma de su derivada; veremos ahora una idea informal (aunque esencialmente válida) que permite demostrar que la constante

óptima para esta desigualdad es $\frac{T}{\pi}$, mediante argumentos sencillos. Por simplicidad, trataremos únicamente el caso T=1, la versión más general se obtiene fácilmente mediante un rescale del intervalo.

Supongamos que queremos minimizar la funcional

$$I(u) = \int_0^1 u'(t)^2 dt$$

definida sobre $H_0^1(0,1)$, sujeta a la condición J(u)=1, con

$$J(u) = \int_0^1 u(t)^2 dt.$$

Es posible probar que I restringida al conjunto $\{u: J(u)=1\}$ alcanza un mínimo absoluto u_1 , que además resulta una función suave. En tal caso, por la teoría de multiplicadores de Lagrange¹ existe un número λ_1 tal que $DI(u_1) = \lambda_1 DJ(u_1)$, es decir:

$$\int_0^1 u_1'(t)\varphi'(t) dt = \lambda_1 \int_0^1 u_1(t)\varphi(t) dt$$

para toda φ . Integrando por partes el término de la izquierda, obtenemos:

$$\int_{0}^{1} (u_{1}''(t) + \lambda_{1}u_{1}(t))\varphi(t) dt = 0$$

Además, como la igualdad vale para toda φ , entonces

$$u_1'' + \lambda_1 u_1 = 0.$$

Pero esta ecuación es fácil de resolver: como u_1 se anula en 0, tiene que ser $u_1(t) = a \mathrm{sen}(\sqrt{\lambda_1}t)$ en donde a es una constante apropiada de modo que valga $\int_0^1 u_1(t)^2 dt = 1$. Por otra parte, $u_1(1) = 0$, de donde $\sqrt{\lambda_1} = k\pi$. Finalmente, observemos que

$$I(u_1) = \int_0^1 u_1'(t)^2 dt = -\int_0^1 u_1''(t)u_1(t) dt = \lambda_1 \int_0^1 u_1(t)^2 dt = \lambda_1.$$

Entonces, como u_1 es un mínimo absoluto, se deduce que k=1, es decir: $\lambda_1=\pi^2$. De esta forma,

$$\min_{\|u\|_{L^2}=1} \int_0^1 u'(t)^2 dt = \pi^2,$$

en donde el mínimo se toma sobre el espacio $H^1_0(0,1)$. Esto dice que si $u\in H^1_0(0,1)$ es distinta de 0, entonces tomando $w=\frac{u}{\|u\|_{L^2}}$ vale $\int_0^1 w'(t)^2\geq \pi^2$, o equivalentemente

$$\int_0^1 u'(t)^2 \ge \pi^2 \|u\|_{L^2}^2,$$

¹Este hecho es consecuencia inmediata del Teorema de la función implícita

como queríamos demostrar.

En realidad, existe una demostración mucho más elemental, que es la siguiente: dado $u \in C^1([0,1])$ tal que u(0) = 0, definimos

$$\phi(t) = u^2(t)\cot(\pi t),$$

que resulta continua en $[0, \frac{1}{2}]$, y $\phi(0) = 0$. Entonces

$$\phi'(t) = 2u(t)u'(t)\cot(\pi t) - \pi u^{2}(t)(1 + \cot^{2}(\pi t))$$

$$= \left(\frac{u'(t)}{\sqrt{\pi}}\right)^2 - \pi u^2(t) - \left(\sqrt{\pi}u(t)\mathrm{cotg}(\pi t) - \frac{u'(t)}{\sqrt{\pi}}\right)^2 \le \frac{u'(t)^2}{\pi} - \pi u^2(t).$$

Integrando, resulta

$$0 = \phi \Big|_0^{1/2} \le \int_0^{1/2} \frac{u'(t)^2}{\pi} - \pi u^2(t) \ dt,$$

de donde sale que

$$\int_0^{1/2} u^2(t) dt \le \frac{1}{\pi^2} \int_0^{1/2} u'(t)^2 dt.$$

En forma análoga se prueba que si u(1) = 0, entonces

$$\int_{1/2}^{1} u^{2}(t) dt \le \frac{1}{\pi^{2}} \int_{1/2}^{1} u'(t)^{2} dt,$$

y sumando las dos desigualdades cuando u(0) = u(1) = 0 se obtiene el resultado. El caso general para u absolutamente continua se deduce en forma inmediata del hecho (bastante elemental) de que $C_0^1([0,1])$ es denso en $H_0^1(0,1)$.

Cabe aclarar que, aunque parece más complicada, la otra "demostración" es mucho más general, pues se aplica a otros operadores lineales diferentes de u''.

Los anteriores argumentos pueden modificarse para probar también que la constante óptima para la desigualdad de Wirtinger (ver el ejercicio 8 de la sección 1) es $\frac{T}{2\pi}$.