
Chapter 2

Shooting type methods

As mentioned in the Introduction, different tools have been developed for the study

of boundary value problems. In this chapter, we shall start with a very simple one:

the shooting method. Roughly speaking, the method consists in solving firstly an

initial value with a free parameter λ and then trying to find an appropriate value

of λ such that the obtained solution satisfies the desired boundary condition. This

task requires some qualitative analysis; as we shall see, in some cases it is possi-

ble to know in advance the behavior of the solutions of the initial value problem,

accordingly to the variations of the parameter λ .

2.1 Set the angle and shoot

Let us start by considering the second order equation

u′′(t) = f (t,u(t)) (2.1)

with homogeneous Dirichlet conditions

u(0) = u(1) = 0. (2.2)

The idea of the shooting method is really simple: in first place, for fixed λ ∈ R,

we may solve equation (2.1) with initial conditions

u(0) = 0, u′(0) = λ . (2.3)

If f satisfies the standard requirements, i. e. it is continuous and locally Lipschitz

in u, then the solution uλ is well defined and unique. Thus, it suffices to find some

value of the shooting parameter λ such that uλ (1) = 0. In other words, we look for

a zero of the function φ defined by

φ(λ ) := uλ (1).
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Figure 1

This explains the title of this section: indeed, the procedure consists in adjusting

the value of the parameter λ until an appropriate shooting angle is obtained, thus

hitting the point (1,0). This reminds that old computer game calledGorilla, in which

the players throw bananas at each other, setting the velocity and the angle before

each throw (a modern and more sophisticated version of this game is the nowadays

very popular Angry birds).

But there is always a “but”: in this case, it is worth noticing that the solutions of

the initial value problem are not necessarily defined up to the value t = 1, so φ may

not be defined for all values of λ . However, there is a very important fact about φ
that we certainly know: it is continuous. In some situations, it is possible to assert

that dom(φ) = R; for example, this is the case when f grows at most linearly in its

second variable, that is:

| f (t,u)| ≤ a|u|+b
for some constants a and b (see Appendix A for details).

In particular, if f is bounded then the shooting method works very well, as we

shall see in the following example.

2.1.1 A back-and-forth example: the pendulum equation

Our first example in order to illustrate the above described technique consists in a

well known problem, the pendulum equation

u′′(t)+ sinu(t) = p(t) 0 < t < 1

where the forcing term p : [0,1]→R is continuous. This equation is very famous and

has been the subject of many relevant works; furthermore, there are still interesting

open problems concerning the periodic conditions (for an account of the history and

open problems on the pendulum equation, see e.g. the excellent survey [7]. More

shall be said about the subject later on, in Chapter 4). However, the situation is
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completely different when dealing with the Dirichlet conditions (2.2); as we shall

see, the existence of solutions can be easily proven by the shooting method.

Indeed, if uλ is the unique solution satisfying the initial value conditions (2.3),

then integration yields

u′λ (t) = λ +
 t

0
[p(s)− sinuλ (s)]ds

and setting R :=
 1

0 |p(t)|dt+ 1 we deduce that uλ is monotone for |λ | ≥ R. More

precisely,

• λ ≥ R⇒ u′λ (t)≥ 0 for all t.

• λ ≤−R⇒ u′λ (t)≤ 0 for all t.

In particular, uR is nondecreasing and u−R is nonincreasing; together with the fact

that uλ (0) = 0 for all λ , this implies

φ(R)≥ 0 ≥ φ(−R).

Thus, by Bolzano’s Theorem we conclude that φ vanishes in [−R,R].
It is clear that the same procedure can be applied to the more general equation

(2.1) for arbitrary bounded f . But this boundedness condition is very restrictive: it

would be desirable to demonstrate that the shooting method can be applied to a more

general situation. This is the goal of the next subsection.

2.1.2 A priori bounds

From the previous example we may conclude, as a general rule, that the success of

the shooting method relies very strongly on the fact that we know some properties

of the associated flow of the differential equation: at least, we need to be sure that

the solutions of the initial value problem for an appropriate set of parameters are

defined up to the endpoint of the interval. As mentioned, from standard results in

the theory of ODEs this is guaranteed for all λ when the nonlinearity has linear

growth; however, there are plenty of cases in which this restriction is not fulfilled

and the shooting method is still applicable. In particular, in some cases it might be

of much help to count with a priori bounds of the solutions.

The philosophy behind this idea is again very simple: if we know in advance

that the solutions of a certain problem are bounded by some constant R, then we

may replace the nonlinearity f by a bounded one, say f̃ , such that f̃ (t,u) = f (t,u)
for |u| ≤ R. Obviously, this has to be done in such a way that the solutions of the

modified problem u′′ = f̃ (t,u) are also bounded by R, so they are in fact solutions

of the original problem. Let us see some simple examples.

Example 2.1. Let f : [0,1]×R→R be continuous and locally Lipschitz in its second

variable and assume there exists a positive constant R> 0 such that
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f (t,−R)< 0 < f (t,R) for all t ∈ [0,1]. (2.4)

Then the Dirichlet problem (2.1)-(2.2) has at least one solution u with u∞ ≤ R.

Condition (2.4) is a particular case of the so-called Hartman condition. Here, it

seems reasonable to define

f̃ (t,u) :=











f (t,u) if |u| ≤ R
f (t,R) if u> R

f (t,−R) if u<−R.

This ‘cut off’ operation might look a bit drastic, although it is true that f̃ is still a

continuous and locally Lipschitz function. Moreover, it is bounded, so the shooting

method provides a solution u of the problem u′′(t) = f̃ (t,u) satisfying (2.2): thus, it

suffices to prove that |u(t)| ≤ R for all t. Indeed, assume for example that u achieves

its maximum value at some t0 with u(t0)> R, then t0 ∈ (0,1) and

u′′(t0) = f̃ (t0,u(t0)) = f (t0,R)> 0.

This is a contradiction, since u(t0) is a maximum. The proof that u(t) ≥ −R for all

t is analogous. Note that, in this case, it is not necessarily true that all the solutions

of the original problem are bounded by R: for our purposes, it was enough to prove

it for the cut-off function f̃ .

Example 2.2. Let f : [0,1]×R→R be continuous and locally Lipschitz in its second

variable and assume that f is nondecreasing with respect to u, namely

f (t,u)≤ f (t,v) for all t ∈ [0,1],u,v ∈ R, u≤ v.

Then the Dirichlet problem (2.1)-(2.2) has a unique solution.

This is a more tricky problem, although it can be also solved by elementary argu-

ments. In first place, it is worthy to observe a remarkable novelty with respect to the

preceding examples: the solution is unique. So it seems a good idea to understand

the role of the monotonicity condition, in order to see how uniqueness follows out

from it.

To this end, note that if u and v are solutions of the problem then the function

w := u− v satisfies

w′′(t)w(t) = [ f (t,u(t))− f (t,v(t))].[u(t)− v(t)]≥ 0.

Moreover, w(0) = w(1) = 0, so integration of the previous inequality yields

0 ≤
 1

0
w′′(t)w(t)dt =−

 1

0
w′(t)2 dt.

This implies that w′ ≡ 0 which, in turn, implies w≡ 0.

So we have proven uniqueness, but... how can we deduce now the existence of

solutions? As we shall see in the next chapters, this is a particular case of a rather
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general class of problems in which, roughly speaking, “uniqueness implies exis-

tence”. In this specific context, we shall replace f by a ‘cut off’ function f̃ as be-

fore, although in the present case we don’t have a value R given in advance. Thus,

we have to choose it in an accurate way.

That’s the key idea of a priori bounds: sometimes it is possible, before knowing

whether or not the problem has a solution, to prove that the image of such a solution,

if it exists, lies in a certain bounded set. Here, if u(t) solves (2.1)-(2.2) then we may

write

u′′(t) = f (t,u(t))− f (t,0)+ f (t,0)

and as u(0) = 0 we obtain:

u′′(t)u(t) = [ f (t,u(t))− f (t,0)]u(t)+ f (t,0)u(t)≥ f (t,0)u(t).

Integration at both sides of the inequality yields

 1

0
u′(t)2 dt ≤−

 1

0
f (t,0)u(t)dt ≤ u∞

 1

0
| f (t,0)|dt. (2.5)

Next, observe that

|u(t)|=








 t

0
u′(s)ds









≤
 t

0
|u′(s)|ds≤

 1

0
|u′(s)|ds

for all t. Now take the maximum at the left hand side to conclude, using the Cauchy-

Schwarz’s inequality, that

u∞ ≤


 1

0
u′(t)2 dt

1/2

.

Combined with (2.5), this last inequality implies:

u∞ ≤


 1

0
u′(t)2 dt

1/2

≤
 1

0
| f (t,0)|dt := R.

If we set f̃ exactly as in the previous example, then the modified problem has a

solution u. But now comes the most interesting part: the bound R was obtained

using only the monotonicity of f . As f̃ is also nondecreasing in its second variable

and f̃ (t,0) = f (t,0), we deduce that u∞ is bounded by the same R and thus a

solution of the original problem.

Example 2.3. Let f : [0,1]×R→R be continuous and locally Lipschitz in its second

variable and assume that f has linear growth in u, that is: | f (t,u)| ≤ c|u|+d for some

constants c,d ≥ 0. We claim that if c< 1 then the Dirichlet problem (2.1)-(2.2) has

a solution. Indeed, in this case an a priori bound for an arbitrary solution u(t) is

obtained as follows. As before, let us multiply by u and integrate to obtain
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 1

0
u′(t)2 dt =−

 1

0
f (t,u(t))u(t)dt ≤ c

 1

0
u(t)2 dt+d

 1

0
|u(t)|dt.

The computations in the previous example now yield:

u2
∞ ≤ cu2

∞ +du∞

and hence u∞ ≤ d
1−c . Fix R ≥ d

1−c and let f̃ be defined as before. If R is large

enough, then the inequality | f̃ (t,u)| ≤ c|u|+ d is satisfied, so the solutions of the

truncated problem are, in particular, solutions of the original one.

Remark 2.1. The condition c < 1 can be improved: indeed, using the Poincaré in-

equality
 1

0 u(t)
2 dt ≤ 1

π2

 1
0 u

′(t)2 dt (see Appendix), it is easy to verify that a suffi-

cient condition for the existence of solutions is that c< π2. This condition is already

sharp, as it can be seen for example when f (t,u) = sin(πt)−π2u. In this case, if

we suppose that the problem has a solution u(t), then multiplying by sin(πt) at both

sides and integrating we obtain:

 1

0
sin2(πt)dt =

 1

0
[u′′(t)+π2u(t)]sin(πt)dt = 0,

a contradiction.

2.2 From scalar equations to systems

Beside the extensions obtained in the last two examples, the application of the shoot-

ing method for the case of a bounded nonlinearity might have been perhaps a bit

disappointing for those who were expecting something really spectacular. In some

sense, the resolution was just too simple: notice, for example, that our argument has

relied only on the fact that solutions with large absolute value of the first derivative

at the initial point t = 0 are monotone. This is, indeed, very simple, although it is

not clear how it can be extended for a system of equations.

The goal of the present section consists in solving, instead of a scalar equation,

a system of two equations. In other words, we shall consider still equation (2.1) but

now with f : [0,1]×R
2 → R

2 and look for a solution u : [0,1]→ R
2 satisfying the

Dirichlet conditions (2.2).

Of course, one may ask why we should restrict ourselves to the 2-dimensional

case. In fact, all the results in this section can be extended to higher dimensions;

however, the case of 2 equations contains already the main condiments of the non-

scalar case and it has the additional advantage that it allows a very elementary and

elegant approach. The general case shall be considered later in Chapter 6.
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2.2.1 With a little help of my intuition

With the scalar case still in mind, let us assume now that f : [0,1]×R
2 → R

2 is

continuous and locally Lipschitz in u and define, for λ ∈ R
2, uλ (t) as the unique

solution of the initial value problem (2.1)-(2.3). As before,

u′λ (t) = λ +
 t

0
f (s,u(s))ds,

but now we shall go ahead with a second integration step to obtain:

uλ (t) = λ +
 t

0

 τ

0
f (s,uλ (s))dsdτ.

As far as uλ is defined up to t = 1, we may define again φ(λ ) := uλ (1) and hence

φ(λ ) = λ +S,

where S (for “something”) satisfies: |S| ≤  f∞.

The bad new is that, in this context, we cannot use Bolzano’s theorem, since we

are dealing now with a 2-dimensional problem. In consequence, the existence of a

zero of φ is not obvious yet.

Let us start trying a simple argument: in first place, it is clear that if R >  f∞,

then φ(λ )−λ< R for all λ . Thus,

λ2 −2φ(λ ) ·λ +φ(λ )2 < R2

and, in particular, when λ= R we deduce:

φ(λ ) ·λ >
1

2
φ(λ )2 ≥ 0.

Now recall that φ(λ ) ·λ = φ(λ ).λcosα , where α is the angle between φ(λ )
and λ ; hence, the previous computation implies that, when λ = R, the vector

field φ points outwards the ball BR(0). Is this enough to conclude that φ vanishes in

BR(0)?
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Figure 2

Suppose it does not: then, for each fixed λ ∈ BR(0) the line Lδ := λ + δφ(λ )
hits the circumference ∂BR(0) at a unique value of δ = δ (λ ) ≥ 0. More precisely,

from the equality

λ +δφ(λ )2 = R2

we obtain:

δ (λ ) =
φ(λ ) ·λ +



(φ(λ ) ·λ )2 +R2 −λ2

φ(λ )2
.

Moreover, note that, since φ(λ ) ·λ > 0 for λ = R, the term inside the square

root in the previous expression is strictly positive; thus, the function δ is as smooth

as φ .

We conclude that the mapping r : BR(0)→ R
2 defined by

r(λ ) = λ +δ (λ )φ(λ )

is smooth and has two very special properties:

1. r(BR(0))⊂ ∂BR(0).
2. λ ∈ ∂BR(0)⇒ r(λ ) = λ .

In other words, r is a so-called retraction, that maps a closed disk D onto its

boundary and leaves the points of ∂D fixed. As we shall see, such a mapping cannot

exist.

2.2.2 In the beginning was Green

In this section, we shall prove that there are no C2 retractions from the closed unit

disk onto its boundary. Later on we shall generalize this result and prove that there

are no continuous retractions; for the moment, the smoothness assumption shall be

very helpful in order to use just very elementary tools. Indeed, a remarkable aspect

of the following proof is the fact that it employs only arguments from a basic course

in Calculus.

Let us proceed by contradiction: suppose that r= (u,v) : B1(0)→ ∂B1(0) is aC2

mapping such that r|∂B1(0) = id and define the quantity

D :=


∂B1(0)
(u∇v− v∇u) ·dσ .

On the one hand, we may set γ(t) := (cos t,sin t); then, as r ◦ γ = γ we deduce,

by the chain rule:

∇u◦ γ · γ ′ = γ ′1, ∇v◦ γ · γ ′ = γ ′2.



2.2 From scalar equations to systems 11

Thus,

D=
 2π

0



u(γ(t))γ ′2(t)− v(γ(t))γ ′1(t)


dt =
 2π

0



γ1(t)γ
′
2(t)− γ2(t)γ

′
1(t)



dt

=
 2π

0



cos2(t)+ sin2(t)


dt = 2π.

On the other hand, we may write

D=


∂B1(0)
Pdx+Qdy

where

P := u
∂v

∂x
− v∂u

∂x
, Q := u

∂v

∂y
− v∂u

∂y
.

As u2 + v2 ≡ 1, it is seen that

u
∂u

∂x
+ v

∂v

∂x
= u

∂u

∂y
+ v

∂v

∂y
≡ 0,

and we conclude that ∇u and ∇v are linearly dependent, that is:

∂u

∂x

∂v

∂y
=

∂u

∂y

∂v

∂x
.

Hence,

∂Q

∂x
=

∂


u ∂v
∂y

− v ∂u
∂y



∂x
=

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
+u

∂ 2v

∂y∂x
− v ∂ 2u

∂y∂x

=
∂u

∂y

∂v

∂x
− ∂u

∂x

∂v

∂y
+u

∂ 2v

∂x∂y
− v ∂ 2u

∂x∂y
=

∂


u ∂v
∂x

− v ∂u
∂x



∂y
=

∂P

∂y

and by Green’s Theorem we get D= 0, a contradiction.

Remark 2.2. Note that the explicit computation ofD= 2π can be performed without

invoking any specific parameterization of ∂B1(0). Indeed, for an arbitrary parame-

terization γ we may apply Green’s Theorem again to obtain

D=
 2π

0



γ1(t)γ
′
2(t)− γ2(t)γ

′
1(t)



dt =


γ
xdy− ydx=



B1(0)
2dxdy= 2π.

Thus we have proven:

Theorem 2.1. There are noC2 mappings r :B1(0)→ ∂B1(0) such that r|∂B1(0) = id.

As a consequence of this ‘smooth’ version of the no-retraction theorem we also

deduce, from the computations in the previous section, that if φ is a C2 mapping
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from the closed unit ball that points outwards over the boundary, namely

φ(x) · x> 0 for x ∈ ∂B1(0) (2.6)

then it necessarily vanishes in the interior:

Theorem 2.2. Assume that φ : B1(0)→ R
2 is C2 and satisfies (2.6). Then φ has a

zero in B1(0).

Furthermore, we can also obtain aC2 version of a very famous result:

Theorem 2.3. (Brouwer’s Theorem,C2 version) Let f :B1(0)→B1(0) be aC
2 map-

ping. Then f has at least one fixed point, that is: there exists x ∈ B1(0) such that
f (x) = x.

Proof. If f (x) = x for some x ∈ ∂B1(0), then we are done. Otherwise, define theC2

mapping φ(x) := x− f (x); then, for x ∈ ∂B1(0),

φ(x) · x= x2 − f (x) · x= 1− f (x) · x> 0

and hence φ vanishes in B1(0).

Add more dimensions to your Bolzano: the Poincaré-Miranda Theorem

Few pages ago, we have complained about the fact that Bolzano’s theorem could

not be used for a 2-dimensional shooting problem. Now it’s time to confess that

we were not completely sincere; indeed, the following result can be regarded as a

generalization of Bolzano’s theorem for vector fields in R
2:

Theorem 2.4. (Poincaré-Miranda, C2 version) Let f : [−1,1]× [−1,1] → R
2 be a

C2 mapping such that

f1(−1,x2)< 0 < f1(1,x2) ∀x2 ∈ [−1,1] (2.7)

and

f2(x1,−1)< 0 < f2(x1,1) ∀x1 ∈ [−1,1]. (2.8)

Then there exists x ∈ (−1,1)× (−1,1) such that f (x) = (0,0).

There are several ways of proving this result, also known as the generalized inter-

mediate value theorem. For example, one may consider the function g(x) := x− f (x)
M

,

whereM is a constant. It is readily seen that, forM large enough, g maps the square

[−1,1]× [−1,1] inside a smaller square C ⊂ (−1,1)× (−1,1). Next, take a C2-

diffeomorphism d : B1(0)→ K for some K such that C ⊂ K ⊂ [−1,1]× [−1,1]. In

particular, g(K) ⊂ K, so by Theorem 2.3, applied to the mapping d−1 ◦ g ◦ d, we

conclude that g has a fixed point, which corresponds to a zero of f .
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Remark 2.3. It is clear that both the generalized intermediate value theorem and

Theorem 2.2 are still valid if any of the inequalities (2.6), (2.7) and (2.8) is reversed.

Furthermore, these inequalities do not need to be strict: indeed, assume for example

that φ : B1(0)→ R
2 is a C2 mapping such that φ(x) · x ≥ 0 over ∂B1(0) and define

φn(x) := φ(x)+ x
n
. Then φn(x) ·x> 0 over ∂B1(0), so φn has a zero xn. By compact-

ness, there exists a subsequence of {xn} that converges to some x ∈ B1(0), which

is obviously a zero of φ . A similar argument allows to prove a non-strict version of

Theorem 2.4.

2.2.3 Green light (to topology)*

As shown in the previous section, there are no C2 retractions from the closed unit

ball onto its boundary; in particular, that property was used to prove Theorems 2.2,

2.3 and 2.4.

This would suffice for our immediate purposes: if we are just dealing with a

simple system like (2.1), it does not make any damage to assume that the involved

functions are smooth so the mapping φ(λ ) := uλ (1) is also smooth (see Appendix

A). However, it is not a great effort to prove that the preceding “topological” results

are, indeed, topological: in other words, they still hold if we assume that the map-

pings are only continuous. To this end, we shall make use of the Stone-Weierstrass

theorem; the reader who wants to keep using only arguments from basic calculus

may skip this part and proceed further with the remaining sections in this chapter.

Let us start, for example, with Theorem 2.2: assume that φ : B1(0)→ R
2 is con-

tinuous and satisfies (2.6), and consider a sequence ofC2 functions φn : B1(0)→R
2

such that φn → φ uniformly. Let ε := infx∈∂B1(0) φ(x) · x > 0 and fix n0 such that

φn−φ∞ < ε for n≥ n0, then

φn(x) · x= φ(x) · x− [φ(x)−φn(x)] · x≥ ε −φn−φ∞ > 0

for any x∈ ∂B1(0) and n≥ n0. Thus, φn satisfies (2.6) for n large enough, and hence

it has a zero xn. Next, take a subsequence of {xn} converging to some x ∈ B1(0),
then it is immediate that φ(x) = 0.

From this point, the extension of the no-retraction theorem is straightforward: if

r : B1(0) → ∂B1(0) is a continuous retraction then it satisfies (2.6) and, in conse-

quence, it should vanish, a contradiction. Summarizing:

Theorem 2.5. There are no continuous mappings r : B1(0) → ∂B1(0) such that
r|∂B1(0) = id.

Theorem 2.6. Assume that φ : B1(0)→ R
2 is continuous and satisfies (2.6). Then

φ has a zero in B1(0).

Any of both statements can be used for proving the standard version of Brouwer’s

Theorem in R
2 (alternatively, one might use the Stone-Weierstrass theorem again

and deduce it directly from Theorem 2.3):
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Theorem 2.7. (Brouwer) Any continuous mapping f : B1(0) → B1(0) has at least
one fixed point.

The same is true for the generalized intermediate value theorem. Again, the proof

follows from the Stone-Weierstrass theorem combined with Theorem 2.4, or just

repeating the argument of the preceding section and applying Theorem 2.7. Alter-

native proofs can be obtained using Theorems 2.5 or 2.6. Regarding this last one, it

is worth observing that if a function f satisfies (2.7) and (2.8) then it is an outward

pointing field with respect to the square [−1,1]× [−1,1].

Theorem 2.8. (Poincaré-Miranda) Let f : [−1,1]× [−1,1] → R
2 be a continuous

mapping satisfying (2.7) and (2.8). Then there exists x ∈ (−1,1)× (−1,1) such that
f (x) = (0,0).

Remark 2.4. Although we’ve presented the four previous theorems in a specific or-

der, they are all equivalent: that is, any of them can be used to prove any of the

others. Furthermore, any of them implies the completeness axiom for the real num-

bers (see exercise 2.4). This is also true if we consider only the C2 versions of the

last section: thus, we may conclude that Green is really “in the beginning”. This

might seem a bit odd, since quite a lot of work is required just to understand the

statement of Green’s theorem: one needs to deal with oriented curves and line inte-

grals, double integrals, partial derivatives and so on. But, formally, it is true that all

the properties of the real numbers are valid if the completeness axiom is replaced

by the statement of Green’s theorem over the unit ball.

2.3 The Poincaré mapping

In this section we shall investigate the application of shooting type methods to a

periodic problem. To begin, let us consider a first order system



u′ = f (t,u)
u(0) = u(1),

(2.9)

where f : [0,1]×R
2 →R

2 is continuous and locally Lipschitz in its second variable

u ∈ R
2.

As before, the idea of the method consists in finding a solution uλ with initial

data λ ∈ R
2 and try to find an appropriate value of λ such that uλ is a solution of

(2.9). More precisely, uλ is defined as the unique solution of



u′ = f (t,u)
u(0) = λ ,

and we look for some λ such that uλ (1) = λ . In other words, we search a fixed

point of the so-called Poincaré mapping P, defined by P(λ ) = uλ (1). Again, trajec-

tories are not necessarily defined up to t = 1, so the domain of P may not be the
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whole plane; however, in some cases it is possible to obtain enough information that

ensures the existence of a fixed point. This is the case in the following elementary

example:

Proposition 2.1. Let f : [0,1]×R
2 → R

2 be a C2 mapping and assume that

f (t,u) ·u< 0 for u= R,

where R is some positive constant. Then (2.9) has at least one solution u such that

u∞ ≤ R.

Proof. Take λ ∈ R
2 such that λ ≤ R and assume that uλ is defined on [0,T ] for

some T . We claim that uλ (t) ≤ R for all t ∈ [0,T ]. Indeed, setting ψ(t) := u(t)2

we obtain:

ψ ′(t) = 2u(t) ·u′(t) = 2u(t) · f (t,u(t)).
In particular, if u(t) = R then ψ ′(t) < 0. Assume firstly that u(0) ∈ BR(0), then

u(t) cannot reach the boundary ∂BR(0) for any t. On the other hand, if u(0)= R
then ψ(t) is initially decreasing and, again, u(t) must remain inside the ball BR(0)
for all t ∈ (0,T ]. This implies, in first place, that uλ is defined in [0,1] for λ ≤ R
and, consequently, the Poincaré mapping P is well defined and C2 (see Appendix

A). Furthermore, P(BR(0)) ⊂ BR(0) so the existence of a fixed point of P follows

from Theorem 2.3.

2.3.1 Smoothing for shooting*

The reader might have noticed, in the last proposition, that the smoothness assump-

tion on f was made with the precise purpose of using the C2 version of Brouwer’s

Theorem. This looks quite fair, since a non-starred section should use results from

non-starred sections only... although it is quite obvious that the result is still valid if

f is only continuous and locally Lipschitz in u. Indeed, this is not a big deal since

we know that the more general Theorem 2.7 holds.

But: what happens if f is only continuous? The study of this case seems to go

against the essence of the shooting method, which is based in the existence and

uniqueness theorem for the initial value problem. However, an extension of Propo-

sition 2.1 can be easily obtained by means of a procedure which is, in fact, very

general. In the same way as in section 2.2.3, we shall approximate f by smooth

functions and get a convergent sequence of solutions of the approximated prob-

lems. In Theorem 2.6, this was almost trivial because the closed unit ball in R
2 is

compact; in the present problem, we are dealing with a sequence of functions, so we

shall make use of a well-known and powerful compactness result: the Arzelá-Ascoli

theorem. Before going into the details, it is worth observing that even a more gen-

eral result may be obtained with almost the same effort: again, the inequality for f

does not need to be strict.
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Corollary 2.1. (Proposition 2.1 revisited)

Let f : [0,1]×R
2 → R

2 be continuous and assume that

f (t,u) ·u≤ 0 for u= R,

where R is some positive constant. Then (2.9) has at least one solution u such that

u∞ ≤ R.

Proof. By the Stone-Weierstrass theorem, for each n we may set a smooth mapping

fn : [0,1]×R
2 →R

2 such that  fn(t,u)− f (t,u)< R
n

for all t ∈ [0,1] and u∈BR(0).
Next, define gn(t,u) := fn(t,u)− u

n
; thus, if u= R then

gn(t,u) ·u= [ fn(t,u)− f (t,u)] ·u+ f (t,u) ·u− R2

n
< 0.

From Proposition 2.1, problem (2.9) with gn instead of f has a solution un such that

un∞ ≤ R. Furthermore, for arbitrary t it holds that

u′n(t)= gn(t,un(t)) ≤ max
t∈[0,1],u≤R

gn(t,u) ≤ K

for some constant K independent of n. From Arzelá-Ascoli’s theorem, there exists a

subsequence {unj} that converges uniformly on BR(0) to some function u, so if we

write

unj(t) = unj(0)+
 t

0
gnj(s,unj(s))ds,

then we deduce that

u(t) = u(0)+
 t

0
f (s,u(s))ds

for all t, and thus u is a solution of (2.9).

2.3.2 When Poincaré met Miranda

Let us consider again the second order problem (2.1) with f : [0,1]×R→ R a C2

function, but now under the periodic conditions

u(0) = u(1), u′(0) = u′(1). (2.10)

Note that the problem is scalar although, unlike the case of Dirichlet conditions,

it cannot be reduced to a one-dimensional fixed point problem. Indeed, here the

Poincaré mapping has two parameters, that correspond to the initial values of the

function and its derivative.

As a simple example, let us consider again the Hartman condition (2.4). In this

case, we may observe that the ‘cut off’ function of section 2.1 does not preserve

the smoothness; however, it is not difficult to find a bounded C2 function f̃ that
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coincides with f over [0,1]× [−R,R] and such that f̃ (t,−u) < 0 < f̃ (t,u) for all

u ≥ R and t ∈ [0,1]. As before, we claim that if u satisfies (2.10) and solves the

modified problem u′′(t) = f̃ (t,u(t)) then u∞ ≤ R.

Indeed, suppose that u(t) achieves a global maximum at some t0 with u(t0)> R.

If t0 ∈ (0,1), then u′′(t0) = f̃ (t0,u(t0)) > 0, a contradiction; otherwise, it follows

from (2.10) that u(0) = u(1) = max0≤t≤1 u(t). Hence, u′(0) ≤ 0 ≤ u′(1) and using

(2.10) again we deduce that u′(0) = 0 = u′(1). Moreover, u′′(t) is positive near

t = 0, so u′(t) is initially increasing. As u′(0) = 0, it follows that u(t) is also initially

increasing, which contradicts the fact that a global maximum is achieved at t = 0.

In the same way, it is proven that u(t)≥−R for all t.

Thus, it suffices to verify that the modified problem has a solution. To this end,

for fixed x,y ∈ R let ux,y be the unique solution of the initial value problem

u′′(t) = f̃ (t,u(t))

u(0) = x, u′(0) = y.

For convenience, instead of looking for a fixed point of the Poincaré mapping

P(x,y) := ux,y(1) we shall try to find a zero of the function

F(x,y) := (u′x,y(1)− y,ux,y(1)− x). (2.11)

In first place, note that

u′x,y(t) = y+
 t

0
f̃ (s,ux,y(s))ds

and

ux,y(t) = x+ ty+
 t

0
(t− s) f̃ (s,ux,y(s))ds.

Hence, fixingM >  f̃∞ we deduce that

ux,M(1)− x> 0 > ux,−M(1)− x

for all x. Finally, take any y ∈ [−M,M] and let R̃ := R+2M, then

uR̃,y(t) = R̃+ yt+
 t

0
(t− s) f̃ (s,uR̃,y(s))ds≥ R̃−2M > R

and we conclude from (2.4) that f̃ (t,uR̃,y(t)) > 0 for all t. Thus, u′
R̃,y

(1)− y =
 1

0 f̃ (t,uR̃,y(t))dt > 0.
In the same way, it follows that u′−R̃,y(1)−y< 0 and Poincaré-Miranda Theorem

applies on the rectangle [−R̃, R̃]× [−M,M].

Remark 2.5. In particular, for any constant r > 0 and f bounded the problem

u′′(t)− ru(t) = f (t,u(t))
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has a solution satisfying (2.10).

An interesting result in the same direction has been proven by Lazer in [5]. For

simplicity, let g ∈ C2(R,R) be bounded and assume there exist R0 > 0 and c ∈ R

such that

g(u)< c< g(−u) for all u such that |u|> R0 (2.12)

or

g(u)> c> g(−u) for all u such that |u|> R0. (2.13)

Then the periodic problem

u′′(t)+g(u(t)) = p(t), u(0) = u(1), u′(0) = u′(1) (2.14)

has a solution for eachC2 function p satisfying
 1

0 p(t)dt = c.
Note that, in this situation, the Hartman condition would read

g(R0)< p(t)< g(−R0) for all t,

so it is somehow comparable to (2.12). However, this is a pointwise inequality: the

remarkable aspect of Lazer’s theorem is the fact that the condition is given only in

terms of the average of the function p.

Lazer’s original proof used a well known result called Schauder Theorem, that

shall be introduced in Chapter 4; the methods described in this chapter allow a

much more elementary proof. Indeed, we may essentially reproduce the previous

argument with f̃ (t,u) := p(t)− g(u). Everything works in the same way until the

inequality uR,y(t)> R0 is deduced for all t and all y ∈ [−M,M].
But now... attention! We cannot deduce, as before, that f̃ (t,uR,y(t))> 0 for all t,

although if for example (2.12) holds then we obtain:

u′R,y(1)− y=
 1

0
p(t)−g(uR,y(t))dt

= c−
 1

0
g(uR,y(t))dt =

 1

0
[c−g(uR,y(t))]dt > 0.

In the same way, it is seen that u′−R,y(1)− y < 0 so Poincaré-Miranda theorem can

be applied to the same mapping F defined in (2.11). The proof is similar under

condition (2.12).

Remark 2.6. * The general result by Lazer is established for g being only continuous

and satisfying one of the non-strict conditions

g(u)≥ c≥ g(−u) for all u such that |u|> R0 (2.15)

or

g(u)≤ c≤ g(−u) for all u such that |u|> R0. (2.16)

Furthermore, the boundedness condition on g may be relaxed to assume that g is

sublinear, namely:
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lim
|u|→∞

g(u)

u
= 0. (2.17)

Finally, a friction term can be added to the equation, namely

u′′(t)+au′(t)+g(u(t)) = p(t) (2.18)

for some constant a. In this case, the integral expression for u(t) and u′(t) is a bit

different, but it may be easily obtained by the method of variation of parameters. It

is interesting to observe that, when a = 0, the sublinearity assumption on g can be

dropped; the same is true when (2.16) holds.

This general result can be deduced from the preceding case using the ideas of

sections 2.1.2 and 2.3.1; for instance, let us show how a priori bounds can be ob-

tained when a = 0 under conditions (2.13) or (2.12) and leave the rest of the proof

and the remaining cases as an exercise for the reader. Assume that u is a solution of

(2.18) such that u(0) = u(1) and u′(0) = u′(1). Multiplying the equation by u′ and

integrating, we obtain:

 1

0
[u′′(t)u′(t)+au′(t)2 +g(u(t))u′(t)]dt =

 1

0
p(t)u′(t)dt.

Next, observe that if G(u) :=
 u

0 g(s)ds then

 1

0
[u′′(t)u′(t)+g(u(t))u′(t)]dt =



u′2

2
+G(u)











1

0

= 0

so we deduce that

 1

0
u′(t)2 dt =

1

a

 1

0
p(t)u′(t)dt ≤ 1

|a|



 1

0
p(t)2 dt

1/2 1

0
u′(t)2 dt

1/2

.

Hence,


 1

0
u′(t)2 dt

1/2

≤ 1

|a|



 1

0
p(t)2 dt

1/2

:= r.

On the other hand, writing u(t)−u(0) =  t
0 u

′(s)ds, we also deduce that

|u(t)−u(0)| ≤


 1

0
u′(t)2 dt

1/2

≤ r

for all t. Finally, integrate (2.18) and use the periodic conditions (2.10) to obtain:

 1

0
g(u(t))dt =

 1

0
p(t)dt = c.

In particular, there exists t0 such that g(u(t0)) = c. We claim that |u(0)| ≤ R0 +
r: indeed, otherwise |u(t)| ≥ |u(0)| − |u(t)− u(0)| > R0, for all t, which implies
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that g(u(t)) = c for all t, a contradiction. We conclude that |u(t)| ≤ |u(t)−u(0)|+
|u(0)| ≤ R0 +2r for all t.

2.4 Let’s make it complex: the index of a curve *

Few pages ago we have mentioned the fact that, although all the Bolzano-like ar-

guments of this chapter can be extended for higher dimensions we have considered

only the two-dimensional case since it enables a very simple and intuitive treatment

using only Green’s theorem. In this section, we shall introduce an even simpler ar-

gument which requires just a little bit more: basic complex analysis. In fact, nothing

of that is needed for theC2 case, as the following elementary proof of the fixed point

theorem shows:

Let f : B→ B be a C2 mapping and fix a C2 function λ : [0,2]→ [0,1] such that

λ ≡ 1 on [0, 1
2
] and λ ≡ 0 on [1,2]. Define h : [0,2π]× [0,1]→ C by

h(t,s) = λ (s)eit − (1−λ (2s)) f (λ (s)eit).

Suppose that f has no fixed points, then it follows that h does not vanish and we

may define

I(s) :=
 2π

0

∂h
∂ t
(t,s)

h(t,s)
dt. (2.19)

Then

I′(s) =
 2π

0

∂

∂ s



∂h
∂ t
(t,s)

h(t,s)



dt =
 2π

0

∂

∂ t



∂h
∂ s
(t,s)

h(t,s)



dt =
∂h
∂ s
(·,s)

h(·,s)











2π

0

= 0

since h(0,s) = h(2π,s) for all s and hence I is constant. On the other hand, I(0) =
2πi and I(1) = 0, a contradiction.

As mentioned, the previous proof has required no complex analysis at all. Com-

plex notation was used for convenience; the only fact that one should need to check

is that the differentiation of curves satisfies the quotient rule, which is hidden in the

middle step:


γ(t)

ϕ(t)

′
=

γ ′(t)ϕ(t)− γ(t)ϕ ′(t)
ϕ(t)2

.

Also, there was perhaps a “dubious” step that involved differentiation under an inte-

gral sign, but this is easily justified in this case since the integrand is aC1 function.

However, the reader who is familiar with the techniques in complex analysis has

surely identified the key idea behind the preceding proof, which is based on two

concepts:

1. The index or winding number of a continuous closed curve γ : [a,b] → C\{0},

defined by
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I(γ,0) :=
1

2πi



γ

1

z
dz ∈ Z.

2. Homotopy invariance: if γ,δ : [a,b]→ C\{0} are continuous closed curves and

h : [a,b]×→ C\{0} is continuous and satisfies h(t,0) = γ(t), h(t,1) = δ (t) for

all t and h(a,s) = h(b,s) for all s, then

I(γ,0) = I(δ ,0).

Remark 2.7. The readers who hate paragraphs starting with “the reader who is fa-

miliar with...” may employ the previous ideas for a better understanding of the last

two concepts. On the one hand, it is possible to obtain an alternative proof of the

homotopy invariance of the index when the homotopy is C2: indeed, observe that

the integral I(s) in (2.19) is nothing else but 2πi times the index of the curve h(·,s)
around 0, so any pair of homotopic curves have necessarily the same winding num-

ber.

On the other hand, even the definition of index and the fact that it is an integer

can be explained without invoking the theory of complex analysis: for instance, let

γ : [0,1]→ C\{0} be a closed C1 curve and assume for simplicity that it intersects

the y-axis only finitely many times. Writing γ(t) = x(t)+ iy(t), let us compute

γ ′(t)
γ(t)

=
γ ′(t)γ(t)
|γ(t)|2 =

x′(t)x(t)+ y′(t)y(t)
x(t)2 + y(t)2

+
y′(t)x(t)− x′(t)y(t)
x(t)2 + y(t)2

i.

The real part of this expression is the derivative of the function 1
2

ln(x(t)2 + y(t)2)
which has the same value at t = 0 and t = 1, so the imaginary part of I(γ ,0) vanishes.

Moreover, the imaginary part of
γ ′
γ has also an easy-to-compute primitive, namely

arctan
y(t)
x(t) . However, this function is not defined when x(t) vanishes, so we need to

split the integral as the sum of several integrals over smaller intervals. From our

assumptions, the set {t ∈ [0,1] : x(t) = 0} is finite; moreover, observe that if t0 < t1
are two consecutive zeros of x, then

 t1

t0

y′(t)x(t)− x′(t)y(t)
x(t)2 + y(t)2

dt = arctan
y(t)

x(t)









t1

t0

= lim
t→t−1

arctan
y(t)

x(t)
− lim
t→t+0

arctan
y(t)

x(t)
.

As the sign of x(t) between t0 and t1 is constant, we have three possible cases:

1. If sgn(y(t0)) = sgn(y(t1)), then
 t1
t0

y′(t)x(t)−x′(t)y(t)
x(t)2+y(t)2

dt = 0.

2. If for example y(t0)< 0 < y(t1) and x(t)> 0 on (t0, t1), then

 t1

t0

y′(t)x(t)− x′(t)y(t)
x(t)2 + y(t)2

dt = lim
u→+∞

arctanu− lim
u→−∞

arctanu= π.

The same result is obtained if y(t0)> 0 > y(t1) and x(t)< 0 on (t0, t1).
3. An analogous calculation shows that the result is −π in the remaining two situa-

tions:
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• y(t0)< 0 < y(t1) and x(t)< 0 on (t0, t1).
• y(t0)> 0 > y(t1) and x(t)> 0 on (t0, t1).

Thus, every arc between two consecutive zeros of x contributes to the integral

I(γ,0) = 1
2πi

 γ ′(t)
γ(t) dt with 0, 1

2
or − 1

2
according to the three preceding cases; as

γ is closed, it is clear that the total number of arcs where cases 2 or 3 occur is even,

so I(γ,0) is an integer.

Such a machinery allows a more comprehensive proof of Brouwer’s theorem in

two simple steps, for example proving firstly the following:

Lemma 2.1. Let f : B1(0)→ C\{0} be continuous and let γ(t) = eit for t ∈ [0,2π].
Then I( f ◦ γ,0) = 0.

Proof. It suffices to consider the homotopy h(t,s) = f (sγ(t)).

Using this lemma, the proof of Brouwer’s theorem (and some of its general-

izations) is straightforward: suppose that f : B1(0) → B1(0) is continuous with

f (z) = z for all z and define g(z) = z− f (z). On the one hand, consider the ho-

motopy h(t,s) = γ(t)− s f (γ(t)). As f has no fixed points, it is easy to see that h

does not vanish, and hence I(g◦ γ,0) = I(γ,0) = 1. On the other hand, the previous

lemma says that I(g◦ γ,0) = 0, so a contradiction yields.

Beside a variety of topological applications, the winding number can be also used

in differential equations: for example, to prove the existence of solutions to a rather

general class of boundary value problems. For simplicity, let us consider a particular

example,

u′′(t)+u(t)3 = p(t) (2.20)

with p : [0,1]→ R continuous, under the Dirichlet conditions (2.2). As before, we

define uλ (t) as the unique solution of the initial value problem (2.20)-(2.3). Multi-

plication by u′λ (t) and integration yields

u′λ (t)
2 +

uλ (t)
4

2
= λ 2 +2

 t

0
p(s)u′λ (s)ds, (2.21)

so assuming that |λ | is large we deduce that

u′λ (t)
2 ≤ rλ 2 and uλ (t)

4 ≤ rλ 2. (2.22)

for some constant r> 1: for example, if |λ | ≥  1
0 |p(t)|dt then a simple computation

shows that u′λ (t)
2 ≤ (1+

√
2)2λ 2 and, consequently, uλ (t)

4 ≤ [2+4(1+
√

2)]λ 2.

In particular, it follows that uλ is defined on [0,1]. Moreover, if t0 is a critical

point of u, then for |λ | sufficiently large we obtain:

uλ (t0)
4 ≥ 2λ 2 −4

 1

0
|p(t)u′λ (t)|dt > p4/3

∞
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and hence, using (2.20), we deduce that u′′λ (t0) and uλ (t0) have opposite signs. In

other words, when λ is large, all local maxima are positive and local minima are

negative. Using Rolle’s theorem, we conclude that zeros and critical points of u

alternate: more precisely, define Cλ := {t ∈ [0,1] : uλ (t) = 0 or u′λ (t) = 0}, then

Cλ = {0 = t0 < t1 < .. . < tN}

for some N = N(λ ) and, for j = 1, . . . ,N,

uλ (t j) = 0 = u′λ (t j) if j is even

uλ (t j) = 0 = u′λ (t j) if j is odd.

Furthermore, when j ≤ N−2 is odd, uλ (t j) and uλ (t j+2) have opposite signs.

Following Remark 2.7, let us consider now the curve γλ : [0,1]→ C\{0} given

by γλ (t) := u′λ (t)+ iuλ (t) and the integral

I(λ ) :=
1

2π

 1

0

u′λ (t)
2 −u′′λ (t)uλ (t)

u′
λ
(t)2 +uλ (t)2

dt =
1

2π

 1

0

u′λ (t)
2 +uλ (t)

4 − p(t)uλ (t)

u′
λ
(t)2 +uλ (t)2

dt.

When |λ | is large, the integrand is positive so γλ rotates counterclockwise and

I(λ ) measures the exact fraction of turns that the curve performs around the origin.

In that case, I(λ ) = n
2

with n ∈N if and only if tN = 1, if and only if uλ is a solution

of (2.20)-(2.2) with exactly n−1 zeros in (0,1).

Figure 3

We claim that the distance between any pair of consecutive points of Cλ tends to

0 as |λ | → ∞; in particular, this implies that N(λ ) → ∞ and hence I(λ ) → +∞ as

|λ | → ∞. As I is continuous, we deduce that from some y0 ≥ 0 it takes all the values

y≥ y0 at least two times. Hence, for any n ∈ N with n≥ 2y0 there exist at least two

solutions of (2.20)-(2.2) having exactly n zeros.
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Indeed, let us verify for example that t1 − t0 → 0 as λ → +∞; the other cases

are similar. In (0, t1), both u(t) and u′(t) are positive and, from (2.21), it follows for

example that u′λ (t)
2 ≥ λ 2−uλ (t)

4

2
for λ large enough. Thus, if we define the value

tλ := sup{t ∈ [0, t1] : uλ (t)
4 ≤ λ 2} then

u′λ (t)


λ 2 −uλ (t)4
≥

√
2

2
for t < tλ

and consequently
 tλ

0

u′λ (t)


λ 2 −uλ (t)4
dt ≥

√
2

2
tλ .

As

 tλ

0

u′λ (t)


λ 2 −uλ (t)4
dt =

 uλ (tλ )

0

du√
λ 2 −u4

dt ≤ 1√
λ

 1

0

dv√
1− v4

dt,

it follows that tλ ≤ C√
λ

for some constant C. Finally, for t ∈ [tλ , t1] it holds that

uλ (t)≥
√

λ and thus

u′λ (t) =−
 t1

t
u′′λ (s)ds=

 t1

t
[uλ (s)

3 − p(s)]ds≥ λ 3/2(t1 − t)−
 1

0
|p(t)|dt

which, in turn, implies:

uλ (t1)−uλ (tλ ) =
 t1

tλ

u′λ (s)ds≥ λ 3/2 (t1 − tλ )2

2
− (t1 − tλ )

 1

0
|p(t)|dt.

From the second inequality of (2.22), we deduce:

(r1/4 −1)λ 1/2 ≥ λ 3/2 (t1 − tλ )2

2
− (t1 − tλ )

 1

0
|p(t)|dt.

Hence, t1 − tλ ≤ K√
λ

for some constant K and so completes the proof.

Appendix

Historical notes

[...]

(To be completed)
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