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Abstract: We consider the following transport equation in the space of bounded, nonnegative Radon
measuresM+(Rd):

∂tµt + ∂x(v(x)µt) = 0.

We study the sensitivity of the solution µt with respect to a perturbation in the vector field, v(x). In
particular, we replace the vector field v with a perturbation of the form vh = v0(x) + hv1(x) and let µh

t

be the solution of
∂tµ

h
t + ∂x(vh(x)µh

t ) = 0.

We derive a partial differential equation that is satisfied by the derivative of µh
t with respect to h, ∂h(µh

t ).
We show that this equation has a unique very weak solution on the space Z, being the closure of
M(Rd) endowed with the dual norm (C1,α(Rd))∗. We also extend the result to the nonlinear case where
the vector field depends on µt, i.e., v = v[µt](x).

Keywords: transport equations; space of Radon measures; differentiability of solutions; very weak
solutions

1. Introduction

Transport type equations arise ubiquitously in the physical, biological and social sciences (e.g., see
[1–3]). They were, for example, recently used to approximate the dynamics of opinion formation [3]
(see also [4] and [5]), to describe flow on networks (see [6–8]) and to model the dynamics of structured
populations [9]. Because of the natural setting of the space of measures for these equations, as it
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allows for unifying discrete and continuous dynamics under the same framework, researchers have
recently focused their efforts to study well-posedness of such equations on this space [10–12]; hence
generalizing previous results that treated these equations in the space of integrable functions (e.g, [1]).

The importance of understanding differentiability of solutions of differential equation models with
respect to parameters is crucial for many applications including optimal control (e.g., [13,14]), param-
eter estimation and least-square problems of fitting models to data [15, 16], and sensitivity analysis
of solutions to model parameters that can be used to obtain information on parameter uncertainty in-
cluding confidence intervals for estimated model parameters (e.g., [17–19]). Such applications require
the minimization of a functional that depends on the model solution and hence (numerically) solving
for the critical points of the equation that represents the derivative of the solutions with respect to
parameter often becomes necessary.

In this paper, we focus on deriving an equation that represents the derivative of a transport equation
with respect to the vector field. To this end, consider the following transport equation in the space of
bounded, nonnegative Radon measuresM+(Rd):

∂tµt + ∂x(v(x)µt) = 0 (1.1)

where µt : [0,T ] → M+(Rd) and v : Rd → Rd is a given vector field. Equation (1.1) is equipped
with the initial condition µ|t=0 = µ0. It is well-known that if v ∈ W1,∞(Rd), this equation has a unique
solution in C([0,+∞),M+(Rd)) given by µt = T #

t µ0 where Tt is the flow of v (defined in (2.2)) and T #
t

denotes the push - forward along the map Tt (see Eq (2.5)). Here, the space of measures is endowed
with the so-called bounded Lipschitz norm ‖ · ‖BL∗ (see Eq (2.1)).

Here, we focus on the regularity of µt with respect to v, i.e., if v is slightly perturbed, how will µt

change? To be more precise, suppose v(x) is replaced with the new vector field vh(x) := v0(x) + hvp(x)
where v0 and vp are fixed vector fields and h can vary. The perturbed equation is then

∂tµ
h
t + ∂x(vh(x)µh

t ) = 0 (1.2)

which has the unique solution µh
t = (T h

t )#µ0 where T h
t is the flow of the vector field vh. It is easy to see,

using the representation formula for solutions to (1.2) presented in [20] or [21] (Eq 1.3) and estimates
similar to the ones used to prove Lemma 3.8 in [22], that the map h 7→ µh is Lipschitz continuous in
C([0,T ],M+(Rd)) so that in particular limh→0 µ

h = µ in C([0,T ],M+(Rd)) for any T > 0 (see also
Eq (2.7)).

The next step in understanding the regularity of h 7→ µh
t consists in studying the existence of the

derivative ∂hµ
h. This type of questions has been recently addressed in [23] for linear transport equation

and for general nonlinear structured population models (including transport equation) in [24]. Briefly,
denoting by ρ∆h

t,h := (µh+∆h
t −µh

t )/∆h, a difference quotient, the question is to give a precise mathematical
meaning to the limit lim∆h→0 ρ

∆h
t,h . It turns out that this type of problems cannot be answered in the

framework of bounded Lipschitz norm (see Example 3.5 in [24]). Indeed it is necessary to move to the
bigger space Z defined as the closure ofM(Rd) endowed with the dual norm (C1,α(Rd)∗ (see Section
2.3 for a brief introduction). Then, according to Theorem 1.1 in [23], one can prove that there exists
ρt,h ∈ Z such that lim∆h→0 ρ

∆h
t,h = ρt,h (see also Theorem 2.1 below).

In this paper we want to characterize ρ as the unique solution to some equation. In fact, one of the
main results in this work (see, Theorem 4.1 below) states that ρ is the unique solution to the equation

∂tρt + ∂x(v0(x)ρt) = −∂x(vp(x)µt).
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This equation can then be thought of as the sensitivity equation satisfied by the directional derivative of
µ under the perturbation v0 + hvp. We will also prove an analogous result in the non-linear case when
the vector-field v depends on µ (see Theorem 5.1 below).

The proofs of these results require the detailed study of a linear transport equation in Z of the form

∂tµt + ∂x(v(x)µt) = νt, µ|t=0 = µ0. (1.3)

While the existence of a solution to (1.3) can be established by extending standard techniques to the
current setting on the space Z, the uniqueness issue presents some unexpected difficulties which led to
a new notion of solution. With this new concept of solution, we are able to prove in Theorem 3.1 that
this equation is well-posed.

The paper is organized as follows. In Section 2 we briefly recall some known facts concerning
transport equations in the space of measures and the space Z. We also establish new properties of the
space Z. For a smooth flow of the paper we provide the details of long proofs of these new properties
in the Appendix. In Section 3, we prove the existence and uniqueness of a solution to linear equation
of type (1.3) in Z. This allows to formulate sensitivity equations in the the linear (Section 4) and the
nonlinear (Section 5) cases. In Section 6, we discuss possible applications of our results.

2. Preliminaries

2.1. Transport equation in the space of measures

We briefly review here the formulation of the transport equation

∂tµt + ∂x(v(x)µt) = 0

on the space nonnegative Radon measuresM+(Rd). This space is equipped with the bounded Lipschitz
norm defined for µ ∈ M+(Rd) as

‖µ‖BL∗ = sup
‖ψ‖W1,∞(Rd )≤1

∫
Rd
ψ(x)dµ(x), (2.1)

as the total variation norm is too strong. Here, W1,∞(Rd) is the space of bounded and globally Lipschitz
functions.
Let v be a vector field with v ∈ W1,∞(Rd,Rd). Then, the flow of v denoted by Ttv : Rd → Rd is defined
as the solution to the ODE:

d
dt

(Ttv)(x) = v((Ttv)(x)), (T0v)(x) = x. (2.2)

Notice that (Ttv)(x) is defined for all t ∈ R. If there is no risk of confusion, we write Tt instead of Ttv.
Now, the classical method of characteristics allows to solve the transport equation

∂tµt + ∂x(v(x)µt) = νt, µt|t=0 = µ0, (2.3)

where νt ∈ C([0,T ],M+(Rd)). More precisely, the unique measure solution in C([0,T ],M(Rd)) to
(2.3) is given by propagating the initial condition µ0 along the flow of v, namely

µt = T #
t µ0 +

∫ t

0
T #

t−sνs ds, (2.4)
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where for f : Rd → Rd and measure µ ∈ M+(Rd), f #µ is the push-forward measure defined as

f #µ(A) = µ( f −1(A)) for any measurable A ⊂ Rd. (2.5)

We remark here that the definition of the push-forward measure yields the following change of variables
formula: for all measurable maps T : Rd → Rd and φ : Rd → R,∫

Rd
φ(x)d(T #µ)(x) =

∫
Rd
φ ◦ T (x)dµ(x). (2.6)

For the proof, see [25] for the case ν = 0 and Proposition 3.6 in [21]. Let us also note that formula
(2.4) is true also in the setting of bounded Radon measuresM(Rd): as the equation is linear, one can
apply the Hahn-Jordan decomposition (see Section 4.2 in [26]) and solve the equations for the positive
and the negative parts of the measure separately.

Now, let v1 and v2 be two bounded and globally Lipschitz vector fields. Let µ(1)
t and µ(2)

t be
the solutions to (2.3) with vector fields v1 and v2, respectively. Then, there is a constant C =

C(T, ‖v1‖W1,∞ , ‖v2‖W1,∞ , µ0) such that

‖µ(1)
t − µ

(2)
t ‖BL∗ ≤ C‖v1 − v2‖∞, for any t ∈ [0,T ]. (2.7)

For the proof, one simply applies the triangle and Gronwall inequalities as in the proof of Lemma 3.8
in [22]. The solution to (2.3) thus depends continuously on v.

The transport equation (2.3) can also be studied in a nonlinear setting where the vector field depends
on the measure solution itself. Then, the nonlinear transport equation takes the form

∂tµt + ∂x(v[µt](x)µt) = 0. (2.8)

where v : M+(Rd) → W1,∞(Rd,Rd). It is common in application that v depends on µ through some
weighted mean of µ of the form

v[µ](x) = V
(
x,

∫
Rd

KV(x, y)dµ(y)
)

(2.9)

for given maps V : Rd × R→ Rd and KV : Rd × Rd → R.

2.2. The Hölder space C1,α(Rd).

Given α ∈ (0, 1), we consider the space C1,α(Rd) of bounded continuous functions with bounded
and α-Hölder derivative endowed with the norm

‖u‖C1,α := ‖u‖∞ + ‖Du‖∞ + sup
x,y

|Du(x) − Du(y)|
|x − y|α

.

Lemma 2.1. 1. For any u ∈ C1,α(Rd),

|u(x + y) − u(y) − ∇u(x)y| ≤ ‖∇u‖C0,α |y|1+α for any x, y ∈ Rd. (2.10)

2. If φ ∈ C1,α(Rd) and T ∈ C1,α(Rd,Rd) then φ ◦ T ∈ C1,α(Rd) with norm bounded by a constant
depending only on a bound of ‖φ‖C1,α and ‖T‖C1,α .
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Proof. The first assertion follows from

u(x + y) − u(y) − ∇u(x)y =

∫ 1

0

d
dt

u(x + ty) − ∇u(x)y dt

=

∫ 1

0
(∇u(x + ty) − ∇u(x))y dt.

For the second one we only need to estimate |D(φ ◦ T )(x) − D(φ ◦ T )(y)|. We have

|Dφ(T (x))DT (x) − Dφ(T (y))DT (y)|
≤ |Dφ(T (x))(DT (x) − DT (y)| + |(Dφ(T (x)) − Dφ(T (y)))DT (y)|
≤ ‖φ‖C1,α‖T‖C1,α |x − y|α + ‖φ‖C1,α |T (x) − T (y)|α‖T‖C1,α

≤ C|x − y|α,

where C = ‖φ‖C1,α‖T‖C1,α + ‖φ‖C1,α‖T‖1+α
C1,α . �

We also recall the following result from Cor. 3.16 in [24] regarding the regularity of the flow Ttv
defined in (2.2):

Proposition 2.1. Assume that v ∈ C1,α(Rd,Rd). Then there exists a constant CT > 0 depending only
on T and ‖v‖C1,α such that ‖D(Ttv)‖C0,α ≤ CT for any t ∈ [0,T ]. Moreover it can be checked upon
inspection of the proof that CT → 1 as T → 0.

2.3. The space Z

We consider the space Z defined as the closure ofM(Rd) endowed with the dual norm (C1,α(Rd))∗ for
some α (see Remark 2.1 on the choice of α). This space was first introduced in [23] where the authors
demonstrated that Z has a lot of convenient topological properties. In particular, Z is a separable Banach
space with its dual being isometrically isomorphic to C1,α(Rd). Indeed it was proved in [23][Prop. 5.1]
that span{δx, x ∈ Qd} is dense in Z. In particular this implies that any element of Z can be approximated
by bounded measures.

Notice that using duality we have for any µ ∈ Z,

‖µ‖Z = sup
‖ψ‖C1,α≤1

(µ, ψ).

The main advantage of space Z is its applicability to studying differentiation problems with respect
to perturbation of transport equations. More precisely, let us consider Eq (2.3) with νt = 0 and vector
field v0(x) + hvp(x) where h ∈ [−M,M] for some M > 0, and denote by µh

t its solution, namely

∂tµ
h
t + ∂x

(
(v0 + hvp)µh

t

)
= 0, µh

t |t=0 = µ0.

One is then interested in the limit µh+∆h
t −µh

t
∆h as ∆h→ 0. The following result was obtained in [23]:

Theorem 2.1. Let v0, vp ∈ C1+α(Rd,Rd). Then, µh+∆h
t −µh

t
∆h converges in C([0,T ],Z) as ∆h→ 0.
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Remark 2.1. Let Zα =M(Rd)
(C1,α(Rd))∗

. Notice that if 0 < α < α′ < 1 then C1,α′ ⊂ C1,α from which we
deduce that Zα ⊂ Zα′ with continuous injection. Therefore, if incremental quotient µh+∆h

t −µh
t

∆h converges in
Zα, it also does so in Zα′ for any α′ < α. Moreover, since Zα ⊂ Zα′ continuously, both limits coincide.
So there is no ambiguity and we simply write Z instead of Zα.

Such a perturbation problem can be also studied for the nonlinear transport equation (2.8) with a
vector-field v0[µ] like (2.9). We perturb v0[µ] considering vh[µ](x) defined as

vh[µ](x) = v0[µ](x) + hvp[µ](x)

= V0

(
x,

∫
Rd

KV0(x, y)dµ(y)
)

+ hVp

(
x,

∫
Rd

KVp(x, y)dµ(y)
)
.

(2.11)

Then, we have the following result:

Theorem 2.2. Let α > 1
2 and vh[µ] be given by (2.11), where V0,Vp ∈ C1+α(Rd ×R,Rd) and KV0 ,KVp ∈

C2+α(Rd × Rd,R). Let µh
t be the unique solution to (2.8) with the vector field vh[µ]. Then, µh+∆h

t −µh
t

∆h
converges in C([0,T ],Z) as ∆h→ 0.

Remark 2.2. The proof of existence and uniqueness of solutions as well as of a differentiability result
was actually given only for the case of R+ in [22] and [24] respectively. However, the proof can be
easily extended to Rd. Indeed, the main idea is to construct approximating sequence as follows. The
interval of time [0,T ] is divided into 2k subintervals of the form [l T

2k , (l + 1) T
2k ] where l = 0, 1, ..., 2k − 1.

Then, the following approximation is defined recursively: for t ∈ (l T
2k , (l + 1) T

2k ], let µt be the solution to

∂tµt + ∂x(v[µl T
2k

](x)µt) = 0.

with initial condition µl T
2k

. One then uses the formula for the solution of the linear problem (2.4) to
conclude the proof. See [22] and [24] for more details.

2.4. New facts about the space Z

The following Propositions discuss the distributional derivatives of bounded Radon measures as
elements of space Z. For easier flow of this section long proofs are provided in the Appendix.

We can see a Radon measure µ ∈ M(Rd) as a distribution by (µ, φ) =
∫
φ dµ, φ ∈ C∞c (Rd). We

denote by ∂xφ := ∇φ · x the derivative of φ in direction x ∈ Rd. We then define a distribution ∂xµ

by duality letting (∂xµ, φ) = −(µ, ∂xφ). The next result shows that in fact ∂xµ belongs to Z when µ is
bounded.

Proposition 2.2. For any bounded µ ∈ M(Rd), the distributional derivative ∂xµ of µ in direction x ∈ Rd

belongs to Z.

Proof. Let µ ∈ M(Rd) be bounded. To prove that the distributional derivative ∂xµ belongs to Z, we
need to find a sequence νh ∈ M(Rd) such that νh → ∂xµ as h → 0 in Z. Let τh be the translation
operator defined by τhφ(y) := φ(y + hx) for any φ. Take νh := (τ#

hµ − µ)/h ∈ M(Rd). Then for any
φ ∈ C1,α(Rd) with ‖φ‖C1,α(Rd) ≤ 1 we have using (2.10) that

|(νh, φ) − (−∂xµ, φ)| =
∫
Rd

∣∣∣∣∣φ(y + hx) − φ(y)
h

− ∂xφ(y)
∣∣∣∣∣ dµ(y) ≤ |h|α‖µ‖TV

so that νh → −∂xµ in Z as h→ 0. �
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Proposition 2.3. Consider µn, µ ∈ Mb(Rd) such that µn → µ narrowly (i.e. in duality with bounded
and continuous functions Cb(Rd)). Then ∂xµn → ∂xµ in Z.

Proof. See Appendix. �

,

Proposition 2.4. For a bounded vector field v on Rd and µ ∈ Mb(Rd) we have

‖∂x(vµ)‖Z ≤ ‖µ‖TV‖v‖∞. (2.12)

Moreover, consider measures µn, µ ∈ Mb(Rd) such that µn → µ narrowly and vector fields vn, v ∈
Cb(Rd,Rd) such that vn → v uniformly. Then ∂x(vnµn)→ ∂x(vµ) in Z.

Proof. For any φ such that ‖φ‖C1,α ≤ 1 we have

|(∂x(vµ), φ)| = |(µ, v∂xφ)| ≤ ‖µ‖TV‖v∂xφ‖∞ ≤ ‖µ‖TV‖v‖∞.

Then, in view of Proposition 2.3, to verify the second assertion, it is sufficient to prove that vnµn → vµ
narrowly. For φ ∈ Cb(Rd), we have

(vnµn − vµ, φ) = (µn, (vn − v)φ) + (µn − µ, vφ)

where (·, ·) denotes the dual pairing. The first term can be bounded by ‖µn‖TV‖(vn − v)φ‖∞ ≤ C‖(vn −

v)‖∞ → 0 while the second tends to 0 since vφ ∈ Cb(Rd). �

We deduce that

Corollary 2.1. Let [0,T ] 3 t 7→ µt ∈ Mb(Rd) be a narrowly continuous map and v ∈ Cb(Rd,Rd). Then
∂x(vµt) ∈ C([0,T ],Z).

It will also be useful to define the push-forward of an element of Z. The idea is quite simple. In fact,
since this is well-defined on the space of measures, we can extend its definition for elements of Z by
means of Cauchy sequences.

Proposition 2.5. Let T ∈ C1,α(Rd,Rd). Then for any µ ∈ Z we can define T #µ ∈ Z by

T #µ := lim
n→∞

T #µn

where {µn}n∈N ⊂ M(Rd) is any sequence such that µn → µ in Z. Then, for any φ ∈ C1,α(Rd) we have
the following analogue of the change of variables formula (2.6):

(T #µ, φ) = (µ, φ ◦ T )

where φ ◦ T denotes composition of the maps φ and T .

Proof. See Appendix. �

We conclude this section with the following classical observation. By definition, if µ ∈ Z, there is
a sequence of bounded measures {µn}n∈N such that µn → µ in Z. Now, if µ ∈ C([0,T ],Z), for each
t ∈ [0,T ], one can choose an approximating sequence for each µt, t ∈ [0,T ]. However, it is possible
to construct an approximating sequence that is continuous in time and so, that approximates the whole
curve t 7→ µt, t ∈ [0,T ]. This is the content of the following lemma.
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Lemma 2.2. Let µ ∈ C([0,T ],Z). There is a sequence {µ(n)}n∈N ⊂ C([0,T ],Mb(Rd)) such that µ(n) → µ

in C([0,T ],Z) as n→ ∞.

Proof. See Appendix. �

Corollary 2.2. Let ν ∈ C([0,T ],Z) and v ∈ C1,α(Rd). Then the map t → Ttv#νt is continuous from
[0,T ] to Z.

Proof. See Appendix. �

3. Transport equation in Z

In this section, we study the following transport equation in the space Z:

∂tµt + ∂x(v(x)µt) = νt, µ|t=0 = µ0, (3.1)

where v ∈ C1,α(Rd,Rd), ν ∈ C([0,T ],Z) and µ0 ∈ Z. We begin with a concept of a very weak solution.

Definition 3.1. We say that µ ∈ C([0,T ],Z) is a very weak solution to (3.1) in Z if for any ϕ ∈

C([0,T ] × Rd) with ϕ ∈ C([0,T ],C2+α(Rd)) and ϕt ∈ C([0,T ],C1+α(Rd)) we have:

(µT , ϕ(x,T )) = (µ0, ϕ(x, 0)) +

∫ T

0
(µt, ϕt(., t) + v · ∇ϕ(., t))dt +

∫ T

0
(νt, φ(., t)) dt. (3.2)

Note that we have to use test functions of regularity at least C2+α in space variable x so that function
ϕt + v(x) · ∇xϕ lies in Z, the domain of the functional µt.

Proposition 3.1. Equation (3.1) has at least one very weak solution in C([0,T ],Z) given by

µt = T #
t µ0 +

∫ t

0
T #

t−sνs ds (3.3)

where the integral is a Bochner integral in Z.
Moreover, if µ0 = 0 and νt = 0, then for any weak solution µt we have

(µt, η) = 0 (3.4)

for all η ∈ C2+α(Rd) and t ∈ [0,T ].

Proof. We first verify that the integral appearing on the right-hand side of (3.3) is a Bochner integral in
Z. According to Corollary 2.2 the map f : s ∈ [0, t]→ T #

t−sνs ∈ Z is continuous. Thus for any z∗ ∈ Z∗,
z∗ ◦ f is also continuous. Since Z is separable, we conclude using Pettis theorem that f is measurable.
Moreover for any φ ∈ C1,α(Rd), ‖φ‖C1,α ≤ 1, we have

|( f (s), φ)| = |(νs, φ ◦ Tt−s)| ≤ ‖νs‖Z‖φ ◦ Tt−s‖C1,α ≤ CT

since ν ∈ C([0,T ],Z) and in view of Lemma 2.1 and Proposition 2.1. It follows that max0≤s≤t ‖ f (s)‖Z ≤
CT and thus that f is Bochner-integrable. It is also easily seen that

∫ t

0
T #

t−sνs ds is continuous in t.
Let µt be defined by (3.3). Clearly µ ∈ C([0,T ],Z). We now verify that µt is a solution in the sense

of Definition 3.1. According to Lemma 2.2, we we can find sequences {ν(n)}n∈N ⊂ C([0,T ],Mb(Rd))
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and {µn
0}n∈N ⊂ Mb(Rd) such that ‖µ(n)

0 − µ0‖Z → 0 and ‖ν(n)
t − νt‖Z → 0 uniformly in t ∈ [0,T ]. Then the

transport equation
∂tµt + ∂x(v(x)µt) = ν(n)

t , µ|t=0 = µ(n)
0 (3.5)

has a unique solution µ(n) ∈ C([0,T ],Mb(Rd)) given by

µ(n)
t = T #

t µ
(n)
0 +

∫ t

0
T #

t−sν
(n)
s ds. (3.6)

According to Proposition 2.5, T #
t µ

(n)
0 → T #

t µ0 in Z and, for any s, T #
t−sν

(n)
s → T #

t−sνs in Z. Since
‖T #

t−sν
(n)
s ‖Z ≤ CT we have applying the Dominated Convergence Theorem that

∫ t

0
T #

t−sν
(n)
s ds →∫ t

0
T #

t−sνs ds in Z. Thus for any t ∈ [0,T ], µ(n)
t converges in Z to µt given by

µt := lim
n→+∞

µ(n)
t = T #

t µ0 +

∫ t

0
T #

t−sνs ds.

Clearly, µ ∈ C([0,T ],Z). On the other hand, weak formulation for (3.5) is valid for test functions of
class C1([0,T ] × Rd) ∩W1,∞([0,T ] × Rd). In particular, taking test functions as in Definition 3.1, we
send n→ ∞ in the weak formulation for (3.5) to deduce that µt is a very weak solution to (3.1).

To prove (3.4), we use the so-called dual problem (cf. Remark 8.1.5 and Proposition 8.1.7 in [27] or
Proposition 5.34 in [25]). More precisely, given some function ψ(x, t), let ϕ be the solution of

∂tϕ + v(x) · ∇xϕ = ψ, ϕ(x,T ) = 0. (3.7)

which is explicitly given by ϕ(x, t) = −
∫ T

t
ψ(Ts−t(x), s)ds. We consider φ of the form ψ(x, t) = ξ(t)η(x)

where ξ ∈ C∞c ([0,T ]) and η ∈ C2,α(Rd). We then use the corresponding solution φ of (3.7) as a test
function in (3.2) to conclude ∫ T

0
ξ(t)(µt, η)dt = 0.

Since the map t 7→ (µt, η(x)) is continuous for t ∈ [0,T ] and since ξ is arbitrary, we deduce that
(µt, η) = 0 for any η ∈ C2,α(Rd) and t ∈ [0,T ]. �

Unfortunately, condition (3.4) does not imply that µt = 0 so that we cannot deduce the uniqueness of
a solution to (3.1). The problem here is that C2+α(Rd) is not dense in C1+α(Rd). The following two
examples shows the typical problem with approximation of Hölder functions.

Example 3.1. One can easily check that f (x) =
√

x ∈ C1/2([0, 1]). Suppose there is a sequence
{ fn}n∈N ⊂ C1([0, 1]) such that ‖ fn − f ‖C1/2 → 0. Then

0← ‖ fn − f ‖C1/2 ≥ sup
x∈(0,1]

∣∣∣∣∣∣1 − fn(x) − fn(0)
√

x

∣∣∣∣∣∣ ≥ sup
x∈(0,1]

| fn(x) − fn(0)|
√

x
− 1,

contradicting { fn}n∈N ⊂ C1([0, 1]).
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Example 3.2. We construct a nontrivial functional on C1/2([0, 1]) which vanishes on C1,1/2([0, 1]). In
particular, this shows that functionals on C1/2([0, 1]) cannot be uniquely characterized by their values
on C1,1/2([0, 1]). Let X = C1([0, 1])⊕ lin(

√
x) be a linear subspace of C1/2([0, 1]). On X, we can define

a functional ϕ : X → R with

ϕ( f ) = lim
x→0

f (x) − f (0)
√

x
.

Notice that φ is continuous since |ϕ( f )| ≤ ‖ f ‖C1/2 . By the analytic version of Hahn-Banach Theorem
(Theorem 1.1 in [28]), we can then extend ϕ to a continuous functional on C1/2([0, 1]). It is easily seen
that φ( f ) = 0 for any f ∈ C1([0, 1]) by Taylor’s estimate but that ϕ(

√
x) = 1.

There is also characterization of subset in Cα consisting of functions that can be approximated by
smooth functions:

Remark 3.1. Let Ω ⊂ Rd. Then, f ∈ Cα(Ω) can be approximated by smooth functions if and only if f
is an element of the set

F α(Ω) =

{
f ∈ Cα(Ω) : lim

t→0+
sup
|x−y|≤t

| f (x) − f (y)|
|x − y|α

= 0
}
.

One easily checks that for Ω = [0, 1],
√

x < F 1/2(Ω). Moreover, for any β > α, Cβ(Ω) ⊂ F α(Ω).

Therefore, we realize that the space of test functions is too small to deduce uniqueness of weak solu-
tions. This is the case for many PDEs formulated in the weak sense. Probably one of the most famous
is Euler’s equation where one can construct infinitely many distributional solutions with prescribed en-
ergy profile (thus contradicting conservation of energy), see [29] and references therein. The standard
procedure in such situation for many evolutionary problems is to require some additional conditions to
be satisfied by a weak solution (like entropy condition for conservation laws, see [30], section 3.4).

To establish additional conditions required from weak solutions, we should get some insight about
which solutions we would like to extract. First, note that if ν ∈ Z, there is an approximating sequence
of measures νn ∈ M(Rd) such that νn → ν in Z. Now, recall that we want to find an equation that is
satisfied by the derivative of the solution to (3.1) with respect to perturbation parameter h. Therefore,
in our case, such approximating sequence is of the form µh+∆h

t −µh
t

∆h . We will see in the proof of Theorem

4.1 below that ‖µ
h+∆h
t −µh

t
∆h ‖BL∗ ≤ CT for some constant C independent of h, ∆h and t. This suggests to

define the following admissibility class:

A = {ν ∈ Z : ∃ {νn}n∈N ⊂ M(Rd) s.t. νn → ν in Z and ‖νn‖BL∗ ≤ C}. (3.8)

Notice thatA is a subspace of Z containing the bounded measuresMb(Rd) so thatA is dense in Z. In
view of the proof of Proposition 2.2 we also have that ∂xµ ∈ A for any µ ∈ Mb(Rd). In fact we have
the folowing stronger result:

Proposition 3.2. Let µ : [0,T ] → Mb(Rd) be continuous and TV-bounded, and let x ∈ Rd. Then
∂xµ ∈ C([0,T ],Z) with values inA and in fact there exists ρh ∈ C([0,T ],Mb(Rd)), h ∈ (0, 1), such that

lim
t→0

max
0≤t≤T

‖ρh
t − ∂x(µt)‖Z = 0 and sup

h∈(0,1], t∈[0,T ]
‖ρh

t ‖BL∗ ≤ C.
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Proof. According to Proposition 2.3, ∂xµ ∈ C([0,T ],Z). Let τh be the translation defined by τhφ(y) =

φ(y + hx). It is then easy to verify using the same arguments as in the proof of Proposition 2.2 that
ρh

t := (τ#
hµt − µt)/h satisfies the requirements. �

We can now define a weak solutions as follows.

Definition 3.2. We say that µ ∈ C([0,T ],Z) is a weak solution to (3.1) in Z if µ is a very weak solution
(see Definition 3.1) and for all t ∈ [0,T ], µt ∈ A.

With this definition we are now able to establish the following existence and uniqueness result:

Theorem 3.1. Let µ0 ∈ A and ν ∈ C([0,T ],Z) with values in A. Assume that there exists a sequence
νn ∈ C([0,T ],Mb(Rd)), n ∈ N, such that

lim
n→+∞

max
0≤t≤T

‖νn
t − νt‖Z = 0 and sup

n∈N, t∈[0,T ]
‖νn

t ‖BL∗ ≤ C. (3.9)

Then, equation (3.1) has a unique weak solution in the sense of Definition 3.2 which is given by

µt = T #
t µ0 +

∫ t

0
T #

t−sνs ds. (3.10)

Note that according to Proposition 3.2, the Theorem applies in particular when νt = ∂x(µt) with µ :
[0,T ]→Mb(Rd) continuous and TV-bounded.

Proof. To prove the uniqueness statement, since the equation is linear, it is sufficient to prove that if
µ0 = 0 and νt = 0 for all t ∈ [0,T ], then µt = 0 for all t ∈ [0,T ]. This is equivalent to (µt, η) = 0 for
any η ∈ C1,α(Rd). Fix η ∈ C1,α(Rd) and for ε > 0 denote by ηε the standard mollification of η. Since η
and its derivatives are uniformly continuous, we have ‖ηε − η‖W1,∞ → 0 as ε → 0. Moreover, for fixed
ε > 0, ηε ∈ C2,α(Rd) so that (µt, η

ε) = 0 by (3.4). Since µt ∈ A there exists a BL-bounded sequence
µ(n)

t ∈ Mb(Rd) converging in Z to µt. For a fixed ε > 0 we then write

(µt, η) = (µt, η
ε) + (µt, η − η

ε) = lim
n→∞

(µ(n)
t , η − ηε)

with
(µ(n)

t , η − ηε) ≤ ‖µ(n)
t ‖BL∗‖η − η

ε‖W1,∞ ≤ C‖η − ηε‖W1,∞

for some constant C independent of n. Thus

|(µt, η)| ≤ C‖η − ηε‖W1,∞ .

Since ε > 0 is arbitrary, we conclude (µt, η) = 0.
Concerning the existence, we already know from Proposition 3.1 that µt = T #

t µ0 +
∫ t

0
T #

t−sνs ds
belongs to C([0,T ],Z) and solves the equation. It remains to prove that µt ∈ A for any t ∈ [0,T ].
Since µ0 ∈ A there exists a BL-bounded sequence µ(n)

0 ∈ Mb(Rd) converging in Z to µ0. Let

µ(n)
t := T #

t µ
(n)
0 +

∫ t

0
T #

t−sν
(n)
s ds
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where νn satisfies (3.9). We verify as in the proof of Proposition 3.1 that µ(n)
t → µt in Z for any given t.

Moreover for any bounded Lipschitz φ we have

(µ(n)
t , φ) = (µ(n)

0 , φ ◦ Tt) +

∫ t

0
(ν(n)

s , φ ◦ Tt−s) ds

≤ ‖µ(n)
0 ‖BL∗‖φ ◦ Tt‖BL +

∫ t

0
‖ν(n)

s ‖BL∗‖φ ◦ Tt−s‖BL ds

Since Lip(Tt) ≤ et Lip(v) we have ‖φ ◦ Tt‖BL ≤ et Lip(v). Thus, choosing CT = et Lip(v)
(

supn ‖µ
(n)
0 ‖BL∗ +

T supn,0≤s≤T ‖ν
(n)
s ‖BL∗

)
we see that

(µ(n)
t , φ) ≤ CT .

Hence, supn∈N, t∈[0,T ] ‖µ
n
t ‖BL∗ ≤ CT . �

4. Sensitivity equation for a linear transport equation

In this section we formulate an equation that is satisfied by the derivative of the solutions µt with
respect to h, i.e., ρt,h = lim∆h→0

µh+∆h
t −µh

t
∆h , where µh

t solves

∂tµ
h
t + ∂x(vh(x)µh

t ) = 0 (4.1)

with initial condition µh
|t=0 = µ0 and vh = v0 + hvp where v0, vp ∈ C1+α(Rd,Rd) are given vector fields.

The derivative ρt,h exists according to Theorem 2.1.
To obtain the equation ρt,h should solve, we substract the equations satisfied by µh

t and µh+∆h
t , namely

∂tµ
h
t + ∂x(vh(x)µh

t ) = 0

∂tµ
h+∆h
t + ∂x((vh(x) + ∆hvp(x))µh+∆h

t ) = 0

to obtain that ρ∆h
t,h := µh+∆h

t −µh
t

∆h satisfies

∂tρ
∆h
t,h + ∂x(vh(x)ρ∆h

t,h ) = −∂x(vp(x)µh+∆h
t ).

Thus, intuitively the limit ρt,h = lim∆h→0 ρ
∆h
t,h should satisfy

∂tρt,h + ∂x(vh(x)ρt,h) = −∂x(vp(x)µh
t ). (4.2)

Since the right-hand side belongs to Z in view of Proposition 2.4, we are naturally led to study this
equation in Z. The following Theorem asserts that this intuition is correct and can be rigurously
justifed.

Theorem 4.1. The derivative ρt,h = lim∆h→0
µh+∆h

t −µh
t

∆h where µh
t and µh+∆h

t solve (4.1) is the unique weak
solution (cf. Definition 3.2) of

∂tρt,h + ∂x(vh(x)ρt,h) = −∂x(vp(x)µh
t ) (4.3)

with initial condition ρ0,h = 0.
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Proof. Let ρ∆h
t,h := (µh+∆h

t − µh
t )/∆h. Since µh+∆h

t and µh
t are solutions to (4.1), we have that for any

ϕ ∈ C1([0,T ] × Rd) ∩W1,∞([0,T ] × Rd):∫
Rd
ϕ(x, t) dµh

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x)

=

∫ t

0

∫
Rd
∂tϕ(x, s)dµh

s(x)ds +

∫ t

0

∫
Rd

(v0(x) + hvp(x)) · ∇ϕ(x, s) dµh
sds

and similarly∫
Rd
ϕ(x, t) dµh+∆h

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x)

=

∫ t

0

∫
Rd
∂tϕ(x, s)dµh+∆h

s (x)ds +

∫ t

0

∫
Rd

(v0(x) + (h + ∆h)vp(x)) · ∇ϕ(x, s) dµh+∆h
s ds.

Substracting these equations and dividing by ∆h, we obtain that∫
Rd
ϕ(x, t) dρ∆h

t,h =

∫ t

0

∫
Rd
∂tϕ(x, s) dρ∆h

s,hds +

∫ t

0

∫
Rd

vh(x) · ∇ϕ(x) dρ∆h
s,h(x)ds

+

∫ t

0

∫
Rd

vp(x) · ∇ϕ(x) dµh+∆h
s ds.

Since µh+∆h → µh in C([0,T ],M(Rd)) as ∆h → 0, We can pass to the limit ∆h → 0 in the last term on
the right-hand side using the Dominated Convergence Theorem to obtain∫

Rd
ϕ(x, t) dρ∆h

t,h =

∫ t

0

∫
Rd
∂tϕ(x, s) dρ∆h

s,hds +

∫ t

0

∫
Rd

vh(x) · ∇ϕ(x) dρ∆h
s,h(x)ds

+

∫ t

0

∫
Rd

vp(x) · ∇ϕ(x) dµh
sds.

(4.4)

Recall that we know from Theorem 2.1 that the limit ρh = limh→0 ρ
∆h
h exists in C([0,T ],Z) - in particular

‖ρ∆h
t,h‖Z ≤ CT for any t ∈ [0,T ] and any ∆h small. Now, if ϕ satisfies ϕ ∈ C([0,T ],C2+α(Rd)) and

∂tϕ ∈ C([0,T ],C1+α(Rd)), using that v0, vp ∈ C1+α(Rd,Rd), we deduce that as ∆h→ 0,

(ρ∆h
s,h, ∂tϕ(., s) + vh · ∇ϕ(., s))→ (ρs,h, ∂tϕ(., s) + vh · ∇ϕ(., s)).

Moreover for any s ∈ [0,T ] and ∆h small,

|(ρ∆h
s,h, ∂tϕ(., s) + vh · ∇ϕ(., s))| ≤ ‖ρ∆h

t,h‖Z‖∂tϕ(., s) + vh · ∇ϕ(., s)‖C1+α ≤ CT .

Using the Dominated Convergence Theorem, we can thus send ∆h→ 0 in (4.4) to deduce:

(
ρt,h, ϕ(·, t)

)
=

∫ t

0

∫
Rd

vp(x) · ∇ϕ(x, s) dµh
sds

+

∫ t

0

(
ρs,h, ∂tϕ(·, s) + vh(·) · ∇ϕ(·, s)

)
ds.

(4.5)
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Thus, ρt,h is a very weak solution of (4.3) with initial condition ρ0,h = 0.
Let us prove that ρt,h is the unique weak solution to (4.3). First note that due to Corollary 2.1,

∂x(vp(x)µh
t ) ∈ C([0,T ],Z). Moreover, we claim that ρt,h ∈ A for all t ∈ [0,T ], where A is the

admissibility class defined in (3.8). Indeed since ρ∆h
t,h → ρt,h in Z, it suffices to verify that ‖ρ∆h

t,h‖BL∗ ≤ C
with C independent of ∆h. Recall that µh

t = (T h
t )#µ0 where T h

t is the flow of vh. Using Gronwall
inequality it is easy to see that

‖T h
t − T h+∆h

t ‖∞ ≤ ∆h‖vp‖∞ exp(Lip(vh)t).

Thus for any φ ∈ W1,∞(Rd), ‖φ‖W1,∞ ≤ 1,

(µh
t − µ

h+∆h
t , φ) = (µ0, φ ◦ T h

t − φ ◦ T h+∆h
t ) ≤ ‖µ0‖∞‖T h

t − T h+∆h
t ‖∞

≤ ‖µ0‖∞∆h‖vp‖∞ exp(Lip(vh)t) =: CT,h∆h

Taking the supremum over such φ, we deduce that ‖µh
t − µ

h+∆h
t ‖BL∗ ≤ CT,h∆h. Therefore, in view of

Theorem 3.1, we conclude that ρt,h is the unique weak solution to (4.3). �

Notice that in the previous proof we exploited the fact that we already knew that the derivative
ρh = limh→0 ρ

∆h
h exists due to [23]. But the well-posedness theory we established in the previous

section and the fact ρh
t is characterized as the unique solution to equation (4.3) allow us to give an

alternative short proof of the existence of ρh. Indeed let us define ρt,h as the unique solution to (4.3).
We then need to prove that

lim
∆h→0

max
0≤t≤T

‖ρ∆h
t,h − ρt,h‖Z = 0. (4.6)

In view of (4.4), ρ∆h
t,h satisfies

∂tρ
∆h
t,h + ∂x(vh(x)ρ∆h

t,h ) = −∂x(vp(x)µh+∆h
t ).

Since ρt,h, ρ
∆h
t,h ∈ A, Theorem 3.1 yields

ρt,h =

∫ t

0
(T h

t−s)
#νh

s ds, νh
s = −∂x(vp(x)µh

s),

ρ∆h
t,h =

∫ t

0
(T h

t−s)
#νh+∆h

s ds, νh+∆h
s = −∂x(vp(x)µh+∆h

s ),

where T h
t is the flow of vh. Then

‖ρ∆h
t,h − ρt,h‖ ≤

∫ t

0
‖(T h

t−s)
#νh+∆h

s − (T h
t−s)

#νh
s‖Z ds ≤ CT,h

∫ t

0
‖νh+∆h

s − νh
s‖Z ds

where we used in the last equality that ‖φ ◦ T h
t ‖C1+α ≤ CT,h for any ‖φ‖C1+α ≤ 1. We deduce (4.6) using

Lemma 4.1 below.

Lemma 4.1. There holds
lim

∆h→0
max
0≤t≤T

‖νh+∆h
s − νh

s‖Z = 0. (4.7)
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Proof. The proof follows the line of the proof of Proposition 2.3. Suppose that (4.7) is not true so that
there exist ε > 0 and sequences {t∆h} ⊂ [0,T ], {φ∆h} ⊂ C1+α(Rd), ‖φ∆h‖C1+α ≤ 1 such that

(µh+∆h
t∆h
− µh

t∆h
, vp∇φ∆h) ≥ ε > 0. (4.8)

As in the proof of Proposition 2.3 there exists φ ∈ C1+α(Rd), ‖φ‖C1+α ≤ 1, such that up to a subsequence
φ∆h → φ in C1

loc(R
d). Moreover there exists t0 = lim∆h→0 t∆h up to a subsequence. Independently recall

that µh
t = (T h

t )#µ0 and µh+∆h
t = (T h+∆h

t )#µ0. It follows that ‖µh
t ‖TV , ‖µ

h+∆h
t ‖TV ≤ ‖µ0‖TV and also that for

any δ > 0 there exists a compact set K ⊂ Rd such that

|µh+∆h
t |(Rd\K), |µh

t |(R
d\K) ≤ δ for any |∆h| ≤ 1 and t ∈ [0,T ].

Since vp∇φ∆h → vp∇φ in Cloc(Rd) it follows that

(µh+∆h
t∆h

, vp∇φ∆h) − (µh+∆h
t∆h

, vp∇φ)→ 0. (4.9)

Eventually letting ψ := vp∇φ we have

(µh+∆h
t∆h
− µh

t∆h
, vp∇φ) =

∫
Rd
ψ(T h+∆h

t∆h
(x)) − ψ(T h

t∆h
(x)) dµ0(x).

Since ψ is bounded and T h+∆h
t∆h

(x)) → T h
t0(x), T h

t∆h
(x) → T h

t0(x) for any x ∈ Rd, the Dominated Conver-
gence Theorem gives (µh+∆h

t − µh
t , vp∇φ)→ 0. This and (4.9) contradicts (4.8). �

5. Sensitivity equation for a nonlinear transport equation

In this Section we formulate an equation satisfied by the derivative

ρt,h = lim
∆h→0

µh+∆h
t − µh

t

∆h

where µh
t solves

∂tµ
h
t + ∂x(vh[µh

t ](x)µh
t ) = 0 (5.1)

with the initial condition µh
|t=0 = µ0 and vh[µh

t ] is a vector field which depends a priori in a non-linear
way of µh

t .
Let us first present some heuristic computations to determine the equation ρt,h should satisfy. Let

ρ∆h
t,h := (µh+∆h

t − µh
t )/∆h. Since µh+∆h

t and µh
t are solutions to (5.1) we have that for any ϕ ∈ C1([0,T ] ×

Rd) ∩W1,∞([0,T ] × Rd):∫
Rd
ϕ(x, t) dµh

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x) =

=

∫ t

0

∫
Rd
∂tϕ(x, s)dµh

s(x)ds +

∫ t

0

∫
Rd

vh[µh
s](x) · ∇ϕ(x, s) dµh

sds (5.2)

and similarly
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Rd
ϕ(x, t) dµh+∆h

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x) =

∫ t

0

∫
Rd
∂tϕ(x, s)dµh+∆h

s (x)ds+

+

∫ t

0

∫
Rd

(vh[µh+∆h
s ](x) + ∆h.vp[µh+∆h

s ](x)) · ∇ϕ(x, s) dµh+∆h
s ds. (5.3)

Notice that µh+∆h
s = µh

s + ∆hρ∆h
t,h . Then performing formally a first order Taylor expansion,

vh[µh+∆h
s ](x) = vh[µh

s + ∆h.ρ∆h
t,h ]

= vh[µh
s] + ∆h.Dvh[µh

s].ρ
∆h
t,h + ∆h.o(1).

(5.4)

Substracting (5.9) from (5.10) and dividing by ∆h, we then obtain∫
Rd
ϕ(x, t) dρ∆h

t,h (x) −
∫ t

0

∫
Rd
∂tϕ(x, s)dρ∆h

s,h(x)ds −
∫ t

0

∫
Rd

vh[µh
s](x)∇φ(x, s) dρ∆h

s,hds

=

∫ t

0

∫
Rd

(
Dvh[µh

s]ρ
∆h
s,h + vp[µh+∆h

s ] + o(1)
)
∇φ(x, s) dµh+∆h

s ds.

Thus ρ∆h
t,h solves the linear equation

∂tρ
∆h
t,h + ∂x(vh[µh

t ]ρ∆h
t,h ) = −∂x

(
(Dvh[µh

s]ρ
∆h
s,h + vp[µh+∆h

s ] + o(1))µh+∆h
t

)
(5.5)

with initial condition ρ∆h
t=0,h = 0. We thus expect the limit ρt,h to solve

∂tρt,h + ∂x(vh[µh
t ]ρt,h) = −∂x

(
(Dvh[µh

t ]ρt,h + vp[µh
t ]µh

t

)
. (5.6)

Comparing with the linear caser studied in the previous section where we obtained the sensitivity
equation (4.3), the situation now is more complicated because even if (5.6) is linear in ρt,h, the right-
hand side depends on ρt,h and the existence and uniqueness theory developed so far does not apply
directly.

It turns out however that the previous formal reasonning (in particular the formal Taylor expansion
(5.4)) can be justified when vh[µ] is of the form (2.11), namely

vh[µ](x) = v0[µ](x) + hvp[µ](x)

= V0

(
x,

∫
Rd

KV0(x, y)dµ(y)
)

+ hVp

(
x,

∫
Rd

KVp(x, y)dµ(y)
)

with V0,Vp ∈ C1+α(Rd × R,Rd) and KV0 ,KVp ∈ C2+α(Rd × Rd,R) for some α > 1
2 . In that case the

derivative ρt,h exists according to Theorem 2.2 and we have the following result from [24] (Lemma
4.6):

Lemma 5.1. Let V,KV ∈ C1+α(Rd × Rd) and the map h 7→ µh
t be differentiable in Z. Then, for every

x ∈ Rd, the map h 7→ V
(
x,

∫
Rd KV(x, y)dµh

t

)
is C1+α(R,Rd) with norms bounded by some constant

depending on the C1+α norms of V and KV as well as Z norm of derivative of µh
t . Moreover, if ρt,h =

lim∆h→0
µh+∆h

t −µh
t

∆h , we have the following chain rule:

∂

∂h
V

(
x,

∫
Rd

KV(x, y)dµh
t (y)

)
= ∇yV

(
x,

∫
Rd

KV(x, y)dµh
t (y)

) (
ρt,h,KV(x, ·)

)
.

where ∇yV denotes the gradient of V with respect to the second variable.
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Then Lemma 5.1 and Lemma 2.1 gives the following rigorous Taylor expansion:

Corollary 5.1. In the framework of Lemma 5.1,

V
(
x,

∫
Rd

KV(x, y)dµh+∆h
t

)
− V

(
x,

∫
Rd

KV(x, y)dµh
t

)
= C[V, µh

t ](x)
(
ρt,h,KV(x, ·)

)
+ O(|h|1+α)

(5.7)

where

C[V, µ](x) = ∇yV
(
x,

∫
Rd

KV(x, y)dµ
)

and the O(|h|1+α) is uniform in x ∈ Rd.

The following theorem asserts that the sensitivity equation (5.6) we obtained formally is the correct
one:

Theorem 5.1. The derivative ρt,h = lim∆h→0
µh+∆h

t −µh
t

∆h where µh
t and µh+∆h

t solve (5.1) is the unique weak
solution of

∂tρt,h + ∂x(vh[µh
t ](x)ρt,h) = −∂x(vp(x)µh

t )

− ∂x

[
C[V0, µ

h
t ](x)

(
ρs,h,KV0(x, ·)

)
µh

t

]
− ∂x

[
C[Vp, µ

h
t ](x)

(
ρs,h,KVp(x, ·)

)
µh

t

]
(5.8)

with initial condition ρ0,h = 0. More precisely, the weak formulation is satisfied for all test functions
ϕ(x, t) of regularity ϕ ∈ C([0,T ],C2+α(Rd)), ϕt ∈ C([0,T ],C1+α(Rd)), and ρt,h ∈ A for all t ∈ [0,T ]
whereA is defined in (3.8).

Proof. Let ρ∆h
t,h := (µh+∆h

t − µh
t )/∆h. Since µh+∆h

t and µh
t are solutions to (5.1) we have that for any

ϕ ∈ C1([0,T ] × Rd) ∩W1,∞([0,T ] × Rd):∫
Rd
ϕ(x, t) dµh

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x) =

∫ t

0

∫
Rd
∂tϕ(x, s)dµh

s(x)ds

+

∫ t

0

∫
Rd

(v0[µh
s](x) + hvp[µh

s](x)) · ∇ϕ(x, s) dµh
sds (5.9)

and similarly∫
Rd
ϕ(x, t) dµh+∆h

t (x) −
∫
Rd
ϕ(x, 0) dµ0(x) =

∫ t

0

∫
Rd
∂tϕ(x, s)dµh+∆h

s (x)ds

+

∫ t

0

∫
Rd

(v0[µh+∆h
s ](x) + (h + ∆h)vp[µh+∆h

s ](x)) · ∇ϕ(x, s) dµh+∆h
s ds. (5.10)

The plan is to substract these equations, divide by ∆h and pass to the limit ∆h → 0. First, in view of
(5.7),

v0[µh+∆h
s ](x) + hvp[µh+∆h

s ](x) = v0[µh
s](x) + hvp[µh

s](x)

+C[V0, µ
h
s](x)

(
ρs,h,KV0(x, ·)

)
+ C[Vp, µ

h
s](x)

(
ρs,h,KVp(x, ·)

)
+ O(|h|1+α).
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Therefore, for ϕ(x, t) of regularity ϕ ∈ C([0,T ],C2+α(Rd)) and ϕt ∈ C([0,T ],C1+α(Rd)), we substract
(5.9) from (5.10), divide by ∆h and send ∆h→ 0. Recalling that ρ∆h

t,h → ρt,h in Z uniformly in t ∈ [0,T ],
we obtain (

ρt,h, ϕ(·, t)
)

=

∫ t

0

∫
Rd

vp[µh
s](x) · ∇ϕ(x, s) dµh

s(x)ds

+

∫ t

0

(
ρs,h, ∂tϕ(·, s) + vh[µh

s](·) · ∇ϕ(·, s)
)

ds

+

∫ t

0

∫
Rd

[
C[V0, µ

h
s](x)

(
ρs,h,KV0(x, ·)

)]
· ∇ϕ(x, s)dµh

s(x)ds

+h
∫ t

0

∫
Rd

[
C[Vp, µ

h
s](x)

(
ρs,h,KVp(x, ·)

)]
· ∇ϕ(x, s)dµh

s(x)ds.

Thus, ρt,h is a weak solution of (5.8). It is also in the admissible classA due to the Lipschitz continuity
of solutions with respect to the vector field.

To obtain uniqueness, suppose that ρ(1)
t,h and ρ(2)

t,h are solutions to (5.8) with values in A. Then, their
difference ρt,h = ρ(1)

t,h − ρ
(2)
t,h ∈ A satisfies

(
ρt,h, ϕ(·, t)

)
=

∫ t

0

(
ρs,h, ∂tϕ(·, s) + vh[µh

s](·) · ∇ϕ(·, s)
)

ds

+

∫ t

0

∫
Rd

[
C[V0, µ

h
s](x)

(
ρs,h,KV0(x, ·)

)]
· ∇ϕ(x, s)dµh

s(x)ds (5.11)

+ h
∫ t

0

∫
Rd

[
C[Vp, µ

h
s](x)

(
ρs,h,KVp(x, ·)

)]
· ∇ϕ(x, s)dµh

s(x)ds.

Fix ψ ∈ C2+α(Rd). As in the proof of Proposition 3.1, we again use the duality method to find a test
function ϕψ(x, t) such that

∂tϕψ(·, s) + vh[µh
t ](x) · ∇ϕψ(x, s) = 0 ϕψ(x, t) = ψ(x).

Actually, it can be given explicitly as ϕψ(x, s) = ψ(T (x, t, s)) where T is the flow of the non-autonomous
vector field vh[µh

s] which solves the ODE:

∂s T (x, s, t) = vh[µh
s] (T (x, s, t)) , T (x, t, t) = x,

see Remark 8.1.5 and Proposition 8.1.7 in [27]. Using the test-function φv in (5.11) we deduce(
ρt,h, ψ

)
=

∫ t

0

∫
Rd

[
C[V0, µ

h
s](x)

(
ρs,h,KV0(x, ·)

)]
· ∇ϕψ(x, s)dµh

s(x)ds

+ h
∫ t

0

∫
Rd

[
C[Vp, µ

h
s](x)

(
ρs,h,KVp(x, ·)

)]
· ∇ϕψ(x, s)dµh

s(x)ds
(5.12)

for any ψ ∈ C2+α(Rd). Since the kernels KV0 and KVp are both assumed to be C2+α(Rd × Rd), there is a
constant C such that (

ρs,h,KV0(x, ·)
)
,
(
ρs,h,KVp(x, ·)

)
≤ C sup

‖ψ‖C2+α≤1

(
ρs,h, ψ

)
.
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Moreover, for ψ ∈ C2+α(Rd) with ‖ψ‖C2+α ≤ 1 we see from the explicit formula that there is another
constant C such that ‖∇ϕψ‖∞ ≤ C. Therefore, from (5.12), we conclude

sup
‖ψ‖C2+α≤1

(
ρt,h, ψ

)
≤ C

∫ t

0
sup

‖ψ‖C2+α≤1

(
ρs,h, ψ

)
ds

for some possibly bigger constant C. Now, Gronwall inequality implies(
ρs,h, ψ

)
= 0

for all s ∈ [0, t] and all ψ ∈ C2+α(Rd). As ρs,h is in the admissible classA, we can repeat the uniqueness
proof from Theorem 3.1 to deduce that ρs,h = 0 as desired. �

6. Applications

As mentioned above, transport-type equations like (1.1) represent a big variety of phenomena oc-
curring in physics, biology and social sciences. In this section we present applications that the theory
developed here is of use.

6.1. Optimal control

Here we are interested in functionals of the form

J(h) =

∫
Rd

F(x)dµh
t (x),

where µh
t is a measure solution to the perturbed transport equation (1.2) on the space of nonnegative

Radon measure, while F ∈ C1+α(Rd). Such functionals can describe various quantities of practical
importance. For example, for F(x) = 1 this functional provides the total number of individuals in a
population, since µh ∈ C([0,T ],M+(Rd).

Now, let ∂hµ
h
t ∈ C([0,T ],Z) be the derivative of µh

t with respect to h. Then, h 7→ J(h) is differen-
tiable and

∂hJ(h) = (∂hµ
h
t , F),

value of this derivative can be used in the optimization of the functional J , i.e., finding value of h for
which J is the smallest. Our work characterizes the derivative as the solutions of some PDE, thus
allowing to work on appropriate approximating schemes for the quantity (∂hµ

h
t , F).

6.2. Parameter estimation

Another application of paramount importance is parameter estimation and fitting models to data,
as this allows for model validation. To this end, let

∫
Rd dµh

t , represents the total number of individuals
in a population at time t provided by the perturbed transport equation model considered on the space
of nonnegative Radon measures. Suppose that Dk represents data on the number of individuals in the
population at time tk, k = 1, . . . ,K (a time series of the total population). Consider the following
minimization problem involving a least-squares functional that measures the distance between the
model solution and data:

min
h
J(h) = min

h

K∑
k=1

∣∣∣∣∣∫
Rd

dµh
tk − Dk

∣∣∣∣∣2 ,
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subject to
∂tµ

h
t + ∂x(vh[µ](x)µh

t ) = 0, µh
t |t=0 = µ0 ∈ M

+(Rd).

The derivative ∂hJ(h) which depends on the derivative of ∂h(µh
t ), the solution to (4.3), can be used to

minimize the least-squares distance J(h). The value h̄ that minimizes J(h), also provides an estimate
for the vector field given by vh̄.

We conclude by pointing our that the above two applications demonstrate the need for the develop-
ment of numerical approximation schemes for computing solutions to transport equations of the type
(4.1) or (4.3). There has been some efforts in the direction of solving transport equations in the space
of nonnegative Radon measures endowed with the Bounded Lipschitz norm (e.g. [31, 32]), but to our
knowledge, no such numerical schemes exist for solving transport equations in the space Z. Further-
more, because minimization problems generally involve computing the solution multiple times until a
minimizer is reached, it is important that for any scheme developed to be efficient and fast.

Appendix

6.3. Proof of Proposition 2.3.

Proof. We want to prove that if µn → µ narrowly, then ∂xµn → ∂xµ in Z i.e.

lim
n→+∞

‖∂xµn − ∂xµ‖Z = lim
n→+∞

sup
‖φ‖C1,α≤1

|(µn − µ, ∂xφ)| = 0.

Assume that this is not true. Then there exist ε > 0, a subsequence (µnk)k that we still denote by (µn)n

for simplicity, and functions φn, ‖φn‖C1,α ≤ 1, such that

|(µn − µ, ∂xφn)| ≥ ε > 0. (6.1)

By Arzela-Ascoli theorem, up to a subsequence, φn → φ in C1(K) for any compact set K ⊂ Rd.
Passing to the limit in |φn(x)| ≤ 1, |φ′n(x)| ≤ 1, and |φ′n(x) − φ′n(y)| ≤ |x − y|α, we obtain that ‖φ‖C1,α ≤ 1.
From Theorem 5 in [33], we deduce that

(µn, ∂xφn)→ (µ, ∂xφ).

Moreover, from Theorem 4 in [33], we know that the sequence {µn}n∈N is tight and TV-bounded. It
follows that µ is bounded and thus tight. We deduce that

(µ, ∂xφn)→ (µ, ∂xφ).

These two facts contradict (6.1). �

6.4. Proof of Proposition 2.5.

Proof. Let {µn}n∈N ⊂ M(Rd) be such that µn → µ in Z for µ ∈ Z. Let φ ∈ C1,α(Rd) with ‖φ‖C1,α ≤ 1.
Since T ∈ C1,α(Rd,Rd) we have φ ◦ T ∈ C1,α(Rd) with ‖φ ◦ T‖C1,α ≤ C, independently of φ. Then

|(T #µn − T #µm, φ)| = |(µn − µm, φ ◦ T )| ≤ ‖µn − µm‖Z‖φ ◦ T‖C1,α ≤ C‖µn − µm‖Z.
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Thus, ‖T #µn − T #µm‖Z ≤ C‖µn − µm‖Z and so the sequence {T #µn}n∈N is a Cauchy sequence in Z. By
completeness of Z, it converges to some element we denote by T #µ. This is indepentent of the choice
of the approximating sequence µn because if {µ̃n}n∈N ⊂ M(Rd) is another sequence such that µ̃n → µ in
Z then

|(T ◦ µ̃n − T ◦ µn, φ)| = |(µn − µ̃n, φ ◦ T )| ≤ C‖µn − µ‖Z + C‖µ̃n − µ‖Z

so that ‖T ◦ µ̃n − T ◦ µn‖Z → 0. Moreover, for any φ ∈ C1,α(Rd),

(T #µ, φ) = lim
n→∞

(T #µn, φ) = lim (µn, φ ◦ T ) = (µ, φ ◦ T ).

�

6.5. Proof of Lemma 2.2

Proof. First note that map t ∈ [0,T ] 7→ µt is uniformly continuous so there is a nondeacreasing function
ω : [0,∞]→ [0,∞] with limt→0+ ω(t) = ω(0) = 0 (it is usually called modulus of continuity) such that

‖µt − µs‖Z ≤ ω(|t − s|) s, t ∈ [0,T ].

Given n ∈ N, let δn = T/n. We consider the partition {t(n)
0 , .., t(n)

n } of [0,T ] with mesh points t(n)
k = kδn

for k = 0, ..., n. For each such k, consider a bounded measure µ(n)
k such that

‖µt(n)
k
− µ(n)

k ‖Z ≤ 1/n.

Then, we define µ(n) ∈ C([0,T ],Z) as the polygonal curve passing through the points (t(n)
k , µ(n)

k ), k =

0, .., n, namely

µ(n)
t =

µ(n)
k if t = t(n)

k for some k = 0, ..., n.
t−t(n)

k
δn
µ(n)

k+1 +
t(n)
k+1−t
δn
µ(n)

k if t ∈ (t(n)
k , t(n)

k+1) for some k = 0, ..., n − 1.

Clearly, µ(n) ∈ C([0,T ],Z) and for any n, max0≤t≤T ‖µ
(n)
t ‖TV ≤ Cn.

Now, for t ∈ [0,T ], let t̂ and ť be the closest mesh points from left and right respectively. Then,

∥∥∥∥µ(n)
t − µ

(n)
t̂

∥∥∥∥
Z

=
t(n)
k+1 − t
δn

∥∥∥∥µ(n)
ť − µ

(n)
t̂

∥∥∥∥
Z
≤

∥∥∥∥µ(n)
ť − µ

(n)
t̂

∥∥∥∥
Z

≤ 2/n +
∥∥∥∥µť − µt̂

∥∥∥∥
Z
≤ 2/n + ω(|ť − t̂|) ≤ 2/n + ω(δn)

Therefore, for any t ∈ [0,T ]:∥∥∥∥µ(n)
t − µt

∥∥∥∥
Z
≤

∥∥∥∥µ(n)
t − µ

(n)
t̂

∥∥∥∥
Z

+
∥∥∥∥µ(n)

t̂ − µt̂

∥∥∥∥
Z

+
∥∥∥∥µt̂ − µt

∥∥∥∥
Z

≤ (2/n + ω(δn)) + 1/n + ω(δn)

Thus limn→+∞max0≤t≤T

∥∥∥∥µ(n)
t − µt

∥∥∥∥
Z

= 0. �
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6.6. Proof of Corollary 2.2.

Proof. In view of Lemma 2.2 there exists (νn)n ⊂ C([0,T ],Mb(Rd)) such that limn→+∞ ‖ν
n
t − νt‖Z = 0

uniformly in t ∈ [0,T ]. For any φ ∈ C1,α(Rd), ‖φ‖C1,α ≤ 1, and any s, t ∈ [0,T ], we write

|(T #
s νs − T #

t νt, φ)| ≤ |(T #
s νs − T #

s ν
n
s , φ)| + |(T #

s ν
n
s − T #

t ν
n
t , φ)| + |(T #

t ν
n
t − T #

t νt, φ)|
≤ ‖νs − ν

n
s‖Z‖φ ◦ Ts‖C1,α + |(T #

s ν
n
s − T #

t ν
n
t , φ)| + ‖νt − ν

n
t ‖Z‖φ ◦ Tt‖C1,α

In view of Lemma 2.1 and Proposition 2.1 we have ‖φ ◦ Tτ‖C1,α ≤ CT for any τ ∈ [0,T ]. Thus

|(T #
s νs − T #

t νt, φ)| ≤ |(T #
s ν

n
s − T #

t ν
n
t , φ)| + 2CT max

0≤t≤T
‖νt − ν

n
t ‖Z

Now, we handle the first term on the right-hand side as follows

|(T #
s ν

n
s − T #

t ν
n
t , φ)| ≤ |(T #

s ν
n
s − T #

s ν
n
t , φ)| + |(T #

s ν
n
t − T #

t ν
n
t , φ)|

≤ ‖νn
s − ν

n
t ‖Z‖φ ◦ Ts‖C1,α + ‖νn

t ‖TV‖φ ◦ Ts − φ ◦ Tt‖∞

≤ CT ‖ν
n
s − ν

n
t ‖Z + ‖νn

t ‖TV‖v‖∞|s − t|.

Thus,

|(T #
s νs − T #

t νt, φ)| ≤ CT ‖ν
n
s − ν

n
t ‖Z + ‖νn

t ‖TV‖v‖∞|s − t| + 2CT max
0≤t≤T

‖νt − ν
n
t ‖Z.

We conclude recalling that for a fixed n, νn
t is continuous in t for the Z-norm and TV-bounded uniformly

in t ∈ [0,T ]. �
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