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Abstract

This is an appendix for the article [BDD]. Here we show how to compute a matrix representation with the method
developed in this paper, using the computer algebra system Macaulay2 [M2].

In the paper we show that a surface in P3 parametrized over a 2-dimensional toric variety T can be represented
by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This
constitutes a direct generalization of the corresponding result over P2 established in [BJ03] and [BC05]. Exploiting
the sparse structure of the parametrization, we obtain significantly smaller matrices than in the homogeneous case
and the method becomes applicable to parametrizations for which it previously failed. We also treat the important
case T = P1 × P1 in detail and give numerous examples.
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Appendix: Implementation in Macaulay2

In this appendix we show how to compute a matrix representation with the method developed in this
paper, using the computer algebra system Macaulay2 [M2]. As it is probably the most interesting case from
a practical point of view, we restrict our computations to bi-homogeneous parametrizations of a certain
bi-degree (e1, e2). However, the method is easily adaptable to the toric case, or more precisely to a given
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fixed Newton polytope N(f) and, where it is appropriate, we will give hints on what to change in the
code. Moreover, we are not claiming that our implementation is optimized for efficiency; anyone trying
to implement the method to solve computationally involved examples is well-advised to give more ample
consideration to this issue. For example, in the toric case there are better suited software systems to compute
the generators of the toric ideal J , see [4ti2].

Let us start by defining the parametrization f given by (f1, . . . , f4).
S=QQ[s,u,t,v];
e1=4;
e2=2;
f1=s^4*t^2+2*s*u^3*v^2
f2=s^2*u^2*t*v-3*u^4*t*v
f3=s*u^3*t*v+5*s^4*t^2
f4=2*s*u^3*v^2+s^2*u^2*t*v
F=matrix{{f1,f2,f3,f4}}
The reader can experiment with the implementation simply by changing the definition of the polynomials
and their degrees, the rest of the code being identical. We first set up the list st of monomials sitj of bidegree
(e′

1, e
′
2). In the toric case, this list should only contain the monomials corresponding to points in the Newton

polytope N′(f).
st={};
l=-1;
d=gcd(e1,e2)
ee1=numerator(e1/d);
ee2=numerator(e2/d);

for i from 0 to ee1 do (
for j from 0 to ee2 do (
st=append(st,s^i*u^(ee1-i)*t^j*v^(ee2-j));
l=l+1
)

)
We compute the ideal J and the quotient ring A. This is done by a Gröbner basis computation which works
well for examples of small degree, but which should be replaced by the matrix formula in [BDD, Formula
(8)] for more complicated examples. In the toric case, there exist specialized software systems such as [4ti2]
to compute the ideal J .
SX=QQ[s,u,t,v,w,x_0..x_l,MonomialOrder=>Eliminate 5]

X={};
st=matrix {st};
F=sub(F,SX)
st=sub(st,SX)

te=1;
for i from 0 to l do ( te=te*x_i )

J=ideal(1-w*te)
for i from 0 to l do (

J=J+ideal (x_i - st_(0,i))
)

J= selectInSubring(1,gens gb J)

R=QQ[x_0..x_l]
J=sub(J,R)
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A=R/ideal(J)
Next, we set up the list ST of monomials sitj of bidegree (e1, e2) and the list X of the corresponding elements
of the quotient ring A. In the toric case, this list should only contain the monomials corresponding to points
in the Newton polytope N(f).
use SX
ST={};
for i from 0 to e1 do (

for j from 0 to e2 do (
ST=append(ST,s^i*u^(e1-i)*t^j*v^(e2-j));
)

)

X={};
for z from 0 to length(ST)-1 do (

f=ST_z;
xx=1;
is=degree substitute(f,{u=>1,v=>1,t=>1});
is=is_0;
it=degree substitute(f,{u=>1,v=>1,s=>1});
it=it_0;
iu=degree substitute(f,{t=>1,v=>1,s=>1});
iu=iu_0;
iv=degree substitute(f,{u=>1,t=>1,s=>1});
iv=iv_0;
ded=0;

while ded < k do (
for mm from 0 to l do (

js=degree substitute(st_(0,mm),{u=>1,v=>1,t=>1});
js=js_0;
jt=degree substitute(st_(0,mm),{u=>1,v=>1,s=>1});
jt=jt_0;
ju=degree substitute(st_(0,mm),{t=>1,v=>1,s=>1});
ju=ju_0;
jv=degree substitute(st_(0,mm),{u=>1,t=>1,s=>1});
jv=jv_0;

if is>=js and it>=jt and iu>=ju and iv>=jv then (
xx=xx*x_mm;
ded=ded+1;
is=is-js;
it=it-jt;
iv=iv-jv;
iu=iu-ju; )));
X=append(X,xx); )

We can now define the new parametrization g by the polynomials g1, . . . , g4.
X=matrix {X};
X=sub(X,SX)
(M,C)=coefficients(F,Variables=>

{s_SX,u_SX,t_SX,v_SX},Monomials=>ST)
G=X*C
G=matrix{{G_(0,0),G_(0,1),G_(0,2),G_(0,3)}}
G=sub(G,A)
In the following, we construct the matrix representation M . For simplicity, we compute the whole module

3



Z1, which is not necessary as we only need the graded part (Z1)ν0 . In complicated examples, one should
compute only this graded part by directly solving the linear system given by [BDD, Formula (1)] in degree
ν0. Remark that the best bound nu = ν0 depends on the parametrization.
use A
Z1=kernel koszul(1,G);
nu=2*d-1
S=A[T1,T2,T3,T4]
G=sub(G,S);
Z1nu=super basis(nu+d,Z1);
Tnu=matrix{{T1,T2,T3,T4}}*substitute(Z1nu,S);

lll=matrix {{x_0..x_l}}
lll=sub(lll,S)
ll={}
for i from 0 to l do { ll=append(ll,lll_(0,i)) }
(m,M)=coefficients(Tnu,Variables=>

ll,Monomials=>substitute(basis(nu,A),S));
M;
The matrix M is the desired matrix representation of the surface S .
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