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Departamento de Matemática. Facultad de Ciencias F́ısico, Matemáticas y Naturales.
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Summary. We study the numerical properties of a cloud based hp finite element method.
Contrary to the proposed methods of Duarte et al., enriched linearly dependent basis shape
functions are used. Numerical examples are analyzed to show the approximative power of the
method.
Spectral meshless or mesh free methods for numerical analysis of partial differential equations
have recently emerged as important numerical tools for their ability to solve some complex prob-
lems more effectively than the finite element method. Recent developments have demonstrated
the simplicity of adding hierarchical refinements to a low order reproducing set of shape func-
tions which satisfy the partition of unity requirement. In particular, in the hp cloud method
of C. A. Duarte and J. T. Oden [1, 2, 3], the basic idea is to multiply functions in a partition
of unity {Wi}N

i=1 by Taylor’s polynomials at nodes xi. The resulting functions, called hp cloud
shape functions, have good properties, such as high regularity and compactness; and linear com-
binations of these functions can represent polynomials of any degree. This property allows the
implementation of p and hp adaptivity leading in many situation to spectral convergence.
The partition of unity method also impacted on mesh-based finite elements and led to the
development of hp clouds FEM [7, 8]. The introduction of spectral degrees of freedom over a
conventional finite element partition of unity can also lead to fast and accurate methods for
solving numerical problems. On the other hand, a meshless finite element method has been
presented by S. Idelsohn et al. in [9], which has the advantages of the good meshless methods
and the shape functions depend only on the node positions. The proposed method shares several
of the advantages of the finite element method such as the simplicity of the shape functions in
a large part of the domain and the C0 continuity between elements. Furthermore, the resulting
partition of unity has algebraic precision equal to one. It appears as a difficult issue, however, to
obtain higher order algebraic precision with this kind of methodologies and we believe MFEM
could also be greatly benefited by the use of a hp cloud scheme.
Characterizing the algebraic precision of the shape functions in these methodologies is an im-
portant ingredient in rate of convergence and error estimates. In [4], we consider a partition of
unity which has algebraic precision equal to m ≥ 1, and we study quasi-interpolation operators
of the form

IS(x) :=
N∑

i=1

Ti[xi, x]Wi(x), (1)

where Ti[xi, x] are modified Taylor polynomials of degree r expanded at xi. In the univariate
case, Xuli proved in [5] that an appropriate combination of Taylor polynomials yields algebraic
precision equal to m + r. This result was generalized by Guessab et al. [6] to the multivariate
case when the domain is convex. Xuli’s work however was preceded by Duarte. In fact, several



years before Xuli, Duarte [1, 2, 3] noted that the use of Taylor polynomials of the same degree
of those that are reproduced by {Wi} yields singular or near singular stiffness matrices in
Galerkin schemes. Therefore, he proposed to use only polynomials that are missing in the linear
combinations of {Wi} and a reproduction formula which he proved only in the univariate case
[1].
The first contribution in [4] deals with reproduction formulas:

• Xuli’s reproduction formula: we have shown that the convexity assumption in [6] can be
relaxed. In fact, it is only needed that the support of function Wi be star shaped w.r.t.
node xi, ∀i, i = 1, ..., N .

• Duarte’s reproduction formula: we have proved it in the multivariate case.

These different approaches suggest different hp cloud function spaces: Fm,r
X and Fm,r

D . In the
first one, Taylor polynomials of degree ≤ r are added at each node, while Taylor polynomials of
degree between m + 1 and r are added in the second case. there is an algebraic redundancy in
Fm,r
X , but the Galerkin method is stable in the following sense: even with this redundancy, it

yields the right solution. Furthermore, and perhaps amazingly, under a Galerkin scheme the first
approach produces better numerical results and more accurate solutions. In fact, Fm,r

X built over
a FEM partition of unity of algebraic precision m produces comparable results than a standard
FEM of precision equal to m + r (even slightly better if degrees of freedom are considered). An
univariate example was analyzed in [4] showing this fact. Furthermore, it should be remarked
that the Generalized Finite Element Method can also yield sparse positive semi-definite linear
system [7]. However, in [10], the use of direct solvers as subroutines MA27 and MA47 of Harwell
Subroutine Library was successful even when the nullity of the stiffness matrix was large. It was
also shown in [10] that round-off errors did not play a significant role in solving the linear system,
i.e., the round-off error was also the same as when finite element linear system is solved. An
iterative algorithm was also given in [10]. Therefore, there exist nowadays efficient solvers to
deal with singular or near singular linear systems.
In this work we study the multivariate case with several numerical examples and we illustrate
the main ideas of the method.
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[7] I. Babuśka and J. M. Melenk, The partition of unity finite element method, Technical Report
BN-1185, Inst. for Phys. Sci. and Tech., University of Maryland, 1995.

[8] J. T. Oden, C. A. M. Duarte and O. C. Zienkiewicz, A new cloud-based hp finite element
method, Comput. Methods Appl. Mech. Engrg. 153 (1998), pp. 117-126.

[9] S. R. Idelsohn, E. Oñate, N. Calvo and F. Del Pin, The meshless finite element method,
Int. J. Num. Meth. Engrg. 58 (2003), pp. 893-912.
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