Análisis Complejo

SEGUNDO CUATRIMESTRE 2024

Práctica 6

SERIES DE LAURENT

1. Hallar los desarrollos en serie de Laurent para $f(z) = \frac{1}{z(z-1)(z-2)}$ en los anillos

a)
$$0 < |z| < 1$$
,

c)
$$2 < |z|$$
,

$$e) 1 < |z - 1|,$$

b)
$$1 < |z| < 2$$
,

d)
$$0 < |z-1| < 1$$
,

$$f) \ 1 < |z - 2| < 2.$$

2. Hallar el coeficiente de z en el desarrollo de Laurent de $\frac{e^z}{z-1}$ en $\{|z|>1\}$.

3. Mostrar que para $\lambda \in \mathbb{C}$ y $0 < |z| < \infty$ se tiene

$$e^{\frac{1}{2}\lambda\left(z+\frac{1}{z}\right)} = a_0 + \sum_{n=1}^{\infty} a_n \left(z^n + \frac{1}{z^n}\right),$$

donde $a_n = \frac{1}{\pi} \int_0^{\pi} e^{\lambda \cos(t)} \cos(nt) dt$ para $n \in \mathbb{N}_0$.

4. Determinar qué tipo de singularidad tiene cada una de las siguientes funciones f(z) en 0. Cuando sea evitable, definir f(0) de modo que f resulte holomorfa en 0. Cuando sea un polo, determinar su orden y hallar la parte singular.

$$a) f(z) = \frac{\sin z}{z},$$

$$d) f(z) = e^{\frac{1}{z}},$$

$$g) \ f(z) = \frac{z^2+1}{z(z+1)},$$

$$b) f(z) = \frac{\cos z}{z},$$

$$e) \ f(z) = \frac{\log(z+1)}{z},$$

$$h) \ f(z) = \frac{1}{1-e^z}.$$

$$c) f(z) = \frac{\cos(z) - 1}{z},$$

$$f)$$
 $f(z) = \frac{1}{z}\cos\left(\frac{1}{z}\right)$.

 $5.~\mbox{\ensuremath{\not\in}} Es~0$ una singularidad esencial de la función que define la siguiente serie de Laurent?

$$\cdots + \frac{1}{z^n} + \frac{1}{z^{n-1}} + \cdots + \frac{1}{z} + \frac{1}{2} + \frac{z}{2^2} + \cdots + \frac{z^n}{2^{n+1}} + \cdots$$

6. Sea f holomorfa en $\mathbb{C} \setminus \{i, 2i\}$. Demostrar que si f tiene una singularidad no evitable en z = i y en z = 2i, entonces el desarrollo en serie de Laurent de f en $\{1 < |z| < 2\}$ tiene infinitos términos negativos e infinitos términos positivos no nulos.

7. Sean f y g holomorfas en un entorno reducido de $z_0 \in \mathbb{C}$.

- a) Probar que z_0 es un cero de orden k de f si y solo si z_0 es un polo de orden k de 1/f.
- b) Si z_0 es un cero (polo) de orden k de f y también un cero (polo) de orden k de g, ¿qué clase de singularidad tiene f/g en z_0 ?
- c) Si z_0 es una singularidad esencial de f y un polo de g, decidir que tipo de singularidad tienen las funciones fg y f/g en z_0 .

- 8. Sea z_0 una singularidad evitable, un polo o una singularidad esencial de la función f. Determinar en cada caso qué tipo de singularidad tiene la función e^f en z_0 .
- 9. Decidir qué tipo de singularidad tiene en ∞ la función racional

$$f(z) = \frac{a_m z^m + \dots + a_1 z + a_0}{b_n z^n + \dots + b_1 z + b_0}$$

dependiendo de los grados del numerador y el denominador.

10. Clasificar las singularidades de las siguientes funciones en $\widehat{\mathbb{C}}$ y determinar el orden de cada polo.

a)
$$f(z) = \frac{e^z - 1 - z}{z^2}$$
,

d)
$$f(z) = \frac{z^5}{1+z^4}$$
,

$$g) f(z) = \frac{\cos(z) - \sin(z)}{z^4 + 2z^2 + 1},$$

b)
$$f(z) = \cos(z)e^{-\frac{1}{z^2}}$$

e)
$$f(z) = \text{sen}\left(\frac{1}{z^2}\right)^{-1}$$

b)
$$f(z) = \cos(z)e^{-\frac{1}{z^2}}$$
, e) $f(z) = \sin(\frac{1}{z^2})^{-1}$, h) $f(z) = \frac{1}{\cos(z) - 1}$.

c)
$$f(z) = \frac{1}{z^3 - 5} + ze^{\frac{1}{z}},$$
 $f(z) = e^{\frac{z}{1 - z}},$

$$f) \ f(z) = e^{\frac{z}{1-z}}$$

- 11. Sea f una función entera. Probar que:
 - a) f tiene una singularidad evitable en ∞ si y solo si f es constante,
 - b) f tiene un polo de orden n en ∞ si y solo si f es un polinomio de grado n.
- 12. Hallar todas las funciones enteras y biyectivas.
- 13. Calcular los residuos de f en cada una de sus singularidades aisladas en \mathbb{C} siendo:

a)
$$f(z) = \frac{1}{z^2(z+1)}$$
,

$$b) f(z) = \frac{\operatorname{sen}(z)}{z^3},$$

c)
$$f(z) = z^5 \cos\left(\frac{1}{z}\right)$$
.

- 14. Sea f holomorfa en un entorno reducido de $a \in \mathbb{C}$ y con un polo en a.
 - $a)\,$ Si a es un polo de orden m y se define $g(z)=(z-a)^mf(z),$ deducir que

Res
$$(f, a) = \frac{1}{(m-1)!} \lim_{z \to a} g^{(m-1)}(z).$$

b) Concluir que si a es un polo simple entonces

$$Res(f, a) = \lim_{z \to a} (z - a) f(z).$$

- 15. Sean f meromorfa en un abierto Ω , g holomorfa en Ω y $a \in \Omega$. Probar que:
 - a) si a es un polo simple de f, Res(fg, a) = Res(f, a)g(a);
 - b) si a es un cero de orden m de f, a es un polo simple de $\frac{f'}{f}$ y $\operatorname{Res}(\frac{f'}{f},a)=m$;
 - c) si a es un polo de orden m de f, a es un polo simple de $\frac{f'}{f}$ y $\operatorname{Res}(\frac{f'}{f},a)=-m;$
 - d) si a es un cero de orden m de f, $\operatorname{Res}(\frac{f'g}{f}, a) = mg(a)$.

En el item d), ¿es a un polo de $\frac{f'g}{f}$? ¿De qué orden?

16. Calcular los residuos de la siguientes funciones en los puntos indicados:

a)
$$f(z) = \frac{e^z}{(z-1)z}$$
 en 0 y 1, b) $f(z) = \frac{\cos(z)-1}{\sin(z)-z}$ en 0, c) $f(z) = \frac{z^4 e^z}{1+e^z}$ en πi .

b)
$$f(z) = \frac{\cos(z) - 1}{\sin(z) - z}$$
 en 0,

c)
$$f(z) = \frac{z^4 e^z}{1 + e^z}$$
 en πi

17. Sea C la circunferencia $\{|z|=2\}$ recorrida en sentido positivo. Calcular

a)
$$\int_C \frac{z}{z^4 + 1} dz,$$

b)
$$\int_C \frac{1 + \sin z}{\sin z} \, dz,$$

a)
$$\int_C \frac{z}{z^4 + 1} dz$$
, b) $\int_C \frac{1 + \sin z}{\sin z} dz$, c) $\int_C \frac{dz}{(z+1)^2 (z^2 - 9)}$.

- 18. Sean f entera y R un rectángulo contenido en el semiplano $\{\operatorname{Im}(z) \geq 0\}$. Probar que si f no se anula en ∂R y $\int_{\partial R} z \frac{f'(z)}{f(z)} dz = 0$, entonces f no se anula en el interior de R.
- 19. Sea γ el rectángulo de vértices 0, 1, 1 + 3i, 3i recorrido en sentido positivo y sea f meromorfa en \mathbb{C} tal que f(z+3i)=f(z) y f(z+1)=f(z) para todo $z\in\mathbb{C}$. Probar que si f no tiene polos ni ceros sobre γ , entonces la cantidad de ceros de f en el interior de γ es igual a la cantidad de polos de f en el interior de γ (contando ambos con multiplicidad).
- 20. Probar que el polinomio $p(z) = 2z^5 + 7z 1$ tiene una raíz real positiva de módulo menor que 1 y que el resto de las raíces están en $\{1 < |z| < 2\}$.
- 21. Probar que el polinomio $p(z) = z^5 + 15z + 1$ tiene una única raíz en $\{|z| < \frac{3}{2}\}$ y decidir si tiene alguna raíz en $\{|z| \ge 2\}$.
- 22. Sea $\alpha \in \mathbb{R}, \alpha > 1$. Probar que la ecuación $z^n e^{\alpha z} = 1$ tiene exactamente n raíces en $\{|z| < 1\}$.
- 23. Calcular los residuos en ∞ para las funciones

$$f(z) = \frac{z^2}{(z-1)(z-2)}$$
 y $g(z) = \frac{e^{\frac{1}{z}}}{(1+z)z}$.

24. Sea C la circunferencia $\{|z|=2\}$ recorrida en sentido positivo. Calcular las integrales

$$\int_C \frac{z^2 + 3z - 1}{z^4 - 2} dz \qquad \text{y} \qquad \int_C \frac{e^{z + \frac{1}{z}}}{1 - z^2} dz.$$

- 25. Sea $\Omega = \mathbb{C} \setminus [-1, 1]$. Se define en Ω la función $f(z) = \log\left(\frac{z+1}{z-1}\right)$, tomando la rama del logaritmo definida en $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ tal que $\log(r) \in \mathbb{R}$ para todo $r \in \mathbb{R}_{>0}$. Calcular $\int_C f(z) dz$ siendo C la circunferencia $\{|z|=2\}$ recorrida en sentido positivo.
- 26. Siendo f holomorfa en z_0 , probar que f es inyectiva en algún entorno de z_0 sii $f'(z_0) \neq 0$.
- 27. Sea f holomorfa e inyectiva en la bola B(a,R). Sea 0 < r < R y sea γ el borde de la bola B(a,r) orientado positivamente. Probar que para todo $w \in f(B(a,r))$ se tiene

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - w} dz.$$

28. Sea f holomorfa y no constante en $\Delta = \{|z| < r\}$ con f(0) = 0. Probar que existen un abierto $\Omega \subset \Delta$ con $0 \in \Omega$ y una función $g: \Omega \to \mathbb{C}$ holomorfa e inyectiva tales que $g(\Omega) = \{|z| < s\}$ para algún s y $f(z) = g(z)^{\text{mult}(f,0)}$ para todo $z \in \Omega$.