Análisis Complejo

SEGUNDO CUATRIMESTRE 2024

Práctica 2

FUNCIONES HOLOMORFAS. TRANSFORMACIONES CONFORMES.

Funciones holomorfas

1. Sean $\Omega \subset \mathbb{C}$ y $f: \Omega \to \mathbb{C}$. Probar que

$$\lim_{z \to z_0} f(z) = L \iff \lim_{z \to z_0} \operatorname{Re}(f(z)) = \operatorname{Re}(L) \wedge \lim_{z \to z_0} \operatorname{Im}(f(z)) = \operatorname{Im}(L).$$

2. Considerar funciones $f: \mathbb{C} \to \mathbb{C}$ y $g: \mathbb{R}^2 \to \mathbb{R}^2$ dadas por

$$f(x+iy) = u(x,y) + i v(x,y)$$
 y $g(x,y) = (u(x,y), v(x,y)),$

asumiendo $u, v : \mathbb{R}^2 \to \mathbb{R}$ y f derivable en $z_0 = a + ib$.

- a) Probar que g es diferenciable en (a, b).
- b) Calcular, restringiendo h a \mathbb{R} , los límites

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \quad \text{y} \quad \lim_{h \to 0} \frac{f(z_0 + ih) - f(z_0)}{ih}$$

en términos de u y v. ¿Qué se deduce?

- c) ¿Qué relación hay entre $|f'(z_0)|$ y el jacobiano de Dg(a,b)?
- 3. Sea $f: \mathbb{C} \to \mathbb{C}$ definida por

$$f(x+iy) = \begin{cases} \frac{x^3 - y^3 + i(x^3 + y^3)}{x^2 + y^2} & \text{si } x + iy \neq 0, \\ 0 & \text{si } x + iy = 0. \end{cases}$$

Verificar que f no es derivable en 0 como función de \mathbb{C} en \mathbb{C} aunque sí es continua y cumple las condiciones de Cauchy-Riemann en dicho punto.

4. Analizar dónde son holomorfas las siguientes funciones de z = x + iy y hallar f'(z):

$$a) f(z) = y + ix,$$

$$g) \ f(z) = z^3 - 2z,$$

b)
$$f(z) = \overline{z}$$

$$h) \ f(z) = z^2 \, \overline{z},$$

c)
$$f(z) = x^2 - y^2 - 2xy + i(x^2 - y^2 + 2xy),$$

$$i) \ f(z) = \frac{z+1}{1-z},$$

$$d) f(z) = x^2 + iy^2,$$

$$e) f(z) = e^x(\cos y + i \sin y),$$

j)
$$f(z) = \begin{cases} \frac{x+iy}{x^2+y^2} & \text{si } z \neq 0, \\ 0 & \text{si } z = 0. \end{cases}$$

$$f) f(z) = e^{-y}(\cos x + i \sin x),$$

- 5. Una función $u: \mathbb{R}^2 \to \mathbb{R}$ de clase C^2 se dice armónica si verifica $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Por otra parte, $v: \mathbb{R}^2 \to \mathbb{R}$ es una conjugada armónica de u si la función $f: \mathbb{C} \to \mathbb{C}$ definida por f(x+iy) = u(x,y) + iv(x,y) resulta holomorfa.
 - a) Probar que si la parte real y la parte imaginaria de una función holomorfa son armónicas si son de clase C^2 . Deducir que si u es una función de clase C^2 que admite una conjugada armónica, entonces u es armónica.
 - b) Probar que si $v imes \tilde{v}$ son conjugadas armónicas de u, entonces $v imes \tilde{v}$ difieren en una constante.
 - c) Hallar conjugadas armónicas, cuando sea posible, de las siguientes funciones:
 - i) $u_1(x,y) = x^2 y^2$,
- $ii) u_2(x,y) = x^2y^2,$
- $iii) u_3(x,y) = 2x(1-y).$
- d) Probar que las curvas de nivel de u y v se cortan de manera ortogonal cuando v es conjugada armónica de u.
- 6. Sea $\Omega \subset \mathbb{C}$ una región, i.e. un subconjunto de \mathbb{C} abierto, conexo y no vacío.
 - a) Probar que todo par de puntos en Ω puede conectarse con una curva C^1 a trozos.
 - b) Si f es holomorfa en Ω y $f' \equiv 0$ en Ω , deducir que f es constante.
- 7. Asumiendo $f: \mathbb{C} \to \mathbb{C}$ holomorfa, probar las siguientes implicaciones:
- $\begin{array}{lll} a) \ \operatorname{Re}(f) \ \operatorname{cte} & \Longrightarrow f \ \operatorname{cte}, & c) \ |f| \ \operatorname{cte} & \Longrightarrow f \ \operatorname{cte}, & e) \ \overline{f} \ \operatorname{holomorfa} & \Longrightarrow f \ \operatorname{cte}. \\ b) \ \operatorname{Im}(f) \ \operatorname{cte} & \Longrightarrow f \ \operatorname{cte}, & d) \ \operatorname{arg}(f) \ \operatorname{cte} & \Longrightarrow f \ \operatorname{cte}, & \end{array}$

- 8. Sea $g: \mathbb{C} \to \mathbb{C}$ una función holomorfa que verifica $g(\mathbb{C}) \subseteq L_1 \cup L_2 \cup \cdots \cup L_n$, donde L_1, \ldots, L_n son n rectas distintas en el plano \mathbb{C} . Probar que q es constante.
- 9. Sea Ω un abierto simétrico respecto del eje real y sea $f:\Omega\to\mathbb{C}$ holomorfa. Probar que la función $g: \Omega \to \mathbb{C}$ definida por $g(z) = \overline{f(\overline{z})}$ resulta holomorfa.
- 10. Hallar todas las funciones holomorfas $f: \mathbb{C} \to \mathbb{C}$ que verifican f'(0) = 1 y $f(x+iy) = e^x f(iy)$ para cualesquiera $x, y \in \mathbb{R}$.

Sugerencia: definir $c, s : \mathbb{R} \to \mathbb{R}$ vía f(iy) = c(y) + is(y) y probar que c' = -s y s' = c.

11. Hallar todas las funciones holomorfas $f: \mathbb{C} \to \mathbb{C}$ que verifican

$$f(x+iy) = f(x) + f(iy) + 2xyi$$

para cualquier elección de $x, y \in \mathbb{R}$.

12. Sean f, g funciones holomorfas en z_0 que verifican $f(z_0) = g(z_0) = 0$ y $g'(z_0) \neq 0$. Entonces se verifica la igualdad

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

Notar que este resultado es una versión de la Regla de L'Hôpital para funciones holomorfas.

13. Calcular los siguientes límites:

$$a) \lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1},$$

c)
$$\lim_{z \to e^{\frac{\pi i}{3}}} \frac{(z - e^{\frac{\pi i}{3}})z}{z^3 + 1}$$
,

b)
$$\lim_{z \to 2i} \frac{z^2 + 4}{2z^2 + (3 - 4i)z - 6i}$$
,

$$d) \lim_{z \to i} \frac{z^2 - 2iz - 1}{z^4 + 2z^2 + 1}.$$

Función logaritmo y raíces n-ésimas

- 14. Notando $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, dado un abierto $\Omega \subset \mathbb{C}^*$ decimos que una función $g : \Omega \to \mathbb{C}$ es una rama del logaritmo en Ω si g es continua y verifica $e^{g(z)} = z$ para todo $z \in \Omega$.
 - a) Demostrar que toda rama del logaritmo es inyectiva y holomorfa en Ω .
 - b) Sean g_1, g_2 dos ramas de logaritmo en Ω . Demostrar que si Ω es conexo y existe $z_0 \in \Omega$ tal que $g_1(z_0) = g_2(z_0)$, entonces $g_1 \equiv g_2$ en Ω .
 - c) Demostrar que si existe una rama del logaritmo en Ω entonces $S^1 \not\subset \Omega$.
- 15. Dada una rama del logaritmo $g: \Omega \to \mathbb{C}$, para $b \in \mathbb{C}$ y $a \in \Omega$ se define $a^b = e^{b \cdot g(a)}$.
 - a) Verificar que a^b coincide con su valor usual cuando $b \in \mathbb{Z}$.
 - b) Calcular todos los valores que pueden tomar i^i , $(-1)^{\frac{3}{5}}$ y 1^{π} al considerar todas las posibles elecciones de ramas del logaritmo.
 - c) Fijando una rama del logaritmo, mostrar que las funciones $h_1:\Omega\to\mathbb{C},\ h_1(z)=z^b$ y $h_2:\mathbb{C}\to\mathbb{C},\ h_2(z)=a^z$ resultan holomorfas.
 - d) Sean $z \in \Omega$ y $a, b \in \mathbb{C}$ tales que $z^a \in \Omega$. ¿Qué relación hay entre z^{a+b} y $z^a z^b$? ¿Qué relación hay entre z^{ab} y $(z^a)^b$? ¿Y si se sabe que $b \in \mathbb{Z}$?
- 16. Sea Log la rama principal del logaritmo en $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Probar que para todo $t \in \mathbb{R}$ vale

$$\arctan(t) = \frac{1}{2i} \operatorname{Log}\left(\frac{i-t}{i+t}\right).$$

- 17. Dados $n \in \mathbb{N}$ y un abierto $\Omega \subset \mathbb{C}^*$, llamamos rama de la raíz n-ésima de z en Ω a toda función continua $g: \Omega \to \mathbb{C}$ tal que $g(z)^n = z$ para todo $z \in \Omega$. En tal caso, denotaremos $\sqrt[n]{z}$ a g(z).
 - a) Probar que hay exactamente dos ramas de \sqrt{z} en $\Omega = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Escribirlas explícitamente.
 - b) Probar que toda rama de \sqrt{z} es holomorfa.
 - c) Si Ω es conexo y f es una rama de \sqrt{z} en Ω , entonces f y -f son todas las ramas.
- 18. Sea $\Omega = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$, sea g una rama del logaritmo en Ω y sea $\sqrt[3]{z} = e^{g(z)/3}$ la rama de raíz cúbica en Ω inducida por g.
 - a) Demostrar que $\sqrt[3]{z}$ pertenece a Ω para todo z en Ω y para toda rama g.
 - b) Hallar todas las ramas g para las cuales $g(\sqrt[3]{z}) = \frac{1}{3}g(z)$ para todo z en Ω .
 - c) Probar que en b) aumenta la cantidad de ramas si se cambia Ω por $\mathbb{C} \setminus \mathbb{R}_{\geq 0}$.

Transformaciones conformes

- 19. Dada una curva $\gamma: \mathbb{R} \to \mathbb{C}$ de clase C^1 , sea $v = \gamma'(t_0) \neq 0$ el número complejo que se obtiene trasladando al origen el vector tangente a la curva en $t=t_0$. Sea $f:\mathbb{C}\to\mathbb{C}$ holomorfa y sea $z=f'(\gamma(t_0))\neq 0$. Mostrar que zv es el número complejo que se obtiene trasladando al origen el vector tangente a la curva $f \circ \gamma$ en $t = t_0$.
- 20. Considerar curvas $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{C}$ dadas por $\gamma_1(t) = t$ y $\gamma_2(t) = (1+i)t$. Si $f : \mathbb{C} \to \mathbb{C}$ se define como $f(z) = \text{sen}(z) + z^4$, ¿en qué ángulo se cortan las curvas $f \circ \gamma_1$ y $f \circ \gamma_2$ a t = 0?
- 21. Demostrar que si f es holomorfa en un dominio $D \subset \mathbb{C}$ y $z_0 \in D$ es tal que $f'(z_0) \neq 0$, entonces f es una aplicación conforme en z_0 .
- 22. Determinar dónde son conformes las siguientes transformaciones:
- a) $f(z) = z^3 3z + 1$, c) $f(z) = z e^z + 1 i$, e) f(z) = z Log(z + i),

- b) $f(z) = \tan(z)$, d) $f(z) = ze^{z^2} 2$, f) $f(z) = z^2 + 2iz 3$.
- 23. Sea $f: \mathbb{C} \to \mathbb{C}$ una transformación conforme en cada punto del plano complejo.
 - a) ¿En qué puntos de $\mathbb C$ es conforme la transformación $g:\mathbb C\to\mathbb C$ dada por $g(z)=\overline{f(\overline z)}$?
 - b) ¿En qué puntos de $\mathbb C$ es conforme la transformación $h:\mathbb C\to\mathbb C$ dada por $h(z)=e^{f(z)}$?