Análisis II - Matemática 3 Análisis Matematico II

Marco Farinati

FCEN UBA mfarinat@dm.uba.ar

Teóricas - clase 4 - 2do cuatrimestre 2021 Integrales vectoriales

Integrales curvilíneas. Trabajo

Una fuerza F actúa sobre una partícula que se desplaza siguiendo una trayectoria $\sigma(t)$ entre dos puntos, ¿cuál es el trabajo que ejerce esta fuerza?

 $\sigma(t)$ = posición de la partícula en el instante t.

Caso fácil 1: la partícula se mueve sobre una recta, la fuerza es constante y apunta en la misma dirección:

Trabajo = fuerza \times distancia recorrida = $||F|| \cdot ||q - p||$. Si actúa en sentido contrario, el trabajo será — la magnitud de la fuerza: -||F|| por la distancia recorrida.

Caso fácil 2: la partícula se mueve sobre una recta y la fuerza es constante, pero no apunta en la misma dirección:

Observamos $F = F_{\tau} + F_{\perp}$ donde

$$F_{\tau} = (F \cdot \tau) \tau = \langle F, \tau \rangle \tau$$

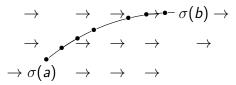
es la componente en la dirección del movimiento (||v|| = 1) y F_{\perp} es la componente perpendicular. F_{\perp} no realiza trabajo.

Trabajo =
$$||F_{\tau}|| \cdot ||q - p|| = \langle F, \tau \rangle ||q - p||$$

Notar $v = \frac{q-p}{\|q-p\|}$ (si vamos de p a q) entonces

$$||F_{\tau} \cdot ||q - p|| = \left\langle F, \frac{q - p}{\|q - p\|} \right\rangle ||q - p|| = \left\langle F, q - p \right\rangle$$

Caso mas general: σ C^1 y F continua



Partimos el intervalo $\{a=t_0 < t_1 < \cdots < t_n = b\}$, el trabajo = suma de trabajos desde $\sigma(t_i)$ a $\sigma(t_{i+1})$: $T=\sum_{i=0}^{n-1} T_i$, con

$$T_i \sim \left\langle F(\sigma(t_i)), \ \sigma(t_{i+1}) - \sigma(t_i) \right
angle \ \Rightarrow T \sim \sum_{i=0}^{n-1} \left\langle F(\sigma(t_i)), \ \sigma(t_{i+1}) - \sigma(t_i) \right
angle \ = \sum_{i=0}^{n-1} \left\langle F(\sigma(t_i)), \frac{\sigma(t_{i+1}) - \sigma(t_i)}{t_{i+1} - t_i} \right
angle (t_{i+1} - t_1)$$

 $\sim \sum_{i=1}^{n-1} \langle F(\sigma(t_i)), \sigma'(t_i) \rangle (t_{i+1} - t_1)$

Integrales curvilíneas. Trabajo

Definición: $\sigma:[a,b]\to\mathbb{R}^n$ de clase C^1 , $F:\mathbb{R}^n\to\mathbb{R}^n$ un campo vectorial continuo, se define

$$\int_{\sigma} F \cdot d\vec{\ell} = \int_{\sigma} \langle F, d\vec{\ell} \rangle$$

por

$$\int_{a}^{b} \left\langle F(\sigma(t)), \frac{\sigma'(t)}{\|\sigma'(t)\|} \right\rangle \|\sigma'(t)\| dt = \int_{a}^{b} \left\langle F(\sigma(t)), \sigma'(t) \right\rangle dt$$

Ejemplo

Sea ${\mathcal C}$ la curva orientada dada por la parametrización

$$\sigma(t)=(t,t^2)$$

con $t \in [0,1]$. Sea

$$\mathbf{F}(x,y) = -(x,y)$$

un campo de fuerzas. Supongamos que una partícula se desplaza por la curva $\mathcal C$ siguiendo la trayectoria σ . El trabajo efectuado por la fuerza sobre la partícula es

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\vec{\ell} = \int_{0}^{1} \mathbf{F}(\sigma(t)) \cdot \sigma'(t) dt$$

$$= \int_0^1 -(t, t^2) \cdot (1, 2t) dt = - \int_0^1 [t + 2t^3] dt = - \left[\frac{t^2}{2} + \frac{t^4}{2} \right]_0^1 = -1.$$

Notacion

Para la integral curvilinea de un campo F(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z)) sobre una curva orientada $\mathcal C$ se utiliza indistintamente las notaciones

$$\int_{\mathcal{C}} F \cdot d\vec{\ell} \quad \text{o} \quad \int_{\mathcal{C}} P \, dx + Q \, dy + R \, dz.$$

La idea de esta notación es que

$$\int_{\mathcal{C}} F \cdot d\vec{\ell} = \int_{a}^{b} \langle F(\sigma(t)), \sigma'(t) \rangle dt =$$

$$\int_{a}^{b} \langle (P(x(t), y(t), z(t)), Q(x(t), y(t), z(t)), R(x(t), y(t), z(t)), (x'(t), y'(t), z'(t))) \rangle dt$$

$$= \int_{a}^{b} \left(P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right) dt$$

$$= \int_{a}^{b} \left(P(x, y, z) \frac{dx}{dt} + Q(x, y, z) \frac{dy}{dt} + R(x, y, z) \frac{dz}{dt} \right) dt$$

Integrales curvilíneas. Campos gradientes

Si $f: \mathbb{R}^3 \mapsto \mathbb{R}$ y $F: \mathbb{R}^3 \mapsto \mathbb{R}^3$ se relacionan por

$$F = \nabla f, \qquad F = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Y $\mathcal C$ viene parametrizada por $\sigma:[a,b]\mapsto \mathcal C$, tenemos

$$\int_{\mathcal{C}} F = \int_{a}^{b} \langle F(\sigma(t)), \sigma'(t) \rangle dt$$

$$= \int_{a}^{b} \langle \nabla f(\sigma(t)), \sigma'(t) \rangle dt$$

$$= \int_{a}^{b} \frac{d}{dt} \Big(f(\sigma(t)) \Big) dt = f(\sigma(b)) - f(\sigma(a)).$$

Reparametrizaciones

Recordemos: Si

$$\sigma: [a,b] \to \mathcal{C}$$

es una parametrización regular de C y $h[c,d] \mapsto [a,b]$ es C^1 con $h'(s) \neq 0$, entonces

$$\hat{\sigma}(s) = \sigma(h(s))$$

resulta una (re)parametrización regular de \mathcal{C} .

Reparametrizaciones

Si $\mathbf{F}:\mathcal{C} \to \mathbb{R}^3$, tenemos que las integrales calculando con σ

$$\int_{\mathcal{C},\sigma} \mathbf{F} \cdot d\vec{\ell} = \int_{a}^{b} \langle \mathbf{F}(\sigma(t)), \sigma'(t)) \rangle dt$$

y con $\hat{\sigma}$, $\hat{\sigma}(s) = \sigma(h(s))$,

$$\int_{\mathcal{C},\hat{\sigma}} \mathbf{F} \cdot d\vec{\ell} = \int_{c}^{d} \langle \mathbf{F}(\hat{\sigma}(s)), \hat{\sigma}'(s) \rangle ds$$
$$= \int_{c}^{d} \langle \mathbf{F}(\sigma(h(s)), \sigma'(h(s)) \rangle h'(s) ds$$

que SON IGUALES si y sólo si h'(s) > 0, pero si h'(s) < 0 son una MENOS la otra.

EL TRABAJO DEPENDE DE LA ORIENTACION.

Orientación

Sea $\mathcal C$ una curva regular. Decimos que dos parametrizaciones regulares $\sigma_1:[a,b]\to\mathcal C$ y $\sigma_2:[c,d]\to\mathcal C$ tienen la misma orientación si

$$\sigma_1(t) = \sigma_2(h(t))$$

con $h: [c, d] \rightarrow [a, b]$ verificando $h'(t) > 0 \forall t$.

Ejemplo: Si $\sigma:[0,1]\to\mathcal{C}$ y $\widetilde{\sigma}:[0,1]\to\mathcal{C}$ está dada por $\widetilde{\sigma}(t)=\sigma(1-t)$, entonces σ y $\widetilde{\sigma}$ tienen **orientaciones** opuestas.

$$c(t) := \sigma(2t), \qquad t \in [0, 1/2]$$

tiene la misma orientación que σ .

