Análisis II - Matemática 3 Análisis Matematico II

Marco Farinati

FCEN UBA mfarinat@dm.uba.ar

Teóricas - clase 2 - 2do cuatrimestre 2021 Rectas tangentes

Definición Una curva \mathcal{C} se dice "simple, abierta" si no se corta a si misma. Más precisamente, si admite una parametrización $\sigma:[a,b]\to\mathcal{C}\subset\mathbb{R}^n$ (n=2,3) que es inyectiva en [a,b].

Definición Una curva \mathcal{C} se dice "simple, cerrada" si admite una parametrización $\sigma:[a,b]\to\mathcal{C}\subset\mathbb{R}^n\ (n=2,3)$ que es inyectiva en [a,b) y con $\sigma(a)=\sigma(b)$.

Recta tangente

Definición: Sea $\sigma:[a,b]\to \mathcal{C}$ una curva simple con σ de clase C^1 , $t_0\in(a,b)$, llamemos

$$P := \sigma(t_0)$$

$$v := \sigma'(t_0).$$

Si $v \neq 0$, asignamos a estos datos una recta

$$L:=\{P+(t-t_0)v:t\in\mathbb{R}\}$$

Se denomina la **recta tangente** a σ en P.

Una curva puede no ser abierta ni cerrada.

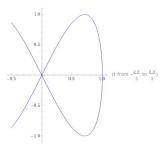


Figura:
$$\sigma(t) = (\cos(t), \sin(2t)) \text{ con } t \in [-2\pi/3, 2\pi/3]$$

Vamos a trabajar con curvas que se puedan escribirse como union finita de curvas abiertas y/o cerradas que se intersecan-de a dos en dos- a lo sumo en un solo punto.

Concatenación: si $\sigma_1:[a,b]\to\mathcal{C}_1$ y $\sigma_2:[b,c]\to\mathcal{C}_2$ son parametrizaciones de dos curvas $\mathcal{C}_1,\mathcal{C}_2$ tales que $\sigma_1(b)=\sigma_2(b)$ entonces $\mathcal{C}=\mathcal{C}_1\cup\mathcal{C}_2$ es una curva que admite una parametrización dada por la función partida (y continua) $\sigma(t):[a,c]\to\mathcal{C}$ dada por

$$\sigma(t) = egin{cases} \sigma_1(t), \ \mathsf{si} \ t \in [a,b] \ \sigma_2(t), \ \mathsf{si} \ t \in [b,c] \end{cases}$$

Definicion Sea $\mathcal C$ una curva que admite una parametrización $\sigma:[a,b]\to\mathbb R^3$ y sea

$$h:[a,b]\rightarrow [c,d]$$

una biyección continua, entonces tenemos

$$h^{-1}:[c,d]\to[a,b].$$

Si definimos $\tilde{\sigma}:[c,d]\to\mathbb{R}^3$ dada por $\tilde{\sigma}(\tau)=\sigma\big(h^{-1}(\tau)\big)$. Entonces, $\tilde{\sigma}$ es una parametrización de \mathcal{C} . Decimos que $\tilde{\sigma}$ es una "reparametrización de σ ".

Recta Tangente y Suavidad

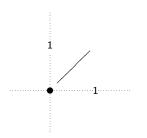
Definición Una parametrización $\sigma:[a,b]\to\mathcal{C}\subset\mathbb{R}^n$, de clase $C^1([a,b])$ con $\sigma'(t)\neq(0,0,0)$ para todo $t\in[a,b]$ y que cumple una de las siguientes condiciones

- 1. σ es inyectiva en [a, b], o bien
- 2. σ es inyectiva en [a, b), $\sigma(a) = \sigma(b)$ y $\sigma'(a) = \sigma'(b)$ (derivadas laterales).

se denomina *parametrización regular* de un curva abierta o cerrada respectivamente.

Definición [Curva Suave] Una curva C, abierta o cerrada, que admite una parametrización regular se dice *suave*.

Ejemplo:



$$\sigma_1(t) = (t^2, t^2), \qquad t \in [0, 1]$$

$$\sigma_2(t)=(t,t), \qquad t\in[0,1]$$

Recta Tangente y Suavidad

Reparametrizacion Si \mathcal{C} una curva abierta, simple, suave, $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} . Sea $\phi:[c,d]\to[a,b]$ una biyección C^1 con $\phi'(\tau)\neq 0$ para todo $\tau\in[c,d]$.

La reparametrización $ilde{\sigma}:[c,d] o\mathbb{R}^3$ dada por

$$\tilde{\sigma}(\tau) = \sigma(\phi(\tau))$$

es una parametrización regular de \mathcal{C} .

Para
$$\sigma(t)=(X(t),Y(t),Z(t)),$$

$$\widetilde{\sigma}(\tau)=(X(\phi(\tau)),Y(\phi(\tau)),Z(\phi(\tau)))$$

entonces

$$\frac{d}{d\tau}\widetilde{\sigma}(\tau) = \left(\frac{d}{d\tau}X(\phi\tau), \frac{d}{d\tau}Y(\phi\tau), \frac{d}{d\tau}Z(\phi\tau)\right)$$

$$= \left(X'(\phi\tau)\phi'(\tau), Y'(\phi\tau)\phi'(\tau), Z'(\phi\tau)\phi'(\tau)\right)$$

$$= \phi'(\tau)\sigma'(\phi\tau)$$

Si $\phi(\tau_0) = t_0$ y $\sigma(t_0) = P_0$, entonces

$$\frac{d}{d\tau}\widetilde{\sigma}(\tau_0) = \phi'(\tau_0)\sigma'(t_0)$$

El vector velocidad cambia por un múltiplo escalar no nulo. La recta tangente a \mathcal{C} en P_0 no depende de la reparametrización.

Ejemplo

Consideremos la trayectoria

$$\sigma(t) = (\cos(2\pi t), \sin(2\pi t)), \qquad t \ge 0$$

si en $t_0 = 3/2$ se "suelta" y sigue por la tangente, donde estamos en t = 2?

y si se hubiera "soltado" en $t_0 = 1$?

Cómo son las parametrizaciones en cada caso?