Representaciones (semi)simples - Lema de Schur y multiplicidades

Fijamos $\mathfrak g$ un álgebra de Lie sobre un cuerpo k.

Si V es una representación de \mathfrak{g} , diremos que es **simple** si $V \neq 0$ y las únicas subrepresentaciones son $\{0, V\}$.

Diremos que V es una representación **semimsimple** si es una suma directa de representaciones simples.

1. (Una versión del Lema de Schur) Sea V una representación y $f:V\to V$ un morfismo de representaciones. Muestre que si $0\neq v_0\in V$ es tal que $(v_0)=\lambda v_0$, entonces el subespacio $V_\lambda\subseteq V$ definido por

$$V_{\lambda} = \{ v \in V : f(v) = \lambda v \}$$

es una subrepresentación.

- a) Concluir que si V es simple, entonces $f = \lambda Id$.
- b) Concluir que si $k = \mathbb{C}$, entonces para toda representación simple V vale que $\operatorname{End}_{\mathfrak{g}}(V) = \mathbb{C}\operatorname{Id}$.
- 2. (Otra versión del Lema de Schur) Sean V y W dos representaciones simples y f: $V \to W$ un morfismo de representaciones. Muestre que o bien f = 0 o bien f es un isomorfismo.
- 3. Sea $\mathfrak{g} = \mathfrak{l} \times \mathfrak{h}$ el producto directo de dos álgebras de Lie. Muestre que $\mathfrak{l} \times \{0\}$ y $\{0\} \times \mathfrak{h}$ son dos ideales, y que por lo tanto, son dos sub-representaciones de \mathfrak{g}^{ad} .
 - a) Sea $V=\mathfrak{g}^{\mathrm{ad}}$ y supongamos que \mathfrak{l} y \mathfrak{h} son álgebras de Lie simples. Mostrar que esos ideales son representaciones simples de \mathfrak{g} .
 - b) Esos ideales, no son isomorfos (como representaciones de \mathfrak{g}), ni siquiera en el caso en que \mathfrak{l} y \mathfrak{h} sean isomorfas como álgebras de Lie.
 - c) Enunciar y demostrar lo análogo para $\mathfrak{g} = \mathfrak{g}_1 \times \mathfrak{g}_2 \times \cdots \times \mathfrak{g}_k$ con \mathfrak{g}_i álgebras de Lie simples.
- 4. $V = S_1 \oplus \cdots \oplus S_k$ donde S_i es una representación simple y $S_i \not\cong S_j \; \forall \neq j$, muestre que

$$\operatorname{End}_{\mathfrak{g}}(V) \cong \operatorname{End}_{\mathfrak{g}}(S_1) \times \operatorname{End}_{\mathfrak{g}}(S_2) \times \cdots \times \operatorname{End}_{\mathfrak{g}}(S_k)$$

a) En particular, si el cuerpo de base es \mathbb{C} y $V=S_1\oplus\cdots\oplus S_k$, entonces

$$k = \dim_{\mathbb{C}}(\operatorname{End}_{\mathfrak{a}}(V))$$

de hecho, las proyecciones en cada coordenada forman una base.

- b) Si ell cuerpo es \mathbb{C} y $\mathfrak{g}=\mathfrak{g}_1\times\mathfrak{g}_2\times\cdots\times\mathfrak{g}_k$ con \mathfrak{g}_i álgebras simples, entonces $k=\dim_{\mathbb{C}}(\mathrm{End}_{\mathfrak{g}}(\mathfrak{g}^{\mathrm{ad}}))=\dim_{\mathbb{C}}\left\{f:\mathfrak{g}\to\mathfrak{g}:[x,f(y)]=f([x,y]), \forall x,y\in\mathfrak{g}\right\}$
- 5. Sea k un cuerpo, $\mathfrak{aff}_2(k)=\left\{\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}: a,b\in k\right\}$ y $V=k^2$ la representación de definición. Es decir, $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}\cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}=\begin{pmatrix} av_1+bv_2 \\ 0 \end{pmatrix}$
 - $\it a$) Mostrar que esta representación $\it V$ NO es simple.
 - b) Hacer la lista completa de todas las subrepresentaciones de V (hay sólo 3).
 - c) Concluir de b) que V tampoco es suma directa de subrepresentaciones simples.