Grupos y Álgebras de Lie

EJERCICIOS

UBA 1ER CUAT 2009

Matrices de Cartan y diagramas de Dynkin

- 1. Sea E un espacio Euclídeo, Φ un sistema de raíces en E, y Δ una elección de raíces simples.
 - a) Si $\Delta = \Delta_1 \coprod \Delta_2$ con $(\alpha, \beta) = 0$ si $\alpha \in \Delta_1$ y $\beta \in \Delta_2$, muestre entonces que $\Phi = \Phi_1 \times \Phi_2$ con $(\Phi_1, \Phi_2) = 0$.
 - b) Muestre que $\Delta = \Delta_1 \coprod \Delta_2$ equivale a decir que el diagrama de Dynkin tiene por lo menos dos compoenntes conexas, y que a su vez esto equivale a que la matriz de Cartan (eventualmente conjugada por una permutación) es una matriz con (por lo menos) dos bloques.
- 2. Sea \mathfrak{g} un álgebra de Lie semisimple, \mathfrak{h} una subálgebra de Cartan, Φ un sistema de raíces, Δ un subconjunto de raíces simples. Supongamos que $\Delta = \Delta_1 \coprod \Delta_2$ con $(\alpha, \beta) = 0$ si $\alpha \in \Delta_1$ y $\beta \in \Delta_2$. Muestre entonces que $\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$ con $\Delta_i \subset \mathfrak{h}_i^*$ (i = 1, 2), y que $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ es suma directa de dos álgebars de Lie semisimples, con \mathfrak{h}_i una subálgebra de Cartan de \mathfrak{g}_i .
- 3. Sea A una matriz de Cartan y $D = \operatorname{diag}(d_1, \dots, d_\ell)$ una matriz diagonal con $d_i > 0$ tal que DAD^{-1} es simétrica y definida positiva.
 - a) Si hay un par de índices $i \neq j$ tales que $A_{ij} = A_{ji}$, muestre que $d_i = d_j$.
 - b) Si el diagrama de Dynkin es conexo, muestre que la matriz D con las propiedades requeridas (diagonal positiva y DAD^{-1} simétrica y definida positiva) está unívocamente determinada a menos de un factor global.
- 4. Escribir la matriz de Cartan de F_4 . Si $h_1, h_2, h_3, h_4, e_1, e_2, e_3, e_4, f_1, f_2, f_3, f_4$ con los generadores del álgebra de Lie libre módulo las relaciones de Serre, escriba las relaciones correspondientes a la subálgebra generada por los e_i 's. Qué dimensión tiene la subálgebra generada por los e_i 's? qué dimensión tiene toda el álgebra?
- 5. Calcular el determinante de las matrices de Cartan de tipo *B*, *C* y *D*.
- 6. Para $\ell=2$ las matrices de Cartan de tipo B_2 ($\mathfrak{so}(2\ell+1)$) y C_2 ($\mathfrak{sp}(\ell)$) son conjugadas por una permutación, luego, la clasificación predice un isomorfismo $\mathfrak{so}(2\times 2+1)=\mathfrak{so}(5)\cong \mathfrak{sp}(2)$. Encuentre explícitamente el isomorfismo.
- 7. Para $\ell=3$, el diagrama D_3 ($\mathfrak{so}(2\ell)$) es el mismo que A_3 , por lo tanto debe existir un isomorfismo entre $\mathfrak{so}(2\times 3)=\mathfrak{so}(6)\cong\mathfrak{sl}(4)$. Descríbalo explícitamente.