Este encuentro rioplatense de álgebra tendrá lugar en Buenos Aires, Dto. de matemática F.C.E.yN. - Universidad de Buenos Aires, pabellón I.
Se enmarca dentro del proyecto PICS 1514 de colaboración Francia - Argentina, y recibe también el apoyo financiero de la Cooperación Regional Francesa, Ministère d'Affaires étrangères (proyecto de colaboración Francia - Uruguay), la Agencia Nacional de Promoción Científica y Tecnológica (Argentina), y el CONICET (Argentina).
Instrucciones para llegar desde Retiro a Ciudad Universitaria.
Iván Pan (Instituto de Matematica UFRGS - Porto Alegre)
Transformaciones de Cremona
El estudio de las transformaciones de Cremona fue uno de los temas de investigación predilectos de los geómetras de la llamada Escuela Italiana (Cremona, Comessati, Noether, Castelnuovo, etc...) dando origen a lo que hoy conocemos como Geometría Birracional.
El objetivo de este mini-curso es, primeramente, dar un panorama general sobre el área describiendo algunas de las técnicas de trabajo y algunos de los problemas abiertos. Luego nos concentraremos en el caso más simple (y más conocido) de las transformaciones del plano indicando los teoremas de estructura del Grupo de Cremona y sus subgrupos. Finalmente, y dependiendo del tiempo que nos reste, estudiaremos alguna de las aplicaciones de este tema a otras áreas de la Matemática, principalmente a estudio birracional de foliaciones analíticas.
Ir arriba.
Alexander Zimmermann (Université de Picardie)
Triangulated categories and equivalences in representation
theory.
In a first part we shall explain the main method, equivalences between derived
categories, which became a main tool in represenation theory after the
major discovery of Rickard and Keller.
In joint work with Jan Schroer
we showed that a nice class of algebras of tame representation type
so-called gentle algebras, is closed under derived equivalences.
Actually more is true, involving stable categories of a bigger algebra.
We will present some applications, and show some link to Hochschild
cohomology to this and other algebras. Hochschild cohomology is a
very useful tool which was used by Linckelmann to define group cohomology
of a non principal block. We outline this development and give some
further applications and examples.
Ir arriba.
Ibrahim Assem (Université
Sherbrooke - Québec)
The left and the right parts of a module category.
This is a report on a joint work with F. U. Coelho and S. Trepode.
We study, for an Artin algebra A, the class LA
(and RA) which is a
full subcategory of the category modA of finitely generated
A-modulos, and which consists of all indecomposables A-modulos
whose
predecessors (and successors) have projective dimension (and
injective dimension, respectively) at most one. We consider certain
quotient algebras of A, which contain the information on these
classes, then define and characterize those algebras for which the
class LA is contravariantly finite
(and RA is covariantly finite,
respectively) in modA.
Ir arriba.
Claudia Chaio
(Universidad Nacional de Mar del Plata)
On the composition of irreducible morphisms
The notion of irreducible morphism has played an
important role in the study of the category modA of finitely
generated modules over an Artin algebra A. The connection with
the radical R of this category is well known and is given by
the fact that a morphism between indecomposable modules is
irreducible if and only if it lies in R and not in R2.
It is well known that the composition of n irreducible morphisms
belongs to Rn. An interesting question is when does the
composition of n irreducible morphisms belongs to Rn+1.
We can associate to mod A an oriented graph, called the
Auslander-Reiten quiver. The connected components of this graph
are called the components of the Auslander-Reiten quiver. We show
that in the directed components of the Auslander-Reiten quiver of
a strongly simply connected algebra the composition of n
irreducible morphisms, belongs to Rn+k with k>0 if
and only if that composition is zero. In particular, this
statement is true for the Auslander-Reiten quiver of a simply
connected algebra of finite representation type.
Now, we are interesting in answering the following question: when
does the composition of two irreducible morphisms belongs to
Rk\setminus Rk+1 with k >2. We analyze necessary
and sufficient conditions for the existence of such two
irreducible morphisms. Finally, we give a family of algebras of
finite representation type having two irreducible morphisms f,g
between indecomposable modules such that gf\in Rm\setminus
Rm+1 with m >2.
Ir arriba.
Diane Canstonguay
Derived-tame blowing of tree algebra
Let k be an algebraically closed field and A=kQ/I be a tree
algebra. It is already shown by T. Br\"ustle and also by C. Geiss, with
different methods, that A is derived-tame if and only if the Euler
quadratic form \chi_A of A is non-negative. Moreover, in this
case, A
is derived equivalent to a hereditary algebra of type \E, \EE, or to a
tubular algebra, or else to a special type of incidence algebras, called
semichain algebra.
We consider here a class obtained by blowing a tree algebra A at
a set of vertices D, such an algebra is denoted by A{D}. As will be
seen, this procedure of blowing a tree is very natural in our context. For
instance, semichain algebra are obtained in this way. The objective of this
talk is to give the equivalence between derived-tameness and non-negativity
of the Euler form for algebras of this form. We also show that, in this
case, if D is a non-empty set that A{D} must be derived equivalent to a
semichain algebra.
Ir arriba.
Flávio Ulhoa Coelho
(Universidade de São Paulo)
Two-sided gluings of tilted algebras
This talk is a following up of the talk by I. Assem and we shall discuss
here our joint work contained in [A-C2].
Let A be an Artin algebra. We are interested in studying the representation
theory of A, thus in characterizing A by properties of the
category modA
of finitely generated right A-modules. One method to achieve this goal is to
start from a class of algebras whose representation theory is considered to
be sufficiently well-understood, and then to generalize this class to another
whose representation theory is close enough to that of the preceding class.
Thus, tilted algebras were introduced in [H-R] as a generalization of hereditary
algebras. The class of tilted algebras is now considered to be one of the most
useful for the general theory. For instance, it is known that an indecomposable
module over an arbitrary algebra which does not lie in an oriented cycle of
non-zero non-isomorphisms, is a module over a tilted algebra [R]. It was
therefore natural to consider various generalizations of this notion. Thus, over
the years, the following classes of algebras were defined and investigated:
the quasi-tilted (which generalize the tilted and the canonical algebras of
[R]) [H-R-S], the shod algebras (which generalize the quasi-tilted)
[C-L1], the weakly shod algebras (which generalize the shod and the
representation-directed algebras) [C-L2,C-L3] and the left and the
right glued algebras (which generalize the tilted and the representation-finite
algebras) [A-C1]. The purpose of our talk is to introduce a new class
of algebras which generalizes all the previous classes.
We define an Artin algebra A to be a laura algebra if all but at most finitely
many non-isomorphic indecomposable A-modules are such that all their
predecessors have projective dimension at most one, or all their successors have
injective dimension at most one. We start by giving various examples and
characterizations of laura algebras. We then study the representation theory of
laura algebras, and our main theorem gives a full description of the
Auslander-Reiten quiver of a laura algebra. The class of laura algebras is then
characterized in the spirit of [A-C1] as a double gluing of tilted algebras.
Bibliography
[A-C1]
I. Assem, F. U. Coelho, Glueings of tilted algebras,
J. Pure Appl. Algebra 96(3) (1994), 225-243.
[A-C2] I. Assem, F. U. Coelho, Two-sided gluing of tilted algebras.
[C-L1]
F. U. Coelho, M. Lanzilotta, Algebras with small homological
dimensions, Manuscripta Mathematica 100 (1999) 1-11.
[C-L2]
F. U. Coelho, M. Lanzilotta, On semiregular components with paths from injective to
projective modules, Comm. Algebra 30, 10 (2002).
[C-L3]
F. U. Coelho, M. Lanzilotta, Weakly shod algebras, J. Algebra, to appear.
[H-R-S]
D. Happel, I. Reiten, S. Smal\o, Tilting in abelian categories and
quasitilted algebras, Mem. Am. Math. Soc. 120 (1996), No. 575.
[H-R]
D. Happel, C. Ringel, Tilted algebras, Trans. AMS 274 (1982), 399-443.
[R]
C. Ringel, Tame algebras and integral
quadratic forms, Springer Lect. Notes Math. 1099 (1984).
Ir arriba.
Juan José Guccione
Teoría de productos cruzados trenzados
Esta es una comunicación acerca de dos trabajos. Uno en colaboración con
Jorge Guccione y otro con Jorge Guccione y Constanza Di Luigi.
Nosotros definimos un tipo de producto cruzado sobre álgebras de Hopf
trenzadas, que generaliza los ahora clásicos introducidos independientemente
por Blattner, Cohen y Montgomery y por Doi and Takeuchi, y estudiamos algunas
de sus propiedades. Por ejemplo, probamos un Teorema de Maschke para estos
nuevos productos cruzados y bajo hipótesis adecuadas construímos un
contexto Morita que extiende el encontrado por Cohen, Fischman y Montgomery en
el caso clásico. Por último caracterizamos las álgebras de Hopf cuyo
doble de Drinfel'd es un producto cruzado en nuestro sentido, obteniendo una
versión para este nuevo contexto de un conocido
resultado de Majid.
Ir arriba.
Matías Graña
Quandles y álgebras de Nichols.
Un quandle es un conjunto con una operación binaria, generalización de un
grupo con la conjugación. Los quandles fueron utilizados sobre todo en
topología para dar invariantes de nudos. En esta charla contaré cómo se
puede usar un quandle en álgebra, junto a un 2-cociclo, para dar un módulo
de Yetter-Drinfeld sobre un grupo. Así se producen de manera sistemática
espacios trenzados, sobre los cuales se pueden (se intentan) calcular las
álgebras de Nichols. La charla estará sazonada con definiciones y
ejemplos.
Ir arriba.
Alejandra Patricia Jancsa (FaMAF,
Univeridad Nacional de Córdoba)
Biálgebras de Lie reales simples
Describiré las estructuras de biálgebras de Lie
casi factorizables
en álgebras de Lie reales g0 absolutamente simples,
es decir, aquellas cuya complexificación g=g0\otimes
RC es una biálgebra de Lie
simple factorizable. Una de las
herramientas esenciales
es el teorema de Belavin - Drinfel'd, que da una descripción
exhaustiva de las estructuras de biálgebras de Lie factorizables
en álgebras de Lie complejas simples. La determinación
de las clases de isomorfismo requiere
además de la clasificación de las álgebras de Lie reales simples,
obtenida a partir de diagramas de Vogan e involuciones antilineales.
Por otra parte,
describiré los dobles de Drinfel'd y los triples de Manin asociados
a las biálgebras de Lie reales
absolutamente simples.
Este trabajo está contenido en mi tesis
doctoral y ha sido aceptado para
su publicación en Int. Math.
Research Notices,
en coautoria con mi director N. Andruskiewitsch.
Ir arriba.
Marcelo Lanzilotta
Álgebras Toupie
Trabajo en conjunto con:
Diane Castonguay; Francois Huard.
Con el objetivo final de clasificar los carcajes de las álgebras
Shod, Weakly-Shod, y Laura, definimos en el trabajo una vasta familia que
llamamos: Carcajes Toupie. Obtenemos la clasificación de los
carcajes de esta familia (con cualquier ideal admisible) según
representen un álgebra Shod, Weakly Shod o Laura.
Ir arriba.
Alejandro Lopez (Universidad Nacional Andres Bello)
Local Cohomology for Graded - commutative Rings
A graded ring satisfying the identity
rs=(-1)deg(r)deg(s) for all
homogeneous elements r and s is called a
graded-commutative ring.
Such rings appear as cohomology rings of groups and in a
number of
other contexts. Their homological properties seem to be
similar to the
well-known properties of commutative rings.
Although one may treat these rings as modules over the
even
part of the ring, it is interesting to study them as
modules over
themselves and to compare the structures obtained.
Ir arriba.
Eduardo do Nascimento Marcos
Estructura estandar estratificada en Álgebras
Esta plática en Portunhol, sera sobre el trabajo conjunto que
estamos desenvolviendo Eduardo N. Marcos y Edith Corina Saenz Valadez.
Consideraremos un conjunto de R-modulos
\theta={\theta(1),... ,\theta(n)}. Mas aun
sea \Y={Y(1),... , Y(n)} un conjunto de
R-modulos
inescindibles.
Decimos que (\theta, \Y) es un sistema estratificante si
las siguientes 3 condiciones se satisfacen.
0--> \theta(i)--> Y(i)--> Z(i)--> 0;
con Z(i) filtrado por \theta(j) con j menor
que i ;
Hom_R(\theta(i+k),\theta(i))=0 para k>1 y
Ext_R(\theta(i+k),\theta(i))=0 para k\geq 0
entonces es posible
encontrar un conjunto de R-modulos \Y=
{Y(1),...,Y(n)}
tales que (\theta, \Y) es un sistema estratificante.
Mas aun probaremos que este conjunto \Y es único
y daremos algunos otros resultados relacionados.
Ir arriba.
María Inés Platzeck
Representation dimension of Artin algebras
Joint work with Flávio U. Coelho.
Given an
Artin algebra A, the representation dimension of A is
the infimun of the global dimensions of the endomorphism rings
EndA(M), where
M is a generator cogenerator of modA.
The notion of representation dimension of an Artin algebra A
was introduced by M. Auslander in the early 70's.The interest in
its study revived recently, and an interesting connection with
the finitistic dimension conjecture has been given by Igusa and
Todorov. It was proven by Auslander that a nonsemisimple
algebra is of finite representation type if and only if its
representation dimension is 2. We prove that the representation
dimension of the algebras in the following
classes is bounded by 3:
a) Artin algebras A such that the
functor HomA(--,A) has
finite length (or dually, HomA(D(A),--)
has finite length. These algebras coincide with the left
(right) glued algebras, as introduced by Assem and Coelho, and
b) Trivial extensions of iterated tilted algebras.
Ir arriba.
María Julia Redondo (Universidad Nacional del Sur)
Cohomologias en cubrimientos de Galois
Dado un cubrimiento de Galois C --> B con grupo G existe una sucesion
espectral que relaciona las cohomologias de C y de B. De este resultado se
deducen varias consecuencias inmediatas, en particular, se prueba que
existe una inmersion del grupo
Hom(G,k) en H^1(B). Esto generaliza un resultado bien conocido de I.
Assem y J. A. de la Peña para G el grupo fundamental de una presentacion de B.
Ir arriba.
Sonia Trepode (Universidad Nacional de Mar del
Plata)
Strongly Simply Connected Schurian Algebras
Joint work with I. Assem, D. Castonguay and E. Marcos
The objective of this work is to give criteria for the strong
simple connectedness of schurian triangular algebras, in the spirit of the
well-known criterion for the strong simple connectedness of an incidence
algebra - that of the absence of crowns, or equivalently, of
dismantlability of the associated poset. For this purpose, we define a more
general notion of a crown, valid for an arbitrary schurian algebra, and
investigate how the absence of crowns implies the strong simple
connectedness of the algebra.
Ir arriba.
Tomar el 33 o 45 direccion Ciudad Universitaria (comunicar el
destino al chofer). La parada se
encuentra frente a la estación de tren F.C.G.M. Belgrano, y frente
a la plaza Retiro.
El precio del boleto es 80 centavos, se paga en el bus, hay
que llevar monedas, las máquinas dan vuelto. Duración del trayecto:
aproximadamente 25 minutos.
Ir a la estación del tren F.C.G.M. Belgrano,
tomar el tren (la única posibilidad) y bajarse en la estación
S. Ortiz (la segunda desde Retiro).
En la estación del tren, subir al puente peatonal y caminar en la
direccion
que atraviesa las vías. Desde la altura del puente se tiene contacto visual
con el Pabellón I; siga a los peatones.
Precio aproximado del boleto: 50 centavos. Duración del trayecto: 15
minutos.
Frecuencia: 20 minutos.
Ir arriba.
Instrucciones para llegar desde Retiro a Ciudad Universitaria
En Bus:
En tren: