Address for correspondence
Departamento de Matemática,
Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I
(1428) Buenos Aires
Argentina
Email: drial@dm.uba.ar
Research Interests
Applied Mathematics, Nonlinear partial
differential equations with applications to
Physics, Numerical Methods.
More specifically, I study existence and uniqueness for the stationary and evolution problems related to transport fenomena models in semiconductors, and other equations that arise in Physics as Navier-Stokes equation, Schrödinger equation and the equations for the wave propagation in different media.
1. Existence and uniqueness of H-system's with Dirichlet conditions.
P Amster, M. C. Mariani and D. Rial.
Nonlinear Analysis 42 (2000), 673-77.
2. Solutions to the mean cuvature equation by fixed point methods.
M. C. Mariani and D. Rial.
Bulletin of The Belgian Mathematical Society 4 (1997), 1-4.
3. Existence and regularity of weak solutions to the prescribed mean curvature equation for a nonparametric surface.
P. Amster, M. Cassinelli, M. C. Mariani and D.F. Rial.
Abstract and Applied Analysis, Vol 4 (1) 1999.
4. Magnetic susceptibility minimization respect to the gauge.
M. P. Beccar Varela, C. Caputo, M. Ferraro, P. Lazzeretti, M. C. Mariani and D. Rial.
International Journal of Quantum Chemistry , Vol 77, 599-606
(2000).
5. Solutions to the mean curvature equation for nonparametric surfaces by fixed point methods.
P. Amster, J.P. Borgna, M. C. Mariani, and D.F. Rial.
Revista de la Unión Matemática Argentina,
Vol.41, 3, 1999, 15-21.
6. Solutions of H-systems using the Green function.
P. Amster, M.C. Mariani and D. Rial.
Bulletin of the Belgian Mathematical Society 7 (2000), 487-492.
7. Local Existence of Solutions to the Transient Quantum Hydrodynamic Equations.
A. Jüngel, M. C. Mariani, D. F. Rial.
To appear in Mathematical Models and Methods in Applied
Science, M3AS.
8. Multiple solutions of a stationary nonhomogeneous nonlinear Schrodinger equation.
P. Amster, J. P. Borgna, M. C. Mariani, D. F. Rial.
To appear in Revista de la Unión Matemática
Argentina.
9. Weak solutions of the derivative nonlinear Schrödinger Equation.
D. Rial.
Nonlinear Analysis 49A, 2, 149-158.