Prof. Diego F. Rial 

 

Hi! I am Tico!

Address for correspondence

Departamento de Matemática,
Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires

Ciudad Universitaria, Pabellón I

(1428) Buenos Aires

Argentina

Email: drial@dm.uba.ar

 

 

 

Research Interests

Applied Mathematics, Nonlinear partial

differential equations with applications to

Physics, Numerical Methods.

 

More specifically, I study existence and uniqueness for the stationary and evolution problems related to transport fenomena models in semiconductors, and other equations that arise in Physics as Navier-Stokes equation, Schrödinger equation and the equations for the wave propagation in different media.

 

 

SOME RECENT PUBLICATIONS

 

1. Existence and uniqueness of H-system's with Dirichlet conditions.

P Amster, M. C. Mariani and D. Rial.

Nonlinear Analysis 42 (2000), 673-77.
 
 

2. Solutions to the mean cuvature equation by fixed point methods.

M. C. Mariani and D. Rial.

Bulletin of The Belgian Mathematical Society 4 (1997), 1-4.
 
 

3. Existence and regularity of weak solutions to the prescribed mean curvature equation for a nonparametric surface.

P. Amster, M. Cassinelli, M. C. Mariani and D.F. Rial.

Abstract and Applied Analysis, Vol 4 (1) 1999.
 
 
 

4. Magnetic susceptibility minimization respect to the gauge.

M. P. Beccar Varela, C. Caputo, M. Ferraro, P. Lazzeretti, M. C. Mariani and D. Rial.

International Journal of Quantum Chemistry , Vol 77, 599-606 (2000).
 
 

5. Solutions to the mean curvature equation for nonparametric surfaces by fixed point methods.

P. Amster, J.P. Borgna, M. C. Mariani, and D.F. Rial.

Revista de la Unión Matemática Argentina, Vol.41, 3, 1999, 15-21.
 
 

6. Solutions of H-systems using the Green function.

P. Amster, M.C. Mariani and D. Rial.

Bulletin of the Belgian Mathematical Society 7 (2000), 487-492.
 
 

7. Local Existence of Solutions to the Transient Quantum Hydrodynamic Equations.

A. Jüngel, M.  C. Mariani, D. F. Rial.

To appear in Mathematical Models and Methods in Applied Science, M3AS.
 
 

8. Multiple solutions of a stationary nonhomogeneous nonlinear Schrodinger equation.

P. Amster, J. P. Borgna, M.  C. Mariani, D. F. Rial.

To appear in  Revista de la Unión Matemática Argentina.
 
 

9. Weak solutions of the derivative nonlinear Schrödinger Equation.

D. Rial.

Nonlinear Analysis 49A, 2, 149-158.
 

 

back to the main page