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Abstract. We show that the twisted conjugacy problem is solvable for free-of-infinity
large-type Artin groups; and for XXXL Artin groups whose defining graph is connected
and does not have a cut-vertex or a separating edge.

1. Introduction

Let G be a group and φ ∈ Aut(G). The group G has solvable φ-twisted conjugacy
problem (TCPφ(G)) if there is an algorithm that given u, v ∈ G can decide if there exists
a z ∈ G such that u = φ(z)vz−1. It has solvable twisted conjugacy problem (TCP (G))
if there is an algorithm that given φ ∈ Aut(G) and u, v ∈ G can decide if there exists a
z ∈ G such that u = φ(z)vz−1. When φ is trivial, TCPid(G) is known as the conjugacy
problem (CP (G)). If A is a subgroup of Aut(G), we say that A is orbit decidable if there
is an algorithm which, for any two u, v ∈ G decides whether there exists φ ∈ A such that
φ(u) and v are conjugate in G.

The twisted conjugacy problem has proven to be much harder to solve than the con-
jugacy problem, and few positive results are known. In the context of Artin groups, it is
only known for braid groups [GMV14], and for Artin groups whose defining graph has two
vertices [Cro24a,Cro24b]. In this article we show that some large-type Artin groups have
solvable twisted conjugacy problem. Our result is the first one to hold for generic Artin
groups in a probabilistic sense (see [GV23, Theorem 1.2]). Here is the precise statement,
for definitions see Section 2.

Theorem 1.1. Let AΓ be a free-of-infinity large-type Artin group; or an Artin group
satisfying the COST property whose defining graph is connected and does not have a cut-
vertex or a separating edge. Then TCP (AΓ) is solvable.

As a corollary of Theorem 1.1 we get the following (see [BMV09, §2] for the definition
of algorithmic and Section 2 for the statement of Theorem 2.4).

Corollary 1.2. Let AΓ be an Artin group as in Theorem 1.1. Then, for any algorithmic
short exact sequence of groups

1 → AΓ → G → H → 1

with H finitely generated and satisfying the hypotheses of Theorem 2.4, the group G has
solvable conjugacy problem.

In particular, if an Artin group AΓ satisfies the assumptions of Theorem 1.1, then any
group G containing AΓ as a finite-index normal subgroup has solvable conjugacy problem.
In fact, we can deduce from our proofs that unless Γ is an even edge, such groups G are
systolic and therefore biautomatic [JŚ06, Theorem E]. In the case when Γ is not the even
edge we can also drop the finite generation assumption in Corollary 1.2.
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2. Preliminaries

A presentation graph is a finite simplicial graph Γ where every edge connecting vertices
s and t is labelled by an integer mst ≥ 2. Given a presentation graph Γ, the associated
Artin group AΓ is the group given by the following presentation:

AΓ := ⟨s ∈ V (Γ) | Π(s, t;mst) = Π(t, s;mst) whenever s, t are adjacent in Γ⟩,

where Π(x, y; k) denotes the alternating product of xyxy · · · with k letters. Similarly the
associated Coxeter group WΓ is the group given by the following presentation:

WΓ := ⟨s ∈ V (Γ) | s2 = 1 for all s ∈ V (Γ), (st)mst = 1 whenever s, t are adjacent in Γ⟩,

Given a subset S ⊆ V (Γ), the subgroup ⟨S⟩ ⩽ AΓ is called a standard parabolic subgroup
of AΓ. By a result of van der Lek [vdL83, Theorem II.4.13], the subgroup ⟨S⟩ ⩽ AΓ is
isomorphic to the Artin group whose defining presentation graph is the subgraph of Γ
induced by S.

An Artin group AΓ is:
• large-type if all labels in Γ are at least 3;
• XXXL if all labels in Γ are at least 6;
• free-of-infinity if Γ is a complete graph;
• hyperbolic-type if WΓ is a hyperbolic group;
• spherical-type if WΓ is finite.

Definition 2.1. The Deligne complex of an Artin group AΓ is the simplicial complex DΓ

defined as follows:
• Vertices correspond to left cosets of standard parabolic subgroups of spherical type.
• For every g ∈ AΓ and for every chain of induced subgraphs Γ0 ⊊ · · · ⊊ Γk with
AΓ0 , . . . , AΓk

of spherical type, there is a k-simplex with vertices gAΓ0 , . . . , gAΓk
.

Equivalently, the Deligne complex DΓ is the geometric realisation of the poset of left cosets
of standard parabolic subgroups of spherical type.

The group AΓ acts on DΓ by left multiplication on left cosets, and we denote by KΓ

the subcomplex induced by the vertices of the form 1 · AΓ′ . A standard tree of DΓ is the
fixed-point set of a conjugate of a standard generator of AΓ (see [MP22]).

In [BMV24] the first author, Martin and Vaskou studied homomorphisms between large-
type Artin groups, and to do so introduced the following notions.

Definition 2.2. A cycle of standard trees is a sequence T1, . . . , Tn of distinct standard
trees of the Deligne complex DΓ such that for every i ∈ Z/nZ, the intersection Ti ∩ Ti+1

is a vertex, and such that:
• for every i ∈ Z/nZ, the generators xi and xi+1 of Fix(Ti) and Fix(Ti+1) respectively

generate a dihedral Artin group,
• for every distinct i, j with j ̸= i±1, the generators of Fix(Ti) and Fix(Tj) generate

a non-abelian free group.
An Artin group AΓ satisfies the Cycle of Standard Trees Property (COST) if the fol-

lowing holds for any cycle of standard trees: let T1, . . . , Tn be a cycle of standard trees in
DΓ, and let γ be the loop of DΓ obtained by concatenating, for i ∈ Z/nZ, the geodesic
segments γi of Ti between the vertices Ti∩Ti−1 and Ti∩Ti+1. Then there exists an element
g ∈ AΓ such that γ is contained in gKΓ.
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In [BMV24, Proposition 6.1] it was shown that XXXL Artin groups satisfy the COST
property, but it is conjectured to hold for bigger families. Combining results from [BMV24]
and [Vas23], we can obtain the following description of the automorphism group of some
classes of large-type Artin groups. Here graph automorphisms are automorphisms of
AΓ induced by automorphisms of the labelled graph Γ, and the global inversion is the
automorphism that sends every generator to its inverse. We also say that an edge e in
a connected graph Γ is separating if there exist two induced connected subgraphs Γ1, Γ2

such that Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = e.

Theorem 2.3 ([Vas23, Theorem A], [BMV24, Corollary 1.7]). Let AΓ be a free-of-infinity
large-type Artin group with |V (Γ)| ≥ 3; or an Artin group satisfying the COST property and
whose defining graph is connected, not an even edge, and does not have a cut-vertex or a
separating edge. Then Aut(AΓ) is generated by the conjugations, the graph automorphisms,
and the global inversion. In particular, Out(AΓ) is finite.

Large-type Artin groups also enjoy the property of being systolic, and as a consequence
they have solvable conjugacy problem [ECH+92, Theorem 2.5.7]. This was shown by
Huang and Osajda in [HO20], where they constructed a thickening of the Cayley complex
of a large-type Artin group and proved that it is systolic.

If G is a group, F is a normal subgroup of G and g ∈ G, we denote by φg the automor-
phism of F induced by conjugation by g. In [BMV09] Bogopolski, Martino and Ventura
proved the following theorem (see [BMV09, §2] for the definition of algorithmic).

Theorem 2.4 ([BMV09, Theorem 3.1]). Let

1 → F
α−→ G

β−→ H → 1

be an algorithmic short exact sequence of groups such that
(1) CP (H) is solvable, and
(2) for every 1 ̸= h ∈ H, the subgroup ⟨h⟩ has finite index in its centralizer CH(h),

and there is an algorithm which computes a finite set of coset representatives,
zh,1, . . . , zh,th ∈ H,

CH(h) = ⟨h⟩zh,1 ⊔ · · · ⊔ ⟨h⟩zh,th .
Moreover, suppose that TCP (F ) is solvable. Then, the following are equivalent:

(a) CP (G) is solvable,
(b) the action subgroup AG = {φg | g ∈ G} ⩽ Aut(F ) is orbit decidable.

3. Proofs

Proof of Theorem 1.1. In the case when Γ is an even edge, the result was proved by Crowe
in [Cro24b, Theorem 3.28].

Suppose Γ is not an even edge. Let φ ∈ Aut(AΓ), and consider the group AΓ ⋊ ⟨φ⟩,
where ⟨φ⟩ is a cyclic group of order k if φ has order k < ∞ and an infinite cyclic group
otherwise. By [BMV09, Proposition 4.1], solvability of CP (AΓ⋊⟨φ⟩) implies solvability of
TCPφ(AΓ). So in order to prove Theorem 1.1, it suffices to show that AΓ⋊ ⟨φ⟩ is systolic.
We will prove that the action of AΓ on the thickening of the Cayley complex extends to
an action of AΓ ⋊ ⟨φ⟩. If φ has finite order, then AΓ ⋊ ⟨φ⟩ is a finite extension of AΓ and
therefore the latter action is geometric.

We proceed to describe the thickening of the Cayley complex constructed in [HO20,
Definitions 3.7 and 5.3]. Let K̃Γ be the Cayley complex of AΓ associated to the standard
presentation. For each edge in Γ between vertices s, t ∈ V (Γ) there is a relation of length
2mst that lifts to copies in K̃Γ. Subdivide each of these lifts to a 2mst-gon by adding
mst − 2 interior vertices, and call each of these subdivided 2-cells a precell (see Figure 1).
Now, if two precells C1, C2 intersect at more than one edge, first connect interior vertices
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v1 ∈ C1, v2 ∈ C2 such that both {v1} ∪ e and {v2} ∪ e span triangles for some edge
e ⊂ C1 ∩ C2, and then add edges between interior vertices of C1 and C2 to form a zigzag
as in Figure 2. The flag completion of this complex is the desired thickening.

It is clear that if φ ∈ Aut(AΓ) is a graph automorphism or the global inversion, then
it induces an automorphism of the thickening of K̃Γ, and since φ has finite order we get
that AΓ ⋊ ⟨φ⟩ acts geometrically. Hence AΓ ⋊ ⟨φ⟩ is systolic and has solvable conjugacy
problem, so TCPφ(AΓ) is solvable. Since the classes of such automorphisms φ generate
Out(AΓ) by Theorem 2.3, it follows that TCP (AΓ) is solvable as well, as required. □
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Figure 1. Subdivision of a precell with mst = 7.

Figure 2. Adding a zigzag (black) between two intersecting precells (red
and blue).

Proof of Corollary 1.2. In the case when Γ is an even edge, the result was proved by Crowe
in [Cro24b, Theorem 4.4].

Suppose Γ is not an even edge. By Theorem 2.4, to prove Corollary 1.2 it is enough
to show that the action subgroup AG = {φg | g ∈ G} ⩽ Aut(AΓ) is orbit decidable. Let
OG ⩽ Aut(AΓ) be a set of unique representatives of the projection of AG in Out(AΓ).
Then given u, v ∈ AΓ, checking whether there is an automorphism in AG that sends u to
v is equivalent to checking whether v is conjugate to some element in {φ(u) | φ ∈ OG}.
Since Out(AΓ) is finite (by Theorem 2.3), this problem is algorithmically solvable. □
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