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Non-positive curvature and Artin groups

Abstract. In this thesis we introduce different generalizations and variants

of the notion of non-positive curvature in the context of geometric group the-

ory. We present new small cancellation conditions (T’), τ ′ and τ ′
< and study

their properties. We obtain results concerning hyperbolicity, diagrammatic

reducibility, equations over groups, and solvability of the word and conju-

gacy problems for groups satisfying these conditions. In the process we define

(strictly) systolic angled complexes, which generalize systolic complexes by

allowing angles different from π
3
.

The second focal point of the thesis are Artin groups. While studying

condition τ ′, we show that Artin groups are two-dimensional (i.e. they have

geometric dimension at most 2) if and only if their standard presentation

satisfies condition τ ′. An important conjecture regarding Artin groups is

that any intersection of parabolic subgroups is a parabolic subgroup. By

introducing systolic-by-function complexes (another generalization of systolic

complexes) and using their geometry, we solve this conjecture in the case of

two-dimensional (2,2)-free Artin groups.

Another open question for Artin groups was to decide whether a parabolic

subgroup P1 of an Artin group A contained in another parabolic subgroup

P2 of A is a parabolic subgroup of P2. We finish this thesis by answering

this question in the positive for all Artin groups. In contrast to the rest of

our work, the techniques used in this case are mostly algebraic instead of

geometric.

Key words: non-positive curvature, hyperbolic groups, small cancellation,

systolicity, Artin groups, parabolic subgroups.
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Introduction

Geometric group theory concerns the study of groups by means of their actions

on objects with an interesting geometry in a broad sense. Its origins can

be traced back to the works of many mathematicians, particularly those of

Max Dehn. Among his numerous contributions, he formulated the following

problems [35] (see also [68]):

The word problem: a group G with presentation ⟨S | R⟩ has solvable word

problem if there exists an algorithm that decides, given a word w ∈ F (S), if

w is trivial in G.

The conjugacy problem: a group G with presentation ⟨S | R⟩ has solvable

conjugacy problem if there exists an algorithm that decides, given two words

w1, w2 ∈ F (S), if w1 and w2 are conjugate in G.

The isomorphism problem: given two finite group presentations, decide if

they present isomorphic groups.

While algebraic or algorithmic at first sight, as we will see in this thesis,

these problems have a deep connection with the geometry of the groups and

the presentations involved. However, even though the work of Dehn dates back

to the beginning of the twentieth century, the approach of studying groups

geometrically did not rise to prominence until much later. Between Dehn’s

work and geometric group theory lie combinatorial group theory and small

cancellation theory. The original procedure was to work with group presen-

tations combinatorially. By looking at their presentation complex and their

Cayley graph, these combinatorial ideas became more geometric. Research in

this direction was carried out by Magnus, Baumslag, Solitar, Greendlinger,

Lyndon, Schupp and Rips among others.

It is the seminal work of Gromov and his article [50] that decidedly estab-
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lished geometric group theory as an active field. Gromov introduced the two

most important families of groups of non-positive or negative curvature: hy-

perbolic groups and CAT(0) groups. These groups are characterized by acting

nicely (geometrically) on hyperbolic and respectively CAT(0) metric spaces.

Both of these families of metric spaces enjoy coarse curvature properties. By

the works of Gromov and subsequent authors, all three of Dehn’s questions

have a positive answer for hyperbolic groups, and the word and conjugacy

problems are solvable for CAT(0) groups.

Motivated by Gromov’s contributions many notions of non-positive curva-

ture for groups have arisen in recent years. One of them is systolic simplicial

complexes and groups. The complexes were first introduced by Chepoi under

the name of bridged complexes in [23]. Systolic complexes were later rediscov-

ered and studied by Januszkiewicz and Świa̧tkowski in [61] and by Haglund

in [52]. We will follow the viewpoint of Januszkiewicz and Świa̧tkowski (see

Section 1.3 for definitions). The idea behind systolic complexes is to find an

easy-to-check combinatorial condition on simplicial complexes resembling that

of CAT(0) cube complexes. Though systolic simplicial complexes are not nec-

essarily CAT(0), groups acting geometrically on them share many properties

with CAT(0) groups.

In this thesis we will explore two generalizations of systolic complexes

and groups. The first one is (strictly) systolic angled complexes. Instead of

thinking that all triangles are equilateral with angles of π
3
, we allow for dif-

ferent angles, gaining more flexibility. The second one is systolic-by-function

complexes. In this case what we change are the lengths of the sides of the

triangles. We do so in a combinatorial rather than a metric fashion. Both

of these definitions were inspired by metrically systolic complexes, a metric

generalization of systolic complexes introduced by Huang and Osajda in [57]

to study two-dimensional Artin groups.

Small cancellation theory consists on studying groups given by presenta-

tions where the relators have small overlaps. These small overlaps are for-

malized in what are called small cancellation conditions. Groups satisfying

strong enough small cancellation conditions have good algebraic, algorithmic

and geometric properties, such as solvable word an conjugacy problems or

being hyperbolic. Small cancellation conditions are stated in purely algebraic

terms, but have a very clear geometric interpretation. Due to the work of
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van Kampen [62] and Lyndon [67] it is known that a trivial word in a group

presented by a presentation P is equivalent to having a disk diagram over

the presentation complex KP whose boundary reads said word (i.e. a com-

binatorial map from a combinatorial structure of a singular disk to KP ). As

we will see in Section 1.5, small cancellation conditions over the presentation

translate to geometric conditions over these diagrams.

In Chapter 1 we recall the basic ideas and results on spaces and groups of

non-positive curvature. We start with hyperbolic and CAT(0) spaces and

groups, and in the process review some concepts of independent interest

(quasi-isometries, geodesic metric spaces, Dehn functions and metric simpli-

cial complexes among others). Then we present systolicity and a more recent

generalization, metric systolicity. These two notions play a key role in the rest

of the thesis, as they serve as inspiration for systolic angled complexes (see

Section 3.1) and systolic-by-function complexes (see Section 4.2). Finally, we

give a short introduction to small cancellation theory.

In Chapter 3 we introduce new small cancellation conditions that both

unify and expand on the classical ones. We start by defining strictly systolic

angled complexes (see Definition 3.1.1). Using curvature techniques and a

combinatorial version of the Gauss–Bonnet theorem we prove the following:

Theorem 3.1.9. Let X be a strictly systolic angled complex. Then there

exists a constant K > 0 such that

Area(γ) ≤ Kl(γ),

for every closed edge-path γ in X.

That is, we show that strictly systolic angled complexes satisfy a linear

isoperimetric inequality, and thus we get the subsequent corollary. In par-

ticular it follows that groups acting geometrically on these complexes are

hyperbolic.

Corollary 3.1.10. The 1-skeleton X(1) of a strictly systolic angled complex X

with its standard geodesic metric is hyperbolic. More generally, if we endow X

with a piecewise Euclidean metric with Shapes(X) finite, then X is hyperbolic.

As an application of this corollary, we investigate when one-relator groups

act properly and cocompactly by simplicial automorphisms on a strictly sys-

tolic angled complex. Given a one-relator group, we start by taking its Cayley
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complex and thicken it in a dual fashion, similarly to what Huang and Osajda

do for two-dimensional Artin groups in [57]. While analyzing this complex,

a natural small cancellation condition arises. We call this small cancellation

condition (T ′). This condition together with condition C ′(1
4
) are sufficient to

obtain our desired result.

Theorem 3.2.1. Let Γ be a one-relator group with presentation P = ⟨A | R⟩.
If P satisfies the metric small cancellation condition C ′(1

4
) and Condition

(T’), then Γ is hyperbolic.

Motivated by this result, we pose the obvious question: can condition

(T ′) be studied combinatorially as the classical small cancellation conditions?

That is, independently of strictly systolic angled complexes. We show that

the answer is positive. Furthermore, we define more general conditions τ ′ and

τ ′
<. Condition τ ′

< encompasses conditions C ′(1
4
)−(T ′), C ′(1

6
), C ′(1

4
)−T (4) and

C ′(1
3
) − T (6), while condition τ ′ is the non-strict version. Essentially, these

conditions allow large overlapping among relators as long as, when seen in

disk diagrams, these large overlappings do not concentrate at a single vertex.

We state here some of the results that we obtained with these new con-

ditions. The first one is related to diagrammatic reducibility. Diagrammatic

reducibility (DR) is a combinatorial condition stronger than asphericity, which

has applications to equations over groups (see Section 3.4).

Theorem 3.4.2. If a presentation P satisfies condition τ ′ and has no proper

powers, then it is DR.

Then we prove theorems related to non-positive curvature properties of

the groups. The first one is a strengthening of Theorem 3.2.1.

Theorem 3.4.4. Let G be a group which admits a finite presentation satis-

fying conditions τ ′
< and C(3). Then G is hyperbolic.

The second one is related to the non-strict condition. Note that in this

theorem, we require that all relators have the same length. We believe the

result holds without requiring this condition, although we do not have a proof

yet.
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Theorem 3.5.2. Let P be a presentation satisfying conditions τ ′−C ′(1
2
) and

such that all its relators have length r, then P has a quadratic Dehn function.

Moreover, if P is finite the group G presented by P has solvable conjugacy

problem.

The third one is about examples of groups with presentations that satisfy

condition τ ′. The ones that stand out are two-dimensional Artin groups. In

fact, we show the following:

Theorem 3.3.2. An Artin group AΓ is two-dimensional if and only if its

standard presentation PΓ satisfies condition τ ′.

Most of the results of Chapter 3 are part of the articles [9] and [10] written

in collaboration with Minian, and Minian and Sadofschi-Costa respectively.

Artin groups constitute one of the most studied families in geometric group

theory. They are deeply connected to Coxeter groups and are also a generaliza-

tion of braid groups. In Chapter 2 we recall their definition and basic results,

and briefly survey some well-known facts and open problems. As we will see,

many questions related to Artin groups are geometric in nature. Hence, hav-

ing a nice geometric structure to work with seems promising. Theorem 3.3.2

gives said a nice geometric structure to two-dimensional Artin groups. We

posed ourselves the question of whether these ideas could be used to tackle

open problems for Artin groups in the case of two-dimensional Artin groups.

That is the content of Chapter 4. Artin groups have a natural family of sub-

groups called parabolic subgroups. They play a central role in their study and

can be thought of as the building blocks of Artin groups. One open question

which has received much attention in recent years is whether an intersection

of parabolic subgroups is once again a parabolic subgroup. In Chapter 4 we

give a positive answer to this question for (2, 2)-free two-dimensional Artin

groups.

In a recent article by Cumplido, Martin and Vaskou [31] they solve this

problem for large-type Artin groups. They do so by studying a simplicial

complex called the Artin complex. Then they show that when the Artin

group is large-type, this complex is systolic. They prove that the intersec-

tion of parabolic subgroups is a parabolic subgroup when action of the Artin

group on the Artin complex satisfies certain path fixing condition. Systolic
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complexes satisfy the needed path fixing condition and their result follows.

We wish to recover the result for a broader family of Artin groups, so we

need a more encompassing geometric notion. We achieve this by considering

systolic-by-function complexes, which generalize systolic complexes. Systolic-

by-function complexes have a more flexible structure than systolic complexes

since we allow the edges to have different lengths. At the same time, their

geometry is rigid enough to satisfy an analogue of the Cartan–Hadamard the-

orem and other geometric properties similar to those of systolic complexes. In

particular, they satisfy a path fixing condition (see Theorem 4.3.1) and thus

we are able to prove the following result.

Theorem 4.3.2. Let AΣ be a (2, 2)-free two-dimensional Artin group. Then

the intersection of an arbitrary family of parabolic subgroups is a parabolic

subgroup.

As a consequence of this theorem and an algorithm introduced by Cumplido

[29] we solve the conjugacy stability problem for (2, 2)-free two-dimensional

Artin groups. A subgroup H of a group G is conjugacy stable if, for every

pair h, h′ ∈ H such that there exists g ∈ G with g−1hg = h′, there is h̃ ∈ H

such that h̃−1hh̃ = h′. The conjugacy stability problem consists in deciding

which of the parabolic subgroups of an Artin group are conjugacy stable.

Theorem 4.3.9. Let AΓ be a (2, 2)-free two-dimensional Artin group and

AΓX
a standard parabolic subgroup. Then AΓX

is not conjugacy stable if and

only if there exist vertices x, y in ΓX that are connected by an odd-labeled path

in Γ, but are not connected by an odd-labeled path in ΓX .

Some of the results of Chapter 4 appear in the recent article [8].

Chapter 5 is somewhat independent of the previous chapters. Even though

we continue investigating Artin groups and their parabolic subgroups, the

techniques used are completely different. While they do have a geometric

background (see Section 5.2), the arguments are mostly algebraic. The con-

tents of Chapter 5 correspond to an article in collaboration with Paris [11].

In [47] Godelle conjectures that a parabolic subgroup P1 of an Artin group

A which is contained in another parabolic subgroup P2 of A is a parabolic

subgroup of P2. This conjecture had already been proven for some families of
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Artin groups. We show that it is true for all Artin groups. More precisely we

prove the following.

Theorem 2.3.1. Let Γ be a finite simplicial graph, let m : E(Γ) → N≥2 be

a labeling, and let A = AΓ be the Artin group of Γ. Let X, Y ⊂ V (Γ) and

α ∈ A such that αAY α
−1 ⊂ AX . Then there exist Y ′ ⊂ X and γ ∈ AX such

that αAY α
−1 = γAY ′γ−1.
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Chapter 1

Non-positively curved spaces

and groups

1.1 Hyperbolic spaces and groups

Hyperbolic metric spaces and groups were introduced by Gromov in [50]. In

essence, a group is hyperbolic if, when equipped with its word metric, it sat-

isfies certain geometric properties analogous to those of classical hyperbolic

geometry. Apart from the classical theory of manifolds of negative curva-

ture, Gromov’s definition draws inspiration from the works of Dehn and Rips.

Unlike the CAT(κ) conditions that we will present later, hyperbolicity encap-

sulates the large scale geometry of a space. More precisely, hyperbolicity is

preserved under quasi-isometries. Intuitively speaking, two spaces are quasi-

isometric if when looked from afar, they look the same. Gromov’s article [50]

can be considered the starting point of modern geometric group theory. Since

their introduction, hyperbolic groups have continuously played a central role

in the area. We refer the reader to Bridson and Haefliger’s book [15] and the

series of notes edited by Short [80] for a more detailed exposition. Here we

only recall the basic definitions and results that we will use later on.

1.1.1 Geodesic metric spaces and quasi-isometries

Before defining hyperbolic groups we need some basic concepts on geodesic

spaces.

15



16 CHAPTER 1. NON-POSITIVELY CURVED SPACES AND GROUPS

Let (X, d) be a metric space. We define the length of a continuous curve

γ : [a, b] → X as

l(γ) = sup
a=to≤t1···≤tn=b

n−1∑
i=0

d(γ(ti), γ(ti+1)).

If the length of a curve γ is finite, γ is said to be rectifiable.

Definition 1.1.1. A metric space (X, d) is a length space if the distance

between every pair of points x, y ∈ X is equal to the infimum of the lengths

of the curves joining them.

We wish for a slightly stronger notion, where these infimums are attained.

For that, we need geodesics.

Definition 1.1.2. Let (X, d) be a metric space. A geodesic from x ∈ X to

y ∈ X is a continuous function γ : [0, l] → X such that γ(0) = x, γ(l) = y

and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0, l]. We usually denote the image of

γ by [x, y] and call it a geodesic segment.

It is clear from the definition that the length of a geodesic γ : [0, l] → X

is equal to l. A metric space is said to be geodesic if each pair of points

is joined by a geodesic. Examples of geodesic metric spaces include normed

vector spaces (in particular Euclidean spaces), model spaces of constant cur-

vature (see Definition 1.2.1) and metric graphs whose edges have finitely many

different lengths.

Length spaces need not be geodesic in general. However, under reasonable

hypotheses they are. This is known as the Hopf–Rinow theorem.

Theorem 1.1.3 (Hopf–Rinow Theorem). Let X be a complete and locally

compact length space. Then X is geodesic, and every bounded and closed

subset of X is compact.

Another notion we will need is that of quasi-isometry. As mentioned ear-

lier, a standout feature of hyperbolic groups is that they are stable under

quasi-isometries. Thus, hyperbolicity reflects the large scale geometry of a

space.
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Definition 1.1.4. Let (X1, d1) and (X2, d2) be metric spaces. A function

f : X1 → X2 is a quasi-isometric embedding if there exist constants A ≥ 1

and B ≥ 0 such that for every x, y ∈ X1,

1

A
d1(x, y) −B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B.

If there also exists a constant C ≥ 0 such that for every z ∈ X2 there is an

x ∈ X1 satisfying

d2(z, f(x)) ≤ C,

we say that f is a quasi-isometry. When this last condition holds, we say that

the image of f is quasi-dense in X2. Two metric spaces are quasi-isometric

if there exists a quasi-isometry between them. It is easy to see that being

quasi-isometric is an equivalence relation

For example, any two bounded metric spaces are quasi-isometric. One can

think of bounded metric spaces as a point when looked from afar. Another

standard example of quasi-isometric spaces are Z and R with their standard

norm metrics, where the quasi-isometry is given by the inclusion i : Z ↪→ R.

As we will see later, this is a particular case of a more general phenomenon

that we will allow us to compare the geometry of a group to that of a geodesic

metric space.

1.1.2 Hyperbolic metric spaces

In [50], Gromov attributes the following definition to Rips.

Definition 1.1.5. Let δ > 0. A geodesic metric space X is δ-hyperbolic if for

every x, y, z ∈ X and geodesic segments [x, y], [x, z], [y, z] we have that

[x, y] ⊆ B̄δ([x, z]) ∪ B̄δ([y, z]),

where B̄δ(Y ) denotes the closed δ-ball around a subset Y ∈ X (i.e., B̄δ(Y ) =

{x ∈ X | d(x, Y ) ≤ δ}). The space X is hyperbolic if it is δ-hyperbolic for

some δ.

The previous definition requires the metric space to be geodesic and the

condition is usually called the “slim triangles condition”. However, there is
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another characterization of hyperbolicity that does not require the metric

space to be geodesic and is equivalent to the previous one when the space is

geodesic. For this, we need the notion of Gromov product. Let X be a metric

space. Given three points x, y, z ∈ X, the Gromov product of x and y at z is

⟨x, y⟩z =
1

2
(d(x, z) + d(y, z) − d(x, y)).

Definition 1.1.6. Let p ∈ X and δ > 0. The pair (X, p) is δ-hyperbolic if for

every x, y ∈ X

⟨x, y⟩p ≥ min
z∈X

{⟨x, z⟩p, ⟨y, z⟩p} − δ.

A metric space X is hyperbolic if there exist p ∈ X and δ > 0 such that (X, p)

is δ-hyperbolic.

Definitions 1.1.6 and 1.1.5 coincide when the metric space is geodesic.

There are more equivalent definitions. A good treatment of these equivalences

can be found in [80].

A remarkable property of hyperbolicity is that it is invariant under quasi-

isometries in geodesic metric spaces. As mentioned before, this is telling us

that hyperbolicity captures the large scale geometry of the space.

Theorem 1.1.7. Let X1 and X2 be quasi-isometric geodesic metric spaces.

Then X1 is hyperbolic if and only if X2 is hyperbolic.

1.1.3 Hyperbolic groups

We wish to understand groups geometrically. One way of achieving this is

viewing them as metric spaces. To do so, we need the notions of word metric

and Cayley graph.

LetG be a group with generating set S. Given g, h ∈ G, we set dS(g, h) = 0

if g = h. Otherwise, we set dS(g, h) as the smallest n ∈ N such that there

exist s1, . . . , sn ∈ S ∪ S−1 with s1 · · · sn = g−1h. We call dS the word metric

in G associated to S.

Let G be a group with generating set S. The Cayley graph Γ(G,S) of G

with respect to S is the graph whose vertices are the elements of G and has

an edge joining g to gs for each g ∈ G and s ∈ S. It can be made into a

metric graph by declaring each edge to be isometric to the unit interval.
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Notice that the natural inclusion i : (G, dS) → Γ(G,S) is a quasi-isometry.

A particular case of this fact is the previously given example of a quasi-

isometry between Z and R. It is a well known fact that ifG is finitely generated

and S1 and S2 are finite generating sets, then (G, dS1) and (G, dS2) are quasi-

isometric. Thus the following definition does not depend on the chosen (finite)

generating set.

Definition 1.1.8. A finitely generated group G is hyperbolic if there is a

finitely generating set such that (G, dS) (or equivalently Γ(G,S)) is a hyper-

bolic metric space.

A common theme in geometric group theory is to study groups by their

actions on metric spaces. It is convenient to study actions that, in some sense,

are good.

Definition 1.1.9. A (left) action of a group G on a metric space X is said

to be

• cocompact if there exist a compact set K ⊆ X such that X = GK;

• proper if for each x ∈ X there exists r > 0 such that the set {g ∈ G |
gBr(x) ∩Br(x) ̸= ∅} is finite;

• geometric if G acts by isometries and the action is cocompact and

proper.

The following is a fundamental result in geometric group theory. It enables

us to understand a group in terms of the geometry of a metric space on which

it acts geometrically.

Theorem 1.1.10 (Švarc–Milnor Lemma). Let G be a group and X be a length

space. If G acts geometrically on X, then G is finitely generated, and for any

choice of basepoint x0 ∈ X, the map g 7→ gx0 is a quasi-isometry.

Corollary 1.1.11. A group G acting geometrically on a hyperbolic length

space X is a hyperbolic group.
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1.1.4 Dehn functions

We will present another characterization of hyperbolic groups in terms of their

presentations. A key tool for understanding group presentations geometrically

are Dehn functions.

Let G be a finitely presented group with finite presentation ⟨S | R⟩. Given

two words w and w′ in the free group F (S), we write w =G w′ to indicate

that they represent the same element in G. Let w ∈ F (S) be a cyclically

reduced word in the free group over S that is trivial in G. Then w admits an

expression of the form

w =
k∏

i=1

uir
±1
i u−1

i ,

where ri ∈ R and ui ∈ F (S) for all i. The area of a word w that is trivial in G

is the least amount of relators needed to express w as a product of conjugates

of relators and their inverses (i.e. the minimal k in the above formula). It

is denoted by A(w). The term “area” has a clear geometric interpretation

in terms of diagrams over the presentation, which will be explored in Section

1.5. The following definition allows us to bound the area of a word in terms of

its word length (when looking at diagrams, this translates to bounding their

area by their perimeter).

Definition 1.1.12. The Dehn function of the group G with respect to the

finite presentation P = ⟨S | R⟩ is

DehnG,P (l) = max
l(w)≤l, w=G1

{A(w)},

where l(w) = dS(w, 1).

To see that the Dehn function does not depend (up to an equivalence re-

lation) on the finite presentation chosen, we will need the following definition.

Definition 1.1.13. Let f, g : N → R≥0 be two non-decreasing functions. We

say that f is Dehn dominated by g if there exists a constant C > 0 such that

for all n ∈ N
f(n) ≤ Cg(Cn+ C) + Cn+ C.

We denote it by f ≺ g. If f ≺ g and g ≺ f , we say that f and g are Dehn

equivalent, and we note it f ∼ g.
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Proposition 1.1.14. If ⟨S1 | R1⟩ and ⟨S2 | R2⟩ are finite presentations for a

group G, then the Dehn functions with respect to ⟨S1 | R1⟩ and ⟨S2 | R2⟩ are
Dehn equivalent.

When DehnG ≺ f and f is a linear (resp. quadratic, polynomial, ex-

ponential, etc) function, we say that G satisfies a linear (resp. quadratic,

polynomial, exponential, etc) isoperimetric inequality (this terminology will

be made clearer in Section 1.5). Now we can give a new characterization of

hyperbolic groups.

Theorem 1.1.15 ([44, 50]). A group G is hyperbolic if and only if it is finitely

presentable and satisfies a linear isoperimetric inequality.

Note that in particular, all hyperbolic groups admit a finite presentation.

As with hyperbolicity, the Dehn function of a finitely presented group is a

quasi-isometry invariant.

1.1.5 Dehn’s problems

In 1911 Max Dehn proposed the following problems [35]. Though, at first

sight, not geometric in nature, they motivated much of the development of

modern combinatorial and geometric group theory, and continue to be widely

studied. For a more in-depth exposition of these questions we recommend the

book by Brady, Riley and Short [14].

The word problem: a group G with presentation ⟨S | R⟩ has solvable word

problem if there exists an algorithm that decides, given a word w ∈ F (S), if

w is trivial in G.

The conjugacy problem: a group G with presentation ⟨S | R⟩ has solvable

conjugacy problem if there exists an algorithm that decides, given two words

w1, w2 ∈ F (S), if w1 and w2 are conjugate in G.

The isomorphism problem: given two finite group presentations, decide if

they present isomorphic groups.

Notice that having solvable conjugacy problem implies having solvable

word problem, since a word is trivial if and only if it is conjugate to the

trivial word. These problems are known to not always be solvable, even for

finitely presented groups.
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There is a close connection between these problems and the Dehn function

of a presentation. For example, if the Dehn function is recursive, we can bound

the area of a word representing the trivial element in terms of its length. It

can be seen then that, if the word were trivial, a finite time algorithm gives

an expression for the word as a product of conjugates of relators and their

inverses. Furthermore, finitely presented groups have solvable word problem

if and only if their Dehn function is recursive (see Gersten [42]). Hence, hy-

perbolic groups have solvable word problem. Additionally, they have solvable

conjugacy problem [15] and isomorphism problem by Dahmani and Groves,

Dahmani and Guiradel, and Sela [32, 33, 79].

1.2 CAT(0) spaces and groups

We will present some standard definitions and results concerning CAT(0)

geometry and groups. As before, we refer the reader to [15] for a detailed

exposition.

1.2.1 CAT(0) metric spaces

In order to talk about CAT(0) metric spaces, we will first introduce CAT(κ)

metric spaces, and then concentrate on the non-positively curved case.

Definition 1.2.1. Let κ ∈ R and n ∈ N. The n-dimensional model space of

curvature κ, denoted Mn
κ , is defined as follows:

• if κ > 0, then Mn
κ is the n-dimensional unit sphere Sn with its usual

distance multiplied by 1√
κ
;

• if κ = 0, then Mn
0 is the n-dimensional Euclidean space En;

• if κ < 0, then Mn
κ is the n-dimensional hyperbolic space Hn with is

usual distance multiplied by 1√
−κ

.

A CAT(κ) geodesic metric space is one where geodesic triangles are “slim-

mer” than in the corresponding model space M2
κ . We make this more precise.

Let X be a geodesic metric space, x, y, z ∈ X and κ ∈ R. If κ > 0, we also

assume that d(x, y)+d(y, z)+d(z, x) < 2π√
κ

(which is the diameter of M2
κ). Let
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∆ = ∆([x, y], [y, z], [z, x]) a geodesic triangle with vertices x, y, z. A compari-

son triangle for ∆ in M2
κ is a geodesic triangle ∆′ = ∆([x′, y′], [y′, z′], [z′, x′]) ⊆

M2
κ with d(x, y) = d(x′, y′), d(y, z) = d(y′, z′) and d(z, x) = d(z′, x′). Let

p ∈ [x, y]. The comparison point for p in ∆′ is the unique point p′ ∈ [x′, y′]

such that d(x, p) = d(x′, p′). Comparison points in the other two sides are

defined analogously.

Definition 1.2.2. Let X be a geodesic metric space and κ ∈ R. The space

X is CAT(κ) if for every geodesic triangle ∆ = ∆([x, y], [y, z], [z, x]) (where

d(x, y) +d(y, z) +d(z, x) < 2π√
κ

if κ > 0), and comparison triangle ∆′, we have

that if p, q ∈ ∆ and p′, q′ ∈ ∆′ are their comparison points, d(p, q) ≤ d(p′, q′).

It is a well known fact that if a space is CAT(κ), then it is CAT(κ′) for all

κ < κ′. Unlike hyperbolicity, the CAT(κ) conditions are not a quasi-isometry

invariant. We state some properties of the CAT(0) case (and hence of all

negatively curved cases).

Proposition 1.2.3 ([15]). Let X be a CAT (0) space. Then:

• X is uniquely geodesic, and geodesics vary continuously with its end-

points;

• the distance function is convex. That is, given geodesics γ : [0, T ] → X

and γ′ : [0, T ] → X, we have that for all t ∈ [0, T ]

d(γ(t), γ′(t)) ≤ (1 − t)d(γ(0), γ′(0)) + td(γ(T ), γ′(T ));

• X is contractible;

• a function γ : I → X is a geodesic if and only if it is a local geodesic.

Theorem 1.2.4. Let X be a CAT (0) space and G a finite group acting by

isometries on X. Then the action of G has a fixed point. Moreover, the

fixed-point set is a non-empty convex subspace.

The CAT(κ) condition is a global condition. This makes it hard to check

in a general setting. Fortunately, in the non-positive curvature case there is

an analogous statement to the Cartan–Hadamard theorem for Riemannian
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manifolds of non-positive sectional curvature. That is, we can go from a local

condition to a global condition when our space is simply connected. A metric

space X is of curvature ≤ κ if it is locally CAT(κ). That is, if every point in

X has a CAT(κ) neighborhood.

Theorem 1.2.5 (Cartan–Hadamard Theorem, [15]). Let X be a complete

connected metric space. If X is of curvature ≤ κ with κ ≤ 0, then its universal

covering X̃ is CAT(κ). In particular, a simply connected space of non-positive

curvature is CAT(0).

As it happens with hyperbolic metric spaces and groups, we are interested

in groups acting nicely on CAT(κ) spaces. A group G acting geometrically on

a CAT(κ) space is a CAT(κ) group. Groups that are CAT(κ) with κ < 0 are

hyperbolic. However, not all CAT(0) groups are hyperbolic (they may act on

flat,“Euclidean”, spaces). Nonetheless they exhibit many similar properties.

Proposition 1.2.6 ([15]). Let G be a CAT(0) group. Then:

• G is finitely presented;

• there is a bound on the rank of free abelian subgroups of G;

• G satisfies a quadratic isoperimetric inequality;

• the conjugacy problem is solvable for G.

1.2.2 CAT(0) simplicial complexes

Showing that a metric space is CAT(0) is usually a very hard task, since it

is a global condition. A solution to this problem is to restrict oneself to a

more manageable family of spaces. In this direction, Bridson introduced the

following class of simplicial complexes [15].

Definition 1.2.7. Let κ ∈ R. A simplicial complex X is called an Mκ-

simplicial complex if

• for each simplex σ of X, there is a bijection pσ : σ → Mn
κ from σ to a

geodesic simplex in Mn
κ of the corresponding dimension;
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• whenever two simplices σ1, σ2 of X share a face τ , the composition

pσ2 ◦ p−1
σ1

is an isometry from pσ1(τ) to pσ2(τ).

The set of isometry classes of the simplices of X is denoted Shapes(X). When

κ = 0 (κ < 0, κ > 0), we say that X is piecewise Euclidean (resp. hyperbolic,

spherical).

To study these complexes geometrically, one endows them with a pseu-

dometric. Let X be an Mκ-simplicial complex and x, y ∈ X. An m-string

from x to y is a sequence Σ = (x0, . . . , xm) of points in X such that x0 = x,

xm = y, and for each i = 0, . . . ,m− 1, there exists a simplex σi containing xi
and xi+1. We define the length of Σ as

l(Σ) =
m−1∑
i=0

dσi
(xi, xi+1),

where dσi
is the distance in σi induced by the bijection pσi

. The intrinsic

pseudometric on X is defined by

d(x, y) = inf{l(Σ) | Σ a string from x to y}.

A remarkable result by Bridson is the following.

Theorem 1.2.8 ([15]). Let X be an Mκ-simplicial complex. If Shapes(X) is

finite, then X with its intrinsic pseudometric is a complete geodesic metric

space.

A nice feature of Mκ-simplicial complexes is that, when they are simply

connected, there is a local criterion to see if they are CAT(0). This is in the

same spirit as the Cartan–Hadamard theorem for metric spaces of non-positive

curvature.

Let X be an Mκ-simplicial complex with Shapes(X) finite and v ∈ X(0).

We recall that given a simplex σ in X, its link lkX(σ) is the subcomplex of

X consisting of the simplices that are disjoint from σ and such that, together

with σ, span a simplex of X. Let τ be a simplex in lkX(v), and x, y ∈ τ . The

angular distance between x and y, denoted ∠(x, y), is defined as the angle

at v between geodesic segments [v, x] and [v, y] in σ. This makes lkX(v) into

an M1-simplicial complex with Shapes(lkX(v)) finite. The angular metric on

lkX(v) is an intrinsic pseudometric.

The following local criterion is usually known as Gromov’s link condition.
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Theorem 1.2.9 ([50]). Let X be a simply connected Mκ-simplicial complex

with Shapes(X) finite. Then X is CAT(κ) if and only if the link of every

vertex is CAT(1) with the angular metric.

This local condition is still not easy to verify in general, since links of

vertices may be complicated high dimensional simplicial complexes. However,

when X is 2-dimensional, the links of its vertices are simplicial graphs and

the CAT(1) condition becomes simpler to check.

Corollary 1.2.10. Let X be a 2-dimensional simply connected Mκ-simplicial

complex with Shapes(X) finite. Then X is CAT(κ) if and only if every simple

cycle in the link of every vertex has length greater than or equal to 2π with

the angular metric.

1.3 Systolicity

Another family of CAT(0) spaces are CAT(0) cube complexes. They are very

prominent because the CAT(0) condition is easy to verify: a cube complex

is CAT(0) if and only if the links of its vertices are flag simplicial complexes

(i.e. every finite set of pairwise adjacent vertices spans a simplex).

Motivated by this characterization, one could ask if such a simple combina-

torial condition exists for simplicial complexes. A possible answer are systolic

complexes. While systolic complexes are not CAT(0), they behave very sim-

ilarly to CAT(0) complexes and constitute a partial answer to this question.

They were first defined by Chepoi under the name of bridged complexes in [23].

Systolic complexes were later rediscovered and studied by Januszkiewicz and

Świa̧tkowski in [61] and by Haglund in [52]. We now turn to the definitions,

following mainly Januszkiewicz and Świa̧tkowski [61].

A cycle in a simplicial complex X is a subcomplex σ homeomorphic to

S1. We denote by |σ| the number of edges in σ, and call it its length. A

subcomplex K of a simplicial complex X is full if any simplex of X spanned

by a set of vertices in K is a simplex of K. A diagonal in a cycle σ in a

simplicial complex X is an edge of X connecting two nonconsecutive vertices

of σ. Thus, a cycle is full if and only if it has no diagonals and does not span

a simplex.
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Definition 1.3.1. Given a natural number k ≥ 4, a simplicial complex X is

k-large if it is flag and if every full cycle has length greater than or equal to

k. It is locally k-large if the link of every vertex is large.

It is clear from the definitions that a k-large complex is locally k-large.

This is because, since the complex is flag, the links of its vertices are flag

and full cycles in the links are full cycles in the complex. When X is simply

connected and k ≥ 6 the converse holds. That is, a simply connected locally

k-large complex with k ≥ 6 is k-large [23, 61]. This is a local-to-global

theorem analogous to the classical result for CAT(0) spaces, which motivates

the following definition.

Definition 1.3.2. A simplicial complex X is k-systolic if it is connected,

simply connected and locally k-large.

By the local-to-global theorem, it holds that a k-systolic complex is k-large

if k ≥ 6. In particular it is also flag. This means that they are determined by

their 1-skeleton.

A group acting properly, cocompactly and by simplicial automorphisms on

a k-systolic complex is called a k-systolic group. Since 6-systolic complexes

and groups are the most studied, they are conventionally called systolic com-

plexes and groups. For k ≥ 6, these groups satisfy nice properties, which we

summarize in the following proposition.

Proposition 1.3.3. Let G be a k-systolic group with k ≥ 6. Then:

• [61, 82] G is biautomatic. In particular it is finitely presentable, and

has a quadratic Dehn function and solvable conjugacy problem;

• [61] if k ≥ 7, G is hyperbolic;

• [53, 89] finitely presented subgroups of G are k-systolic;

• [58] virtually solvable subgroups of G are virtually cyclic or virtually Z2;

• [71] the centralizer of an infinite order element of G is commensurable

with Z or Z× Fn.

Systolic complexes also satisfy a fixed point theorem for finite groups, as

in the CAT(0) case. This was proved by Chepoi and Osajda in [24].
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Theorem 1.3.4. [24] Let G be a finite group acting by simplicial automor-

phisms on a systolic complex X. Then there exists a simplex σ ∈ X that is

stabilized by G.

1.4 Metric systolicity

Systolic complexes and groups satisfy numerous nice properties, as exhibited

in the previous section. However, their structure is sometimes too rigid and,

in order to get more examples, a more relaxed structure is needed. In this

direction, Huang and Osajda introduced metrically systolic complexes, which

are a metric generalization of systolic complexes [57]. In their previous article

[58] they had shown that large-type Artin groups are systolic (see Chapter

2 for a definition of these groups). Metrically systolic complexes were in-

troduced in [57] in order to obtain similar results (see Proposition 1.4.2) for

two-dimensional Artin groups (which contain large-type Artin groups).

The idea of defining more lenient geometries to obtain more general results

is a common theme in this thesis. Chapters 3 and 4 follow this line of action

in different directions.

LetX be a flag simplicial complex whose 2-skeletonX(2) is anMκ-simplicial

complex with finite shapes. We call these complexes metric simplicial com-

plexes. In this context, the link of a vertex will be the link in X(2) with the

angular metric.

Let k ≥ 4. A simple cycle σ with k edges in a simplicial complex is 2-full if

there is no edge connecting any two vertices in σ having a common neighbor

in σ.

Definition 1.4.1. The link of a vertex in a metric simplicial complex is 2π-

large if every 2-full simple cycle in the link has angular length at least 2π.

A metric simplicial complex X is locally 2π-large if the links of all of its

vertices are 2π-large. A simply connected locally 2π-large metric complex

is a metrically systolic complex. Metrically systolic groups are groups acting

geometrically by isometries on metrically systolic complexes.

Notice that systolic complexes are metrically systolic when their 2-skeleton

is endowed with the metric where every triangle is an Euclidean equilateral
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triangle of side length 1. Though certainly more flexible, metrically systolic

groups and complexes do not have properties as strong as those in the systolic

case. However, they are still very well behaved and show features of non-

positive curvature.

Proposition 1.4.2 ([57]). Let X be a metrically systolic complex and G a

metrically systolic group. Then:

• every cycle in X(1) can be filled with a simplicial map from a simplicial

CAT(0) disk;

• as a direct consequence, G has quadratic Dehn function;

• finitely presented subgroups of G are metrically systolic;

• if G is torsion-free and for every g ∈ G gm is conjugated to gn only

when m = n, then G has solvable conjugacy problem.

In [57], Huang and Osajda pose many questions regarding metrically sys-

tolic complexes and groups. Among them, they ask if metrically systolic

complexes are contractible and if metrically systolic groups are biautomatic.

They also ask whether there is a fixed point theorem for finite groups acting

on metrically systolic complexes, analogous to Theorem 1.3.4. In Chapter 4

we introduce another generalization of systolicity, which we call systolicity-

by-function. We believe that the answer to these questions is affirmative for

systolic-by-function complexes and groups. As we will see in Chapter 4, many

systolic-by-function complexes are metrically systolic.

1.5 Small cancellation theory

Small cancellation theory studies group presentations in terms of the overlap

of their relators (i.e. their cancellations). It is stated in purely algebraic terms,

but it has a rich underlying geometric interpretation that captures many of

the ideas that would later become standard in geometric group theory. Its

origin goes back to the work of Max Dehn [36] in 1912, where he solved the

word problem for fundamental groups of closed orientable surfaces of genus at

least two. During the second half of the previous century the classical small
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cancellation theory was developed. A standard and comprehensive reference

for this theory is in the book by Lyndon and Shupp [68].

We assume we are working with presentations ⟨S | R⟩ where relators are

cyclically reduced and no relator is a cyclic permutation of another relator or

of the inverse of another relator. Let R∗ be the set of all cyclic permutations

of the elements of R and their inverses. A word in F (S) is a piece if it is a

common prefix of two different elements in R∗. Given a word w ∈ F (S) we

note its number of letters by |w|. Now we state the classical small cancellation

conditions.

Definition 1.5.1. Let P = ⟨S | R⟩ be a presentation, p, q ∈ N≥3 and 0 <

λ < 1. Then:

• P satisfies condition C ′(λ) if for every piece u, if u is a subword of some

r ∈ R∗, then |u| < λ|r|;

• P satisfies condition C(p) if no element of R∗ can be written as the

product of less than p pieces;

• P satisfies condition T (q) if whenever 3 ≤ l ≤ q and r1, . . . , rl in R∗

are such that r1 ̸= r−1
2 , . . . , rl ̸= r−1

1 then at least one of the products

r1r2, . . . , rl−1rl, rlr1 is freely reduced.

Condition C ′(λ) is called the metric small cancellation condition, and the

other two are the non-metric conditions. Pieces represent the possible can-

cellation between relators and conditions C ′(λ) and C(p) are telling us that

these cancellations are small relative to the length of the relators. Notice that

C ′( 1
n
) implies C(n + 1). Condition T (q) is not as intuitive, but it has a very

clear interpretation in terms of diagrams.

We will give a geometric treatment of small cancellation theory in terms of

diagrams first introduced by van Kampen in 1933 [62] and later rediscovered

by Lyndon in 1966 [67]. A cellular map f : L → K between CW-complexes

is combinatorial if its restriction to each open cell of L is a homeomorphism

onto a cell of K, and a combinatorial 2-complex is a CW-complex for which

the attaching map ψ : S1 → K(1) of each 2-cell is combinatorial after a suit-

able subdivision of S1 (see [41, 88]). Let K be a combinatorial 2-complex. A
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diagram ∆ in K is a combinatorial map φ : M → K where M is a combinato-

rial structure on the sphere to which, perhaps, we remove some open 2-cells.

This includes spherical diagrams (when M is the whole sphere), (singular)

disk diagrams (when M is a sphere with one 2-cell removed), and annular

diagrams (when M is a sphere with two 2-cells removed). As usual, 0-cells,

1-cells and 2-cells are called respectively vertices, edges and faces.

Let P = ⟨S | R⟩ be a presentation of a group G. Its presentation complex

KP is a combinatorial 2-complex consisting of a bouquet of |S| oriented circles

(one for each generator in S) and a 2-cell for each relation in R attached

along the corresponding word. Its fundamental group is G, and the 1-skeleton

of its universal cover is the Cayley graph Γ(G,S). A diagram over P is a

diagram φ : M → KP where KP is the standard 2-complex associated to

the presentation P . Since M is orientable we can fix an orientation in the

usual way, so that when traversing the boundaries of the 2-cells the edges in

the intersection of two faces f, f ′ are traversed twice, once in each possible

orientation. The map φ : M → KP induces a labeling on the edges of M by

elements of S and their inverses. The label on the boundary of any oriented

face of the diagram (starting at any vertex) is called a boundary label. Note

that boundary labels are elements in R∗.

A diagram ∆ is reducible if it contains two faces f, f ′ such that the inter-

section of their boundaries ∂f ∩ ∂f ′ contains an edge such that the boundary

labels of f and f ′ read with opposite orientations and starting at a vertex of

this edge coincide, otherwise ∆ is called reduced (see [68, Chapter V, Section

2] for more details). The degree d(v) of a vertex v in a diagram ∆ is the

number of edges incident to v (the edges with both boundary vertices at v

are counted twice). A vertex v is called interior if v /∈ ∂M .

Given a reduced diagram ∆ over a presentation P , we can remove all inte-

rior vertices of degree 2 and label the new edges with the corresponding words.

Observe that in this new diagram, labels of the interior edges correspond to

pieces in R∗. The length ℓ(e) of an interior edge e in this new diagram is de-

fined as the length of the corresponding word (equivalently, it is the number

of edges of the original diagram that were glued together to obtain e).

With these diagrams, we can give new meaning to the small cancellation

conditions. For a proof of the following affirmations, see [68, Chapter V,

Section 2]. If P = ⟨S | R⟩ is a presentation and λ, p, q are as before, then
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• P satisfies condition C ′(λ) if and only if for every reduced diagram over

P the length of every interior edge is less than λ times the length of any

of the relators labeling a face that contains that edge;

• P satisfies condition C(p) if and only if faces with no edges in the bound-

ary in reduced diagrams over P have at least p sides;

• P satisfies condition T (q) if and only if interior vertices in reduced dia-

grams over P have degree at least q.

We started by saying that the origin of small cancellation theory goes back

to a solution by Dehn of the word problem for fundamental groups of closed

orientable surfaces of genus at least two. The following theorem, known as

the van Kampen lemma gives a close relationship between disk diagrams and

trivial words.

Theorem 1.5.2 (van Kampen’s lemma [68]). Let P = ⟨S | R⟩ be a presen-

tation of a group G. Then a word w ∈ F (S) is trivial in G if and only if

there exists a reduced disk diagram over P having the word w as the label of

its boundary path.

We call such a disk diagram a diagram for w. The term “area” for the

minimal number of relators needed to write a trivial word introduced previ-

ously now becomes much clearer. It is exactly the minimal number of faces of

a diagram for w. Likewise the use of “isoperimetric inequality” to talk about

Dehn functions becomes more transparent. The Dehn function bounds the

number of faces of minimal disk diagrams in terms of their perimeter.

The question now is how the small cancellation conditions come into play.

Due to our previous observations, small cancellation conditions determine the

geometry of these disk diagrams. Therefore, when the diagrams curvature

is non-positive, we will obtain a controlled isoperimetric function (and hence

Dehn function). The classic conditions are C(6), C(4)−T (4) and C(3)−T (6)

(notice that every presentation is T (3)). This examples correspond intuitively

to the regular tessellations of the plane by hexagons, squares and triangles

respectively. For example, conditions C(4) − T (4) mean that faces without

edges in the boundary in diagrams have at least 4 sides, and that interior ver-

tices have degree at least 4. In Chapter 3 we will interpret (generalizations of)
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these conditions by introducing combinatorial curvature and a combinatorial

version of the Gauss–Bonnet theorem.

Now we state some of the standard results in small cancellation theory.

Theorem 1.5.3 ([68]). Let P = ⟨S | R⟩ be a presentation of a group G. If

P is C(6), C(4) − T (4) or C(3) − T (6) then:

• if P is finite, then P has a quadratic Dehn function and the conjugacy

problem is solvable;

• KP is aspherical.

Theorem 1.5.4 ([68]). If a finite presentation P of a group G is C ′(1
6
),

C ′(1
4
) − T (4) or C ′(1

3
) − T (6) then G is hyperbolic.

Theorem 1.5.5 ([87]). Let P be a finite presentation of a group G. If P is

C(6) then G is systolic.

Theorem 1.5.6 (Greendlinger’s lemma [49, 68]). Let P = ⟨S | R⟩ be a

presentation of a group G satisfying condition C ′(λ) with 1 < λ ≤ 1
6
. Let

w ∈ F (S) be a nontrivial freely reduced word that represents the trivial element

in G. Then there exist a subword v of w and a word r ∈ R∗ such that v is

also a subword of r and |v| > (1 − 3λ)|r|.





Chapter 2

Artin groups

Artin groups are one of the most studied families of groups in geometric

group theory. In this section we will give some basic definitions, results, and

present open questions regarding Artin groups. They will be our main object

of study during the second half of this thesis. Before introducing them, we

need to present Coxeter groups. Though we are not going to study Coxeter

groups in this thesis, they are closely intertwined with Artin groups.

2.1 Coxeter groups

Coxeter groups were introduced by Coxeter in [27], and developed in great

depth by Tits in [84], and in Bourbaki’s book [12]. They are formal groups of

reflections that generalize finite Euclidean reflection groups. Coxeter groups

are prevalent in many areas of mathematics, such as Lie groups and algebras

theory, representation theory, combinatorics and geometric group theory.

Coxeter groups can be defined in terms of a labeled graph. Let Γ be a

finite simplicial graph. We denote by V (Γ) its set of vertices and by E(Γ)

its set of edges. We endow E(Γ) with a labeling m : E(Γ) → N≥2 and we

take an abstract set S = {sx | x ∈ V (Γ)} in one-to-one correspondence with

V (Γ). We note mxy = myx = m({x, y}) and say that mxy = ∞ if x and y

are not connected in Γ. Then the Coxeter group WΓ of Γ is defined by the

presentation

⟨S | (sxsy)
mxy for e = {x, y} ∈ E(Γ), s2x for x ∈ V (Γ)⟩.
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When the graph Γ is clear form context we may denote the Coxeter group by

WS.

Examples of Coxeter groups are the dihedral groups and finite symmetric

groups. Coxeter groups may be finite or infinite, and finite Coxeter groups

are classified in terms of their defining graphs (see [12]).

Remark 2.1.1. The labeling of the graph we have described is most com-

monly used when studying Artin groups. The convention for the labeling when

working with Coxeter groups is usually different. Most times vertices x and y

are not connected if mxy = 2, and if mxy = ∞ they are connected by an edge

labeled by infinity.

A Coxeter group WΓ acts on Cn for some n ∈ N as a reflection group. This

action preserves an open cone known as the Tits-cone, where WΓ acts properly.

This cone is delimited by the reflecting hyperplanes. The complement of these

hyperplanes is the set of regular points of the cone (those with trivial isotropy).

Let HWΓ
be this hyperplane complement. Then HWΓ

/WΓ has fundamental

group given by the following presentation

PΓ = ⟨Σ | σxσyσx · · ·︸ ︷︷ ︸
mxy letters

= σyσxσy · · ·︸ ︷︷ ︸
mxy letters

for e = {x, y} ∈ E(Γ)⟩,

where Σ = {σx | x ∈ V (Γ)} is an abstract set in one-to-one correspondence

with V (Γ) (see van der Lek [65]). The group presented by PΓ is the Artin

group AΓ of Γ. As with Coxeter groups, we may note it by AΣ if the graph is

clear form context. One of the main open problems regarding Artin groups is

whether HWΓ
/WΓ is a K(AΓ, 1)-space (i.e. a space with fundamental group

AΓ and all other homotopy groups trivial). This is usually known as the

K(π, 1) conjecture. Since this connection was made, Artin groups have been

intensively studied.

Another source of motivation to study Artin groups is that they are a

natural and vast generalization of braid groups. In fact, they are named Artin

groups after the work of Emil Artin on braid groups and their presentations

[4]. Apart from braid groups, basic examples of Artin groups are free groups

(when there are no edges in the graph) and free abelian groups (when the

graph is complete and every label is a 2).
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In Chapter 5 we are going to go more into detail on Coxeter groups and

some of their properties. We will use them and their close connection to Artin

groups as an auxiliary tool to prove facts about Artin groups. For a modern

treatment of Coxeter groups from a geometric and combinatorial group theory

point of view, we recommend Davis’ book [34].

2.2 Families of Artin groups and open prob-

lems

Unlike Coxeter groups, which are very well understood, Artin groups have

a more mysterious nature. There are hardly any results known for all Artin

groups. However, some particular families have proved to be more lenient and

easy to study. Here we present the most relevant ones. An Artin group AΓ is

said to be

• right-angled if all the edges in Γ are labeled by 2;

• spherical if the corresponding Coxeter group WΓ is finite;

• FC-type if the Artin groups corresponding to all clique subgraphs of Γ

are spherical;

• large-type if every label in Γ is greater than or equal to 3;

• two-dimensional if it has geometric dimension at most 2. By results of

Charney and Davis [19, 20] an Artin group is two-dimensional if and

only if for every triangle in the graph Γ with edges labeled by p, q and

r we have 1
p

+ 1
q

+ 1
r
≤ 1.

Example 2.2.1. The deceptively simple graph in Figure 2.1 defines an Artin

group which is not in any of the families above. Almost nothing is known

about such Artin groups.

There are many open problems related to Artin groups, and each of these

families has numerous properties. Here we will limit ourselves to a small

fraction of all the body of work on Artin groups. We state some problems

and questions for Artin groups, and say for which of the previous families
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Figure 2.1: A graph for a not well understood Artin group.

the answer is known. We also give references to some of the solutions of the

mentioned problems. Our lists are far from exhaustive since the literature is

extensive. None of the following is known for all Artin groups:

• The K(π, 1) conjecture: it is known to be true for all the families men-

tioned above. See [16, 17, 19, 20, 37, 54, 72] for proofs of various in-

stances of this conjecture. Charney and Davis have shown that Artin

groups for which the K(π, 1) conjecture holds admit a finite classifying

space [19]. In particular this would imply that they are torsion-free. As

simple as it may sound, torsion-freeness has still not been proved for all

Artin groups.

• Are Artin groups CAT(0)? They are conjectured to be CAT(0) and are

known to be CAT(0) in few cases. Most notably, right-angled Artin

groups are CAT(0) [19]. There are some other known examples, but no

other family of the ones presented above is known to be CAT(0).

• Word problem and conjugacy problem: the word problem is known to be

solvable for all the families described and more (see [1, 4, 7, 16, 25, 37]),

and the conjugacy problem for all families mentioned (see [3, 16, 18, 28,

37, 57]).

• Are Artin groups biautomatic? Biautomaticity has been established for

some families of Artin groups, including FC-type and large-type Artin

groups (see [13, 18, 44, 55, 58, 75]).
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2.3 Parabolic subgroups

A key tool in the study of Artin groups are their parabolic subgroups. Let Γ

be a labeled graph defining an Artin group and let X be a subset of V (Γ).

We denote by ΓX the full subgraph of Γ spanned by X with the induced

labeling. We set ΣX = {σx | x ∈ X} and we denote by AX the subgroup

of A generated by ΣX . A remarkable result by van der Lek [65] tells us that

AX is naturally isomorphic to AΓX
, hence we will not differentiate AX from

AΓX
. The subgroup AX is called a standard parabolic subgroup of AΓ and a

subgroup conjugate to AX is called a parabolic subgroup of AΓ.

The fact that parabolic subgroups of Artin groups are themselves Artin

groups makes them play a central role. Most of the proofs of the problems

and questions mentioned in the previous sections rely on the parabolics of

Artin groups. They can be thought of as smaller “building blocks” and used

to do induction-like proofs. Their structure is also used in many geometric

constructions such as the Deligne complex, the Artin complex, the Salvetti

complex, the clique-cube complex and more (see [19, 20, 21, 31, 78]).

Being so important, understanding their algebraic structure becomes a

natural thing to do. One of the problems that has attracted more interest

in recent years is whether they are stable under intersection. More precisely,

is the intersection of two parabolic subgroups a parabolic subgroup? In [69]

Möller, Paris and Varghese show that if this is the case, then any arbitrary in-

tersection of parabolic subgroups of an Artin group AΓ is a parabolic subgroup

of AΓ. As a direct corollary one obtains that for any subset B ⊆ AΓ there

exists a unique minimal (with respect to the inclusion) parabolic subgroup

containing B. This is usually called the parabolic closure of B.

The answer to this question was already known to be affirmative for the

intersection of standard parabolic subgroups by van der Lek [65] and in the

case of braid groups. A braid group on n strands can be thought of as the

mapping class group of a punctured disk Dn with n punctures. Its parabolic

subgroups are in bijection with isotopy classes of nondegenerate, simple closed

multicurves in Dn. The complement of each of these multicurves is a disjoint

union of punctured disks in Dn. In Farb and Margalit [39] an intersection

between these families of punctured disks is defined. This intersection cor-

responds, via the bijection, to the intersection between parabolic subgroups,
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and can be used to give an affirmative answer to the question. The analogous

question was also known to be true for all Coxeter groups (see Solomon [81]).

All of the previous results motivated the study of this question for general

Artin groups. It has been proved for graph products of groups (they generalize

right-angled Artin groups, see Antolin and Minasyan [2]), and in particular for

right-angled Artin groups (see Duncan, Kazachkov and Remeslennikov [38]).

More recently, Cumplido, Gebhardt, González-Meneses and Wiest [30] gener-

alized the case of braid groups to Artin groups of spherical type using Gar-

side theory. Combining this previous result with the structure of the Deligne

complex, Morris-Wright [70] showed that the intersection of two parabolic

subgroups of spherical type inside an FC-type Artin group is a parabolic sub-

group of spherical type. This last result has been extended by Möller, Paris

and Varghese [69], who showed that if the intersection of parabolic subgroups

corresponding to subgraphs of a clique subgraph of Γ is a parabolic subgroup,

then the intersection of a parabolic subgroup with a parabolic subgroup cor-

responding to a clique subgraph is a parabolic subgroup.

In [31] Cumplido, Martin and Vaskou used a geometric approach to solve

this problem for Artin groups of large-type. They introduced a simplicial

complex associated to an Artin group, called the Artin complex, on which

the Artin group acts cocompactly and without inversions. It turns out this

complex is systolic if the Artin group is large-type. Using geometric properties

of systolic complexes they gave a positive answer to the question. In Chapter

4 we will introduce systolic-by-function complexes and use their geometry to

answer the question in the (2,2)-free two-dimensional case ((2,2)-free Artin

groups are those whose defining graph does not have two consecutive edges

labeled by 2).

A question related to the above is whether a parabolic subgroup P1 of an

Artin group AΓ contained in another parabolic subgroup P2 is a parabolic

subgroup of P2. More precisely, if P1 and P2 are parabolic subgroups of an

Artin group AΓ such that P1 ⊆ P2, we say that P1 is a parabolic subgroup

of P2 if they are conjugate to standard parabolic subgroups in an inclusion

AX1 ⊆ AX2 . An Artin group satisfying this property is called standardisable in

[29]. This result is a preliminary to the above question, and it was a question

posed by Godelle [47, Conjecture 2]. Additionally, it is a central step towards

solving the conjugacy stability problem for Artin groups (see Cumplido [29]).



2.3. PARABOLIC SUBGROUPS 41

The question seems obvious but is not. It is also related to the study of

normalizers and centralizers of parabolic subgroups. In Chapter 5 we prove

this conjecture. We state the theorem more accurately.

Theorem 2.3.1. Let Γ be a finite simplicial graph, let m : E(Γ) → N≥2 be

a labeling, and let A = AΓ be the Artin group of Γ. Let X, Y ⊂ V (Γ) and

α ∈ A such that αAY α
−1 ⊂ AX . Then there exist Y ′ ⊂ X and γ ∈ AX such

that αAY α
−1 = γAY ′γ−1.

Corollary 2.3.2. Let P1 ⊆ · · · ⊆ Pn be a chain of parabolic subgroups of an

Artin group AΓ. Then there exist X1 ⊆ · · · ⊆ Xn ⊆ V (Γ) and g ∈ AΓ such

that Pi = gAXi
g−1 for all 1 ≤ i ≤ n.





Chapter 3

Strictly systolic angled

complexes and generalized

small cancellation

The first part of this chapter concerns the contents of [9] (joint work with G.

Minian). We introduce the notion of strictly systolic angled complexes. They

generalize 7-systolic complexes [61] and their metric counterparts, which ap-

pear as natural analogues to Huang and Osajda’s metrically systolic simplicial

complexes [57] in the context of negative curvature (see Chapter 1 for defini-

tions). We prove that strictly systolic angled complexes and the groups that

act on them geometrically, together with their finitely presented subgroups,

are hyperbolic. Finally, we find a small cancellation condition for one-relator

groups without torsion that ensures that they act geometrically on a strictly

systolic angled complex (and hence are hyperbolic).

In the second part of this chapter we cover the contents of [10] (joint work

with G. Minian and I. Sadofschi Costa). We present a metric condition τ ′

which describes the geometry of classical small cancellation groups and applies

also to other known classes of groups such as two-dimensional Artin groups.

We prove that presentations satisfying condition τ ′ are diagrammatically re-

ducible in the sense of Sieradski and Gersten. In particular we deduce that

the standard presentation of an Artin group is aspherical if and only if it is

diagrammatically reducible. We show that, under some extra hypotheses, τ ′-

43
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groups have quadratic Dehn functions and solvable conjugacy problem. In the

spirit of Greendlinger’s lemma, we prove that if a presentation P = ⟨X | R⟩
of group G satisfies conditions τ ′ − C ′(1

2
), the length of any nontrivial word

in the free group generated by X representing the trivial element in G is at

least that of the shortest relator. We also introduce a strict metric condition

τ ′
<, which implies hyperbolicity and expands upon the work of the begin-

ning of the chapter. These two conditions arose as natural generalizations of

condition (T ′), with the intent of studying it in combinatorial terms.

3.1 Strictly systolic angled complexes

Essentially, a strictly systolic angled complex is a combinatorial complex

whose cells are simplices, such that the 2-skeleton is a nonnegative angled

2-complex in the sense of Wise [88] and with a link condition similar to Huang

and Osajda’s 2π-large condition for metrically systolic simplicial complexes

[57]. This new notion is flexible enough to include objects of combinatorial na-

ture, such as Januszkiewicz and Świa̧tkowski’s 7-systolic simplicial complexes

[61], and also of geometric nature, such as a variation, for negative curvature,

of Huang and Osajda’s metrically systolic simplicial complexes.

A quasi-simplicial complex is a combinatorial complex X whose closed

cells are simplices and such that different 2-simplices do not have two or more

edges in common. Note that quasi-simplicial complexes do not have loops

since the closed cells are simplices. This notion is less rigid than that of a

simplicial complex, since we admit multiple edges between vertices. All the

complexes that we deal with in this chapter are assumed to be locally finite.

We say that a quasi-simplicial complex X is 3-flag if every time X has three

faces of a tetrahedron, then the whole tetrahedron is in X (and in particular,

the fourth face is in X). Note that a flag simplicial complex is, in particular,

a 3-flag quasi-simplicial complex.

Similarly as in [41, 88], we define a weight function ω on the corners of the

2-simplices of X. Given a vertex v ∈ X we denote by lkX(v) the geometric

link of v in the 2-skeleton X(2). Recall that lkX(v) is the graph corresponding

to an epsilon sphere about the vertex v in X(2). The corners of the 2-simplices

correspond to the edges of the link, and the function ω assigns a nonnegative
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value to each edge in lkX(v) for every vertex v ∈ X (i.e. the 2-skeletonX(2) is a

nonnegative angled 2-complex in the sense of [88]). We require that the image

of ω is finite and that ω satisfies a weak triangle inequality: for any vertex v,

if αij is an edge in lkX(v) from vi to vj then ω(α13) ≤ ω(α12) + ω(α23). The

complex X together with a fixed weight function is called an angled complex.

Following Huang and Osajda [57], we say that a simple cycle σ of length

greater than 3 in the link of a vertex v ∈ X is 2-full if there is no edge

in lkX(v) that connects two vertices having a common neighbor in σ. The

angular length of a path in the link of a vertex in an angled complex is the sum

of the weights of its edges, counted with multiplicity. An angled complex X

is locally 2π-large if every 2-full cycle in every vertex link has angular length

greater than or equal to 2π.

Definition 3.1.1. A simply connected, locally 2π-large, 3-flag, angled com-

plex in which the sum of the internal weights of each triangle is (strictly) less

than π is called a strictly systolic angled complex.

We will show that strictly systolic angled complexes satisfy a linear isoperi-

metric inequality. As a consequence, groups acting geometrically on strictly

systolic angled complexes are hyperbolic. The proof will follow ideas of Ger-

sten [41], Huck and Rosebrock [59], Wise [88], Januszkiewicz and Świa̧tkowski

[61], and Huang and Osajda [57].

In analogy with diagrams in small cancellation theory, we work with di-

agrams in this context. A singular disk is a simply connected and planar

combinatorial 2-complex whose cells are simplices. We call a map simplicial

if it takes simplices onto simplices (not necessarily of the same dimension).

Explicitly, a map is simplicial if it maps vertices to vertices, whenever ver-

tices span a simplex then their images do so, and the restriction of the map

to each simplex is linear. Let X be a strictly systolic angled complex, and

let γ : S → X(1) be a combinatorial map from a triangulation of S1 to the

1-skeleton of X. Its image is a closed edge-path in X which we will also de-

note by γ. A singular diagram for γ is a simplicial map f : D → X from a

singular disk such that f |∂D = γ.

Note that since X is simply connected, every closed edge-path in X admits

a singular diagram. This is a direct consequence of the relative simplicial

approximation theorem (see [90]).
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We define the area of a closed edge-path γ : S → X as

Area(γ) = min{|D| : f : D → X is a singular diagram for γ},

where |D| denotes the number of faces (2-simplices) in the corresponding

singular disk D. The length l(γ) of a closed edge-path γ : S → X is the

number of edges in S. Our aim is to show that there exists a constant K > 0

such that Area(γ) ≤ Kl(γ) for every closed edge-path γ. To prove this we will

need well behaved diagrams. A singular diagram is said to be nondegenerate

if it is injective on every simplex.

Lemma 3.1.2 ([61], Lemma 1.6). Let γ be a homotopically trivial closed

edge-path in a quasi-simplicial complex X. Then there exists a nondegenerate

singular diagram for γ.

Januszkiewicz and Świa̧tkowski proved this lemma in the case where X

is a simplicial complex and γ is a simple path, but the proof holds for γ an

arbitrary closed edge-path as defined above. We will use it in its original

fashion in Chapter 4. In the first part of their proof it is shown that a

singular diagram, which they call almost simplicial, can be modified to be

nondegenerate. The proof relies on the fact that the map from the disk to

the complex is simplicial. The same proof works when X is a quasi-simplicial

complex, since the defining maps of our singular diagrams are also simplicial

(in the sense that they take simplices onto simplices). In addition, they showed

that, in the simplicial case, nondegenerate diagrams can be modified further to

become simplicial. In our case, since X is quasi-simplicial, we cannot modify

nondegenerate diagrams to simplicial ones.

By Lemma 3.1.2 we may assume that the diagrams f : D → X are

nondegenerate. We now adopt terminology from Huck and Rosebrock [59].

Given a singular diagram f : D → X, we say it is vertex reduced if it maps

the link of every vertex of D to a path in the link of a vertex in X in which

no edge is passed twice in opposite directions. Suppose we have a non vertex

reduced diagram f : D → X, with X a strictly systolic angled complex. If

we are in the situation where a troublesome link has two edges, the diagram

locally looks like in Figure 3.1. We can identify the edges e1 and e2 and

collapse the corresponding faces to obtain a new diagram. We call this move

an edge reduction (see Figure 3.1).
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e1e2

Figure 3.1: Edge reduction.

If the link has more than two edges, we can apply a sequence of diamond

moves as in [26, 59], followed by an edge reduction. This is shown in Figure

3.2. Note that, if the diagram is not vertex reduced, there is a vertex v and two

triangles in D which are incident to v that are mapped to the same triangle

in X. In particular there are two pairs of edges such that each pair is mapped

to a single edge. One of these pairs is shown if Figure 3.2. For a detailed

exposition on diamond moves see [26].

v

e1

e2

v1

v2

v1

v2

Figure 3.2: Diamond move. Edges e1 and e2 are cut along and then glued in

a different fashion.

Note that these moves reduce the number of faces of the diagram. There-

fore, starting with a nondegenerate singular diagram, we can obtain a nonde-

generate and vertex reduced singular diagram with the same boundary. Let

f : D → X be a nondegenerate vertex reduced diagram and v an interior ver-

tex of D. The link of v is a graph and can be decomposed as lkD(v) = ∪n
i=1Ci,

where each Ci is a union of edges, the pairwise intersections of the Ci are

empty or contain only vertices, and f(Ci) is a simple cycle in lkX(f(v)) for

every 1 ≤ i ≤ n (see [59, 2.2]). In this case, we say that f(lkD(v)) admits a
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decomposition in simple cycles. The previous discussion can be summarized

in the following lemma.

Lemma 3.1.3. Let f : D → X be a nondegenerate singular diagram for a

closed edge path γ in a quasi-simplicial complex X. Then it can be modified to

obtain a vertex reduced nondegenerate singular diagram for γ. Furthermore,

the image of the link of every interior vertex admits a decomposition in simple

cycles.

Lemma 3.1.4. Let X be a strictly systolic angled complex, v a vertex of X

and σ a simple cycle in lkX(v). Then
∑

c∈σ ω(c) ≥ 2π or σ is the boundary of

a triangulated disk without interior vertices, whose edges map to the simplicial

link of v in X.

Proof. We proceed by induction on the length of σ. There are no cycles with

two edges, because X is quasi-simplicial. If it has three edges, then σ is a

triangle and it is filled because X is 3-flag, so the claim holds. Suppose σ has

more than three edges. If it is 2-full, then it has angular length greater than

or equal to 2π. If it is not 2-full, then there exists an edge e in lkX(v) that

connects two vertices of σ with a common neighbor. This edge subdivides

σ in two paths: one of length 2, and another one of length l(σ) − 2, which

we call σ1 and σ2 respectively (see Figure 3.3). By the inductive hypothesis,

σ2 ∪ e either subdivides into triangles or has angular length greater than or

equal to 2π. If it subdivides, it induces a subdivision for σ. If it does not, by

the triangle inequality we have

2π ≤
∑

c∈σ2∪e

ω(c) ≤
∑

c∈σ2∪σ1

ω(c) =
∑
c∈σ

ω(c).

eσ1 σ2

Figure 3.3: Subdividing σ.
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Lemma 3.1.5. Let X be a strictly systolic angled complex and f : D → X

a nondegenerate and vertex reduced singular diagram for a closed edge-path

γ. Then there exists a nondegenerate and vertex reduced singular diagram

g : D̃ → X for γ such that the image by g of the links of the interior vertices

of D̃ admits a decomposition in simple cycles of angular length greater than

or equal to 2π.

Proof. Let v be an interior vertex of D. By Lemma 3.1.3, the image of its link

admits a decomposition in simple cycles. Suppose that one of those simple

cycles in the decomposition of f(lkD(v)), call it σ, has angular length less

than 2π. If σ is not the only simple cycle in the decomposition of f(lkD(v)),

then there exist two edges e1 and e2 incident to v satisfying f(e1) = f(e2).

Via a diamond move, we can obtain a new nondegenerate singular diagram

f ′ : D′ → X for γ with the same number of faces and new vertices v1 and

v2 (see Figure 3.2). Therefore we can assume that σ is the only simple cycle

in the decomposition of f(lkD′(v1)). Since its angular length is less than 2π,

by Lemma 3.1.4 it subdivides in triangles in lkX(f(v1)). This corresponds

with the situation shown in Figure 3.4. Since X is 3-flag, we can modify f by

removing the troublesome vertex v1, as shown in Figure 3.5.

f(v1)

Figure 3.4: The cycle σ subdivides in lkX(f(v1)).

After applying this change, we obtain a new nondegenerate singular dia-

gram for γ with fewer faces. Then we can make it vertex reduced by reducing

the number of faces once again, and continue with this process. Since the

number of faces decreases at each step, the process stops and we obtain a

nondegenerate and vertex reduced singular diagram g : D̃ → X for γ, which
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Figure 3.5: Removal of v1.

satisfies the desired conditions.

The preceding arguments can be made in terms of minimal diagrams. A

diagram for a closed edge-path γ is minimal if it has the least amount of

triangles. From the previous lemmas it is not hard to deduce the following.

Lemma 3.1.6. Let X be a strictly systolic angled complex and f : D → X a

minimal singular diagram for a closed edge-path γ. Then f is nondegenerate,

vertex reduced and the image by f of the links of the interior vertices of D̃

admits a decomposition in simple cycles of angular length greater than or equal

to 2π.

In Chapter 4 we will work with minimal diagrams instead of modifying

diagrams. We believe both approaches are fruitful and so decided to include

both of them.

If X is a strictly systolic angled complex and f : D → X is a singular

diagram with f nondegenerate, we can pull back the weights of the corners

of X to D. We will apply the combinatorial Gauss–Bonnet theorem to the

angled 2-complex D. As the name implies, this theorem will link the com-

binatorial curvature of a complex with its Euler characteristic in the same

fashion as the classical theorem for Riemannian manifolds. We recall first

some combinatorial notions of curvature from [88].

Definition 3.1.7. Let L be an angled 2-complex whose cells are simplices. If

v is a vertex of L, the curvature of v is defined as

κ(v) = 2π − πχ(lkL(v)) −
∑
c∈v

ω(c).
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where the sum is taken over all the corners at v, and χ denotes the Euler

characteristic. The curvature of a face (2-simplex) F is

κ(F ) = (
∑
c∈F

ω(c)) − π,

where the sum is taken over all corners in F .

Theorem 3.1.8 (Combinatorial Gauss–Bonnet Theorem [5, 88]). Let L be a

finite angled 2-complex. Then∑
F∈faces(L)

κ(F ) +
∑

v∈L(0)

κ(v) = 2πχ(L).

Now we are ready to prove the linear isoperimetric inequality.

Theorem 3.1.9. Let X be a strictly systolic angled complex. Then there

exists a constant K > 0 such that

Area(γ) ≤ Kl(γ),

for every closed edge-path γ in X.

Proof. We will find a positive constant K such that for any closed edge-path

γ, there exists a singular diagram g : D → X for γ with |D| ≤ Kl(γ). Given

γ, take a nondegenerate and vertex reduced singular diagram g : D → X

satisfying the conditions of Lemma 3.1.5. Since g is nondegenerate, we can

pull back ω to D via g. Since the sum of the internal weights of each face of

X is less than π, then κ(F ) < 0 for every face F of D. Furthermore, since the

image of ω is finite, κ(F ) ≤ M < 0, where M is the maximum of the sums

of triples of weights that sum up to less than π, minus π. Note that M is

independent from g,D and γ, and strictly negative. The image of the link of

each interior vertex admits a decomposition in simple cycles of angular length

greater than or equal to 2π. Then κ(v) ≤ 0 if v is an interior vertex of D.

Now we apply the combinatorial Gauss–Bonnet theorem to D and we get

M |D| ≥
∑

F∈faces(D)

κ(F ) = 2πχ(D) −
∑

v∈D(0)

κ(v) = 2π −
∑

v∈D(0)

κ(v),
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and therefore

|D| ≤ 1

−M
(
∑

v∈D(0)

κ(v) − 2π) ≤ 1

−M
(
∑

v∈∂D(0)

κ(v) − 2π),

where ∂D denotes the boundary of D. Note that the number of vertices in ∂D

is less than or equal to l(γ). Since the links of the vertices in ∂D have Euler

characteristic greater than or equal to 1, and since the weight is nonnegative,

their curvature is at most π. Setting K = π
−M

, we obtain |D| ≤ Kl(γ).

In the light of Theorem 3.1.9, and by [15, III.2.9], we obtain the following

corollaries.

Corollary 3.1.10. The 1-skeleton X(1) of a strictly systolic angled complex X

with its standard geodesic metric is hyperbolic. More generally, if we endow X

with a piecewise Euclidean metric with Shapes(X) finite, then X is hyperbolic.

A group Γ which acts properly and cocompactly by simplicial automor-

phisms on a strictly systolic angled complex, and such that the weight func-

tion is Γ-invariant is called a strictly systolic group. Note that, similarly as in

[57, Theorem 3.1], since the class of locally 2π-large, 3-flag angled complexes

is closed under taking full subcomplexes and covers, by [53, Theorem 1.1]

finitely presented subgroups of strictly systolic groups are strictly systolic.

From Corollary 3.1.10 we obtain the following result.

Corollary 3.1.11. Strictly systolic groups are hyperbolic. Moreover, all finitely

presented subgroup of a strictly systolic group are strictly systolic, and hence,

hyperbolic.

Note that in Corollary 3.1.10, the angles (or weights) of the strictly systolic

angled complex X are independent of the metric. However, if we are given a

simplicial or quasi-simplicial complex X with a piecewise Euclidean or hyper-

bolic metric on the 2-skeleton X(2), we can define a weight function for X. If

X satisfies a “good enough” link condition, this weight function makes X a

strictly systolic angled complex. The following definition is analogous to the

notion of metrically systolic complex (see Section 1.4) introduced by Huang

and Osajda [57]. It is, in some sense, the metric counterpart to the 7-systolic

simplicial complexes of [61].
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Definition 3.1.12. A metrically strictly systolic complex is a simply con-

nected and 3-flag quasi-simplicial complexX such that its 2-skeleton is equipped

either with a piecewise hyperbolic or a piecewise Euclidean metric (with fi-

nite shapes) and such that the angular distance induced in the links of the

vertices satisfies the weak triangle inequality and the vertex links (with the

angular distance) are 2π-large in the hyperbolic case or strictly 2π-large in

the Euclidean case, i.e. every 2-full cycle has angular length greater than or

equal to 2π (resp. greater than 2π).

Note that the difference between this definition and the one of metrically

systolic complex given in Definition 1.4.1 is that, in our case, either the metric

is piecewise hyperbolic instead of piecewise Euclidean or, in the Euclidean

case, the length of the 2-full cycles is strictly greater than 2π.

Proposition 3.1.13. Metrically strictly systolic complexes are strictly systolic

angled complexes.

Proof. In the piecewise hyperbolic case, the metric induces a weight function

ω in X. The sum of the internal weights of each triangle is less than π,

since the metric is piecewise hyperbolic. Then X together with ω is a strictly

systolic angled complex.

In the piecewise Euclidean case, since X(2) has finite shapes, there exists

L > 2π such that every 2-full cycle has angular length greater than or equal

to L. Then we can define an appropriate weight in the corners by subtracting

a fixed small enough δ > 0 from every angle.

Corollaries 3.1.10 and 3.1.11 generalize Januszkiewicz and Świa̧tkowski’s

results on 7-systolic simplicial complexes and groups [61, Theorem 2.1 and

Corollary 2.2] (see Section 1.3 for definitions). It follows from their definition

that 2-full cycles in a 7-systolic complex have at least seven edges. Therefore,

any 7-systolic complex X together with the weight function that assigns 2
7
π

to every corner, is a strictly systolic angled complex.

3.2 Application to one-relator groups

We use strictly systolic angled complexes to investigate the geometry of one-

relator groups. It is well known that all one-relator groups with torsion are
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hyperbolic. This is an immediate corollary of Newman’s Spelling Theorem.

Recall that a one-relator group has torsion if and only if its relation is a proper

power (see [64]). On the other hand, the geometry of one-relator groups

without torsion is more intricate. Ivanov and Schupp described hyperbolicity

in some classes of one-relator groups [60]. More recently Marco Linton showed

that one-relator groups with negative immersions are hyperbolic [66].

As seen in Section 1.5, conditions C ′(1
6
) and C ′(1

4
) − T (4) imply hyper-

bolicity (see [44, 50]). We introduce a weaker small cancellation hypothesis

C ′(1
4
) − (T ′), which generalizes both C ′(1

6
) and C ′(1

4
) − T (4), and show that

it suffices to prove hyperbolicity of one-relator groups. We include some ex-

amples that illustrate this result and compare it to the classical conditions.

Since all one-relator groups with torsion are hyperbolic, we will consider

only one-relator groups without torsion. They are given by presentations

P = ⟨A | R⟩, where A is finite and R is a cyclically reduced word which is not

a proper power. Note that no proper subword of R is trivial in the presented

group Γ (see [86, Theorem 2]). This tells us that 2-cells in the universal cover

of the presentation complex do not self-intersect.

In the case of one-relator presentations, the condition T (4) can be restated

as follows: the cyclically reduced word R does not contain pieces W1,W2,W3

such that W1W2, W1W3 and W−1
2 W3 are nonempty subwords of R or R−1 or

any cyclic permutation of them. We will apply Corollary 3.1.11 to prove that

C ′(1
4
) together with a much weaker condition than T (4) guarantees hyperbol-

icity of one-relator groups. Contrary to condition T (4), we allow the existence

of pieces W1,W2 and W3 such that W1W2, W1W3 and W−1
2 W3 are nonempty

subwords, but we impose a condition on their lengths. Concretely, condition

T (4) is replaced by the weaker Condition (T ′).

Condition (T ′): If there exist pieces W1,W2,W3 of R such that W1W2,

W1W3 and W−1
2 W3 are nonempty subwords of R or R−1 or any cyclic permu-

tation of them, then l(W1) + l(W2) + l(W3) <
l(R)
2

.

Theorem 3.2.1. Let Γ be a one-relator group with presentation P = ⟨A | R⟩.
If P satisfies the metric small cancellation condition C ′(1

4
) and Condition (T ′),

then Γ is hyperbolic.

Note that a C ′(1
6
) one-relation presentation automatically satisfies Condi-
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tion (T ′), since

l(W1) + l(W2) + l(W3) <
l(R)

6
+
l(R)

6
+
l(R)

6
=
l(R)

2

Before we proceed with the proof, we illustrate the result with an example.

Example 3.2.2. Consider the presentation

P = ⟨a, b|a4b−1a−1b−1a4baba−1ba−1b⟩.

The presented group satisfies the hypotheses of the theorem and, hence, it is

hyperbolic. Note that it is neither C(7) (in particular, it is not C ′(1
6
)) nor

T (4). Also it does not satisfy any hyperbolic weight test [41, 59] and it is not

in any of the families classified by Ivanov and Schupp [60].

To prove Theorem 3.2.1, we will construct a strictly systolic angled com-

plex X from P , on which Γ acts properly and cocompactly by simplicial

automorphisms, and such that its weight function is Γ-invariant. This con-

struction is inspired in Huang and Osajda’s construction for Artin groups [57],

but it is adapted to the geometry of one-relator groups.

We start with the construction of the complex X. Let r = l(R). We can

assume that r ≥ 4, since Γ is free (and thus hyperbolic) when r ≤ 3. Let KP

be the standard 2-complex associated to P . Recall that KP has one 0-cell,

one 1-cell for each generator a ∈ A and one 2-cell corresponding to the word

R. We denote by K̃P its universal cover. Following the terminology of [57],

the closed 2-cells of K̃P (corresponding to all the lifts of the unique 2-cell

of KP ) will be called precells. Observe that, since no proper subword of R

is trivial in Γ (see [86, Theorem 2]), precells are embedded in K̃P . That is,

their boundaries have no self-intersections. We triangulate each precell of K̃P

by adding a central vertex. We will call these new vertices central, so as to

distinguish them from the original vertices of K̃P .

Now, if two precells intersect, they do so in a disjoint union of vertices and

paths. This is because no proper subword of R is trivial in Γ. Notice that

each intersection, when it is not a single vertex, amounts to a piece in R. Let

C1 and C2 be two intersecting precells with corresponding centers c1 and c2.

For each connected component of their intersection we add an edge between

c1 and c2. Note that there could be more than one edge between two centers.
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Let v1, . . . , vk be the vertices of one component of the intersection. Then for

each i we also add triangles with vertices {c1, c2, vi} (one of the edges of the

boundary of the triangle is the corresponding edge between the centers). We

fill the necessary tetrahedra for the complex to be 3-flag (see Figure 3.6).

C1 C2

c2c1

Figure 3.6: Intersection of two precells.

If three precells C1, C2 and C3 intersect, we add triangles with vertices in

the three centers (one for each component of C1 ∩ C2 ∩ C3) and the neces-

sary tetrahedra for the resulting complex to be 3-flag. We denote by X the

complex that we obtain. Intuitively, we are filling the complex at the original

vertices, removing all possible non-negative curvature from the original ver-

tices. In turn, we now have to understand the curvature at the new central

vertices. Note that X is quasi-simplicial since the presentation satisfies, in

particular, the metric condition C ′(1
2
). It is clear that X is 3-flag by construc-

tion. Note that Γ acts simplicially, properly and cocompactly on X since the

modifications that we made on K̃P are Γ-equivariant.

Lemma 3.2.3. The complex X is simply connected.

Proof. First note that X is obtained from (a subdivision of) K̃P by adding

edges, triangles and tetrahedra. Let e be an edge in X that is not in K̃P . Then

it connects the central vertices of two different precells. By construction, there

is a triangle or a tetrahedron by which e homotopes to a path in K̃P with the

same endpoints. Therefore, since K̃P is simply connected, so is X.

Now we define a weight function ω on X and study under which conditions

(X,w) is a strictly systolic angled complex. We will show below that, by

construction of X, the links of the original vertices of X do not have 2-full

cycles. Therefore we only need to control the weights of the corners at the



3.2. APPLICATION TO ONE-RELATOR GROUPS 57

central vertices and the sum of the internal angles of the triangles. There are

three kinds of triangles in X:

1. triangles coming from the subdivision of a precell,

2. triangles with two central vertices,

3. triangles with three central vertices.

Recall that r denotes the length of the relator R. If the triangle is of type

(1), then the weight assigned to the angle of the central vertex is 2π
r

, and the

weights of the other two are 0.

If the triangle is of type (2), the weight of the two central angles is l
r
π,

where l is the length of the component of the intersection corresponding to

that triangle. The remaining angle equals 0.

If the triangle is of type (3), it corresponds to the intersection of three

precells C1, C2 and C3 with centers c1, c2 and c3. Let l12 be the length of the

component of the intersection between C1 and C2. Analogously we define l13,

l23 and l123 (the length of the component of C1∩C2∩C3). Observe that if l123 ̸=
0, then it is equal to the minimum of l12, l13 and l23. The weights at the angles

at c1, c2 and c3 are 1
r
(l12+l13−2l123)π, 1

r
(l12+l23−2l123)π and 1

r
(l13+l23−2l123)π

respectively. The sum of the angles is 1
r
(2l12 + 2l13 + 2l23 − 6l123)π, which is

less than π if the presentation is C ′(1
4
) and if, whenever the intersection of

the three cells is a vertex, l12 + l13 + l23 <
r
2
, which is Condition (T ′).

Under these circumstances, all the triangles have inner weight less than π,

and the triangle inequality is easily seen to be satisfied. The weight function

ω is also easily seen to be Γ-invariant.

Lemma 3.2.4. The angled complex X with the weight function ω is locally

2π-large.

Proof. We analyze the links of the vertices in X and their 2-full cycles. There

are two types of vertices in X. The original vertices (vertices of K̃P ) and the

central vertices. Note that the links of any two vertices of the same kind are

isomorphic, so we need to verify only two cases.

First we study the links of central vertices (see Figure 3.7). Let c be a

central vertex in a precell C. Its link has two kinds of vertices:
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(i) those coming from edges of the triangulation of C,

(ii) those corresponding to edges between c and another central vertex.

Figure 3.7: Link of a central vertex. Vertices of type (i) are located in the

exterior circle, and vertices of type (ii) in the interior.

Let σ be a 2-full cycle in lk(c). We will show that its angular length is

greater than or equal to 2π. We examine the possible cases.

Case 1 If σ only passes through vertices of type (i), then σ is a circle of

angular length 2π.

Case 2 Suppose σ only passes through vertices of type (ii). Those vertices

correspond to paths in the boundary of the precell. Note that these paths are

connected components of the intersections of this precell with other precells.

Each path intersects another two paths (because σ is a cycle) and no three

paths have common intersection (because σ is 2-full). Therefore their union

covers the boundary of the precell. Let s1, . . . , sk be those paths. Then the

angular length of σ equals

(l(s1) + l(s2) − 2l(s1 ∩ s2)) + · · · + (l(sk) + l(s1) − 2l(sk ∩ s1))
r

π.

By an inclusion exclusion argument this is exactly 2π.

Case 3 Finally, suppose σ passes through vertices of both kinds. Given an

orientation for σ, let v1 be a vertex of type (i) such that the following vertex

in σ, say u, is of type (ii). Let v2 be the next vertex of type (i) that appears

following this orientation (note that v1 ̸= v2 since σ is 2-full). The vertex u

is adjacent to some type (i) vertices v′1, . . . , v
′
l between v1 and v2. Denote by

[v1, v2] the edge-path passing only through vertices of type (i) that connects

v1 with v2 and which contains v′1, . . . , v
′
l. It contains all of them because σ
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is 2-full. By an argument analogous to that of case 2, the subpath of σ that

goes from v1 to v2 has angular length greater than or equal to 2l([v1,v2])
r

π.

Inductively, the remaining subpath of σ has angular length greater than or

equal to 2(r−l([v1,v2]))
r

π. Therefore σ has angular length greater than or equal

to 2π.

Lastly we analyze the links of the original vertices. By the definition of

X, the link of any original vertex in the 2-skeleton of X is obtained from

the link of the vertex in the universal cover K̃P by subdividing all the edges

(adding a new vertex in every edge of the original link), and then adding all

the edges between all pairs of new vertices of the link. In particular, the links

of the original vertices in X(2) do not have 2-full cycles, and therefore the link

condition around these vertices is automatically satisfied.

Proof of Theorem 3.2.1. By the previous discussion and Lemmas 3.2.3 and

3.2.4, X is a strictly systolic angled complex on which Γ acts properly and co-

compactly by simplicial automorphisms, and its weight function is Γ-invariant.

Therefore, by Corollary 3.1.11 Γ is hyperbolic.

Note that, by Corollary 3.1.11, all finitely presented subgroups of the one-

relator groups Γ of Theorem 3.2.1 are also hyperbolic. This fact can also be

deduced from Theorem 3.2.1 by a well known result of Gersten on finitely

presented subgroups of hyperbolic groups in dimension 2 [43]. Recall that

one-relator groups without torsion have cohomological dimension 2.

Example 3.2.5. The construction that we introduced in the proof of The-

orem 3.2.1 can also be applied to prove hyperbolicity of one-relator groups

which do not satisfy the hypotheses of the theorem. One such example is

the group presented by ⟨a, t|at−1ata2t−2a−1t2⟩. This group appeared in [63],

where it was proved to be hyperbolic with very different techniques.

3.3 Condition τ ′

In this section we define conditions τ ′ and τ ′
<. They are defined in terms of

the lengths of the pieces and relators incident to interior vertices of reduced

diagrams over the presentations. At first glance it may seem that these condi-

tions are difficult to check since the definitions require to analyze all interior
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vertices of every possible diagram over the presentation P . However we will

prove that, for finite presentations, these conditions can be verified by ana-

lyzing the directed cycles in a finite weighted graph Γ(P ) associated to P . In

this direction, in Section 3.6 we describe an algorithm which decides whether

a given finite presentation P satisfies these conditions. This algorithm has

been implemented in the GAP [83] package SmallCancellation [77].

In what follows we consider diagrams φ : M → K to a combinatorial

complex K with no interior vertices of degree 2. As in Section 3.1, we define

the geometric link of a vertex v in a combinatorial complex K as an epsilon

sphere about v (which inherits a combinatorial structure), and the corners of

the 2-cells at v correspond to edges in the link. The endpoints of a corner in

M (of a 2-cell f) at v correspond to edges in the diagram incident to v. Given

a corner c at an interior vertex v, we denote by ℓ1(c) and ℓ2(c) the lengths of

the incident edges and by ℓr(c) the length of the relator r ∈ R corresponding

to the 2-cell f . Let d′F (v) =
∑

c∋v
ℓ1(c)+ℓ2(c)

ℓr(c)
, where the sum is taken over all

corners at v.

Definition 3.3.1. We say that a presentation P satisfies the small cancella-

tion condition τ ′ if for every interior vertex of any reduced diagram over P

(with no interior vertices of degree 2), d′F (v) ≤ d(v) − 2. Similarly, P sat-

isfies the strict small cancellation condition τ ′
< if for every interior vertex of

any reduced diagram over P , d′F (v) < d(v) − 2. A group G which admits a

presentation P satisfying condition τ ′ (resp. τ ′
<) is called a τ ′-group (resp.

τ ′
<-group).

Condition τ ′ can be thought of as a “tug of war” between conditions of

type C ′ and T . We allow pieces to be large with respect to the length of

the relators, as long as those large pieces do not clash in high numbers at

a common vertex. We also allow interior vertices to have high degree if the

pieces incident to such a vertex are short. Now we investigate now the first

examples of presentations satisfying conditions τ ′ and τ ′
<.

Classical metric small cancellation conditions. It is easy to verify

that the classical metric small cancellation conditions C ′(1
6
), C ′(1

4
)−T (4) and

C ′(1
3
) − T (6) imply condition τ ′

<. We will show below that finitely presented

τ ′
< − C(3)-groups are hyperbolic, generalizing the classical result for small
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cancellation groups (see [15, 50]).

Two-dimensional Artin groups. Recall that an Artin group is two-

dimensional if its defining graph Γ satisfies the following condition: for every

triangle in the graph Γ with edges labeled by p, q and r we have 1
p

+ 1
q

+ 1
r
≤ 1

(see Section 2.2).

We will show that an Artin group is two-dimensional if and only if its

standard presentation PΓ satisfies condition τ ′. We will also prove below

that any group which admits a finite presentation P satisfying conditions

τ ′ and C ′(1
2
) and with all relators of the same length, has quadratic Dehn

function and solvable conjugacy problem (see Theorem 3.5.2). These results

put together partially recover, with an alternative and simpler proof, similar

results for two-dimensional Artin groups recently obtained by Huang and

Osajda [57].

Theorem 3.3.2. An Artin group AΓ is two-dimensional if and only if its

standard presentation PΓ satisfies condition τ ′.

Proof. Let AΓ be an Artin group and let K be the 2-complex associated to

its standard presentation. Note that the 2-cells of K have two distinguished

sides in which all edges have the same orientation (see Figure 3.8). If the label

of the edge in Γ corresponding to the relator is m, each of these sides has m

edges. The terminal vertices of both sides are called initial and final vertices

of the relator, according to the orientation of the edges (cf. [57, Section 4.1]).

a

b

b

a

· · ·

· · ·

b

a

Figure 3.8: A 2-cell of an Artin group.

Let φ : M → K be a reduced diagram. We analyze first the interior

vertices of degree 3. It is easy to see that vertices of degree 3 only correspond
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to intersections of faces in the diagram which are mapped to three different

relators that form a triangle in the graph Γ. Since the three relators are

different, the length of the three pieces involved is 1. If the labels of the edges

in the triangle are p, q and r, then the equation for the condition τ ′ is the

following:
1 + 1

2p
+

1 + 1

2q
+

1 + 1

2r
≤ 3 − 2.

That is, 1
p

+ 1
q

+ 1
r
≤ 1, which is exactly the necessary and sufficient

condition for the Artin group to be two-dimensional.

Now we prove that condition τ ′ is always satisfied in interior vertices of

degree greater than or equal to 4 (for any Artin group, not necessarily two-

dimensional). Note that such an interior vertex v can be a terminal vertex or

it can be inside of one of the sides of the 2-cells containing it. For example,

in Figure 3.9, v is a terminal vertex of r1 and r4, and it is on one of the sides

of r2 and r3.

vr1 r3

r2

r4

a

c

b

a

Figure 3.9: An interior vertex of degree 4.

If not all of the 2-cells incident to v are mapped to the same relator, at

least four of them will share an edge incident to v with a cell corresponding

to a different relator. In Figure 3.9, r1 shares an edge with r4, and r2 with

r3. Since cells corresponding to different relators intersect at paths of length

at most 1, at least four of them will have a piece of length 1. Also, the

longest piece in a 2-cell with boundary of length 2n is n−1, and therefore the

summands in condition τ ′ can be at most 2n−2
2n

. In conclusion, if there are

2-cells incident to the vertex which are mapped to different relators, there are

at least four summands in the equation for condition τ ′ which are less than

or equal to 1
2
, and every other summand is smaller than 1. Then condition

τ ′ is satisfied.



3.3. CONDITION τ ′ 63

We analyze now the case where the vertex has degree greater than or equal

to 4 and all the 2-cells are mapped to the same relator. Observe that if a 2-cell

contains v in one of its sides, the summand corresponding to that 2-cell is at

most 1
2
. Therefore there are at most three of such 2-cells, and the rest have to

contain v as a terminal vertex. If a 2-cell f contains v as a terminal vertex,

then the two adjacent 2-cells to f contain the vertex on a side. This implies

that we can reduce ourselves to the cases where v has degree 4, 5 or 6.

We look at the orientation of the edges incident to v, traversing them in

clockwise order. If we pass by a 2-cell that has v as a terminal vertex, the

orientation of these edges is preserved, and if not, it is reversed. Therefore

the number of 2-cells having v on one of its sides is even. Therefore, when v

has degree 5 or 6, there are at least four 2-cells that have v on a side.

It only remains to check the case where v has degree 4, two of the 2-cells

contain it as a terminal vertex and the other two on a side. This situation is

illustrated in Figure 3.10. Let l1, l2, l3, l4 be the lengths of the pieces involved

and let 2n be the length of the relator.

l1 l2

l3 l4

v

Figure 3.10: A vertex with degree 4 with the 2-cells mapping to the same

relator.

Here condition τ ′ can be rewritten as:

l1 + l2
2n

+
l2 + l4

2n
+
l3 + l4

2n
+
l1 + l3

2n
=

2l1 + 2l2 + 2l3 + 2l4
2n

≤ 2.

Since l1 + l2 ≤ n and l3 + l4 ≤ n, condition τ ′ is satisfied.

Remark 3.3.1. Combined with Theorem 3.4.2, Theorem 3.3.2 implies that

the standard presentation PΓ of an Artin group is aspherical (i.e. the group

AΓ is two-dimensional) if and only if PΓ is diagrammatically reducible (DR,

for short). Recall that a presentation P with no proper powers is DR if all
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spherical diagrams over P are reducible. Note that being DR is in general a

stronger condition than being aspherical (see [41]).

We now introduce slightly more general presentations and show that they

satisfy condition τ ′. Let F be a free group on a finite set of generators X.

Let W ⊂ F be a finite subset of words, and let Γ be a finite simple graph

with vertex set W and a labeling on the edges by integers m ≥ 2. We can

consider the presentation PΓ,F with generators X, and a relation

vwvwv · · ·︸ ︷︷ ︸
m factors

= wvwvw · · ·︸ ︷︷ ︸
m factors

for every pair of words v, w ∈ W connected by an edge labeled by m. We

denote by AΓ,F the group presented by PΓ,F . This is obviously a generalization

of the definition of an Artin group. The following result generalizes Theorem

3.3.2 for the groups AΓ,F under certain restrictions on the words and the

labeling of the edges.

Theorem 3.3.3. The presentation PΓ,F satisfies τ ′ provided that all the edges

in Γ are labeled by the same integer m ≥ 3, and the words in W have all

the same length, are cyclically reduced and do not share letters (i.e. every

generator appears at most in one of the words of W ).

Proof. Let n be the length of the words in W . Let φ : M → K be a reduced

diagram and let v be an interior vertex of degree at least 3. Let k = d(v) and

let f1, . . . , fk be the 2-cells of M incident to v, numbered clockwise.

Note that, since the words in W do not share letters, there is a subset

D(fi) of distinguished vertices of the boundary of fi which is characterized

by the following property: D(fi) splits the word written in the boundary of

fi into words which belong either to W or to W−1 (here W−1 denotes the set

of the inverses of the words in W ). Note that a vertex may be distinguished

in certain 2-cell fi but not in a neighbor face.

Let xi (resp. yi) be the (possibly empty) word read counterclockwise

(resp. clockwise) in the boundary of fi, starting at v and ending at the

first occurrence of a vertex which belongs to D(fi) (see Figure 3.11). Note

that |xi| + |yi| ≡ 0 (mod n). Here |x| denotes the length of the word x.

The mismatch between fi and fi+1 is defined as |yi+1| − |xi| ∈ Z/nZ. If the
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v

f1

f2

f3

f4

x1 y2

x2

y3x3

y4

x4

y1

Figure 3.11: Mismatches around an interior vertex.

mismatch is nonzero we say that there is a proper mismatch between fi and

fi+1. Let s be the number of proper mismatches around v.

If there are no proper mismatches, then the proof that condition τ ′ is

satisfied is analogous to that of Theorem 3.3.2. If there is a proper mismatch

between two faces, their intersection has length less than n. Note that the

length of a piece is at most n(m − 1), and the length of the relators is 2nm.

Therefore, if s ≥ 2, condition τ ′ is satisfied. Therefore, we only need to show

that s ̸= 1.

Suppose that there is exactly one proper mismatch, say between f1 and

fk. Then the following holds.

|y1| ̸≡ |xk| (mod n),

|yi+1| ≡ |xi| (mod n) for 1 ≤ i ≤ k − 1,

|xi| ≡ −|yi| (mod n) for 1 ≤ i ≤ k.

It follows that |x1| ̸≡ (−1)k|x1| (mod n). This is a contradiction if k is even.

Now we study the case where k is odd and s = 1. It is easy to see that if

one of the xi or yi is empty, then there are at least two proper mismatches,

so we can assume that no xi or yi is empty. Since the words in W do not

share letters, there exists w ∈ W such that for each 1 ≤ i ≤ k, the word y−1
i xi

equals w or w−1. Again, we can assume that the unique proper mismatch is

between f1 and fk. If there exists 1 ≤ i ≤ k − 1 such that y−1
i xi = y−1

i+1xi+1,

since xi = yi+1, we deduce that y−1
i xi+1 = w2 or y−1

i xi+1 = w−2. This is

a contradiction because w is cyclically reduced. Then y−1
i xi = (y−1

i+1xi+1)
−1



66 CHAPTER 3. GENERALIZED SMALL CANCELLATION

for every 1 ≤ i ≤ k. However this cannot happen since k is odd. Therefore

s ≥ 2.

One-relator groups. In Section 3.2 we introduced a small cancellation

condition (T ′) to study hyperbolicity of one-relator groups. Condition τ ′
<

generalizes condition (T ′) to any presentation and Theorem 3.4.4 below pro-

vides an alternative, simpler and more general proof of Theorem 3.2.1 for

one-relator groups.

Example 3.3.4. The following one-relator presentation does not satisfy con-

ditions C(6) nor T (4), but it is τ ′. It also does not fall under the hypothesis

of Theorem 3.2.1 since it is C ′(1
2
), but not C ′(1

4
).

⟨a, b | a3b4a3b4(b4a3b4a3)−1⟩.

Cyclic presentations. The claims in the following examples can be

verified using the GAP [83] package SmallCancellation [77].

Example 3.3.5. The following cyclic presentation of a superperfect group

satisfies condition τ ′
< but is not C(6) nor T (4).

⟨x0, x1, x2, x3, x4 | x−1
i+4x

−1
i+1x

−1
i (xi+4xi+1)

2 for i = 0, . . . , 4⟩

Example 3.3.6. The following cyclic presentation of a superperfect group

satisfies condition τ ′ − C ′(1
2
)

⟨x0, . . . , x6 | xi+1x
−1
i xi+6x

−1
i+1xix

−1
i+6x

−1
i+2 for i = 0, . . . , 6⟩

Then by Theorem 3.5.2 this group has a quadratic Dehn function. However

the group is not τ ′
<, nor C(6), C(4) − T (4) or C(3) − T (6).

3.4 Non-positive curvature, diagrammatic re-

ducibility and hyperbolicity

We first define some basic notions on combinatorial curvature analogous to the

ones defines in Section 3.1, but in the more general context of combinatorial 2-

complexes. Given a combinatorial 2-complex K, we can assign a real number
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ω(c) to the corners, which we think of as angles. This assignment is a weight

function for the complex. A finite combinatorial 2-complex together with

such a weight function is called an angled complex (see [41, 88]).

Let K be an angled complex. If v is a vertex of K, its curvature is defined

as

κ(v) = 2π − πχ(lkv) −
∑
c∋v

ω(c).

Here χ(lkK(v)) denotes the Euler characteristic of the link of v, and the sum

is taken over all corners at v. The curvature of a face f is defined as

κ(f) = 2π − πℓ(∂f) +
∑
c∈f

ω(c),

where the sum is taken over all the corners in f and ℓ(∂f) is the number of

edges in the boundary of f . As before, we can state a combinatorial Gauss–

Bonnet theorem. [5, 88].

Theorem 3.4.1 (Combinatorial Gauss–Bonnet Theorem, [5, 88]). Let K be

an angled 2-complex. Then∑
f∈faces(K)

κ(f) +
∑

v∈K(0)

κ(v) = 2πχ(K).

Assignment of weight functions

Let P be a presentation satisfying condition τ ′ or τ ′
<. Given a reduced dia-

gram f : M → KP over P , we define the following weight function in M . The

weight of a corner c at an interior vertex v is ω(c) = π − ℓ1(c)+ℓ2(c)
ℓr(c)

π (recall

that there are no interior vertices of degree 2). The weight of a corner c at a

vertex v ∈ ∂M of degree 2 is ω(c) = π. If c is a corner at a vertex v ∈ ∂M

of degree greater than 2, we define ℓ1(c) and ℓ2(c) similarly as we did with

interior vertices (the lengths of the incident edges obtained if we remove the

vertices of degree 2) and ω(c) = π − ℓ1(c)+ℓ2(c)
ℓr(c)

π.

With this assignment, the curvature of the faces of M is 0, and the cur-

vature of the interior vertices is non-positive if P satisfies condition τ ′, and

strictly negative if P satisfies condition τ ′
<.

We will show that presentations satisfying condition τ ′ and without proper

powers are DR and that finitely presented τ ′
< − C(3)-groups are hyperbolic.
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Given a 2-complex M , we denote by V(M), E(M) and F(M) the number of

vertices, edges and faces of M respectively.

Theorem 3.4.2. If a presentation P satisfies condition τ ′ and has no proper

powers, then it is DR.

Proof. Since P has no proper powers, our notion of reduced spherical diagram

over P coincides with that of [41]. Therefore, in order to prove that P is DR,

we only have to verify that there are no reduced spherical diagrams over P .

Suppose φ : M → KP is a reduced spherical diagram. We have the following

identities:

E(M) =
1

2

∑
v∈M(0)

d(v),

F(M) =
1

2

∑
v∈M(0)

d′F (v).

The first one is clear, since every edge is incident to two vertices. The second

one is deduced from the fact that in the right hand side of the second equality

we are summing two times the length of each relator, divided by the length

of each relator. That is, we are summing 2 for each face. Then

2 = V(M) − E(M) + F(M) = V(M) − 1

2

∑
v∈M(0)

d(v) +
1

2

∑
v∈M(0)

d′F (v) ≤ 0,

where the last inequality holds because all the vertices in the sphere are in-

terior vertices. This is a contradiction, and therefore P is diagrammatically

reducible.

Equations over groups

A system of equations over a group G with unknowns x1, x2, . . . , xn is a set

{wj(x1, x2, . . . , xn)}j of words in G ∗ F (x1, . . . , xn). Here F (x1, . . . , xn) is the

free group with basis {x1, x2, . . . , xn}. The letters of wj which lie in G are

the coefficients of wj. The (non-necessarily reduced) word rj in the alphabet

{x1, x−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n } obtained by deleting the coefficients of wj is the

shape of wj, and the word rj considered as an element of the free group



3.4. CURVATURE AND DIAGRAMMATIC REDUCIBILITY 69

F (x1, x2, . . . , xn) is called the content of wj. We say that the system has a

solution in an overgroup of G if there exits a group H of which G is a subgroup

and elements h1, h2, . . . , hn in H such that

wj(h1, h2, . . . , hn) = 1 ∈ H

for every j. The Kervaire–Laudenbach Conjecture states that for any group G,

a unique equation w with a unique unknown x has a solution in an overgroup

of G if w is non-singular, which means that the total exponent of x is non-

zero. The so called Kervaire–Laudenbach–Howie Conjecture generalizes this

to an arbitrary finite number n of unknowns and a non-singular system of m

equations (in this case, non-singular means that the rank of the m×n matrix

of total exponents is equal to m).

Let S be a system of equations w1, w2, . . . , wm over a groupG. Let P be the

presentation ⟨x1, x2, . . . , xn|r1, r2, . . . , rm⟩ whose generators are the unknowns

of S and its relators are the shapes of the equations wj. A well known result

by Gersten [41] states that if P is DR, then S has a solution in an overgroup

of G. In other words, for any group H, any system of equations modeled by

the presentation P has a solution in an overgroup of H. A presentation with

this property is said to be Kervaire. The converse of this result is false. The

presentation P = ⟨t|ttt−1⟩ is not DR, but it is Kervaire: any equation atbtct−1

modeled by P over any coefficient group H has a solution in an overgroup of

H [56].

From the results above we deduce the following.

Proposition 3.4.3. Let k, l,m ∈ N and w1, w2, w3 be cyclically reduced words

of the same length in the unknowns xi, yj, zs respectively. Then for any p ≥ 2,

the presentation

P = ⟨x1, . . . , xk, y1, . . . , yl, z1, . . . , zm |(w1w2)
p(w2w1)

−p, (w2w3)
p(w3w2)

−p,

(w3w1)
p(w1w3)

−p⟩

is DR. Therefore for any group G, any system of equations modeled by P has

a solution in an overgroup of G.

Proof. The presentation P corresponds to a presentation of type PΓ,F where Γ

is a triangle with vertices w1, w2 and w3 and whose three edges are labeled by

2p. Now the result follows from Theorems 3.3.3 and 3.4.2 and from Gersten’s

result mentioned above.
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Hyperbolicity

We now show that the strict metric condition τ ′
< implies hyperbolicity. We

do so by proving that the Dehn function is linear. This is a strengthening of

Theorem 3.2.1.

Theorem 3.4.4. Let G be a group which admits a finite presentation satis-

fying conditions τ ′
< and C(3). Then G is hyperbolic.

Proof. We show that a finite presentation P satisfying conditions τ ′
< and

C(3) has a linear isoperimetric inequality. Note that it suffices to consider

non-singular disk diagrams.

Let φ : M → KP be a non-singular reduced disk diagram. We assign

weights to the corners in M as we did before. Then, by the Combinatorial

Gauss–Bonnet Theorem,

2π =
∑

v∈M(0)

κ(v) +
∑

f∈faces(M)

κ(f) =
∑

v∈M(0)

κ(v).

Since P satisfies τ ′
<, then κ(v) < 0 for every interior vertex v, and since P

is finite, by Corollary 3.6.3 there is a constant N < 0, which is independent

of the diagram, such that κ(v) ≤ N for every interior vertex v. Also, for

every boundary vertex v, it holds that κ(v) < π since the weights in M are

non-negative. Then

2π ≤ V◦(M)N +
∑

v∈(∂M)(0))

κ(v)

≤ V◦(M)N + V(∂M)π

= V(M)N + ℓ(∂M)(π −N),

where V◦(M) denotes the number of interior vertices of M , and ℓ(∂M) is the

length of the boundary. The last equality holds because M is non-singular.

Then,

−V(M)N ≤ ℓ(∂M)(π −N) − 2π

and therefore

V(M) ≤ ℓ(∂M)
π −N

−N
+

2π

N
.

Now, since P satisfies condition C(3), the number of faces can be linearly

bounded by the number of vertices in the diagram. Consequently, the number

of faces in the diagram is linearly bounded by the length of its boundary.
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3.5 Quadratic Dehn function and conjugacy

problem

In this section we will show that a finitely presented group which admits a

presentation P satisfying conditions τ ′ and C ′(1
2
) and such that all relators

of P have the same length r, has a quadratic Dehn function and solvable

conjugacy problem.

Let φ : M → KP be a diagram over P . The boundary layer L of M consists

of every vertex in the boundary of M , every edge incident to a vertex in the

boundary, and every open face with a vertex in the boundary. Note that L

is usually not a combinatorial complex. Let M1 = M\L be the complement

of the boundary layer. Note that M1 is a subcomplex of M . The following

lemma will be used to prove the main result of this section.

Lemma 3.5.1. Let P be a presentation satisfying conditions τ ′ −C ′(1
2
) and

such that all its relators have length r, and let φ : M → KP be an annular or

disk diagram over P . Then

V(∂M1) ≤ V(∂M) − rχ(M).

Proof. We had previously removed interior vertices of degree 2 from the dia-

grams. We subdivide the boundary of M1 reintroducing the vertices of degree

2, and still denote this diagram by M .

For the vertices of M of degree greater than 2, we assign weights to the

corners as before, and in vertices of degree 2, both weights are equal to π.

With this assignment, every face has curvature 0 and all interior vertices have

non-positive curvature, since P satisfies τ ′. Note that κ(v) = 0 for interior

vertices of degree 2.

In what follows, we can assume without loss of generality that M is non-

singular, since we are going to bound the length of the boundary of M1 in

terms of the length of the boundary of M . Since P is C ′(1
2
) we may assume

that each boundary 2-cell f has at least two edges which are not on the

boundary of M , for otherwise we can remove f decreasing the length of the

boundary and without changing M1. In particular this reduction allows us to

assume that M1 ̸= ∅.
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We consider the complex B constructed by taking the disjoint union of

the 0-cells, 1-cells and 2-cells (now closed) of the boundary layer of M and

identifying the boundaries of the closed 2-cells but only in the vertices and

edges of the boundary layer of M (see Figure 3.12).

Figure 3.12: At the left the complex M . At the right the complex B con-

structed from M in the proof of Lemma 3.5.1.

We omit vertices of degree 2 in the cell structure of B. Note that ℓ(∂B) =

ℓ(∂M) + ℓ(∂M1). If M is a disk, B is a planar and connected combinatorial

complex, so its Euler characteristic is less than or equal to 1 = χ(M). If M

is an annulus, B may have more than one connected component, but none

of them would be a disk, since they all have a disconnected complement.

Therefore its Euler characteristic is less than or equal to 0 = χ(M).

We separate its vertices into two sets: V1 will denote the set of vertices of

B that are in the boundary of M , and V2 the set of remaining vertices of B.

Since P satisfies condition τ ′, by Gauss–Bonnet we have

2πχ(M) ≤
∑
v∈V1

κ(v).

Also by Gauss–Bonnet, we have∑
v∈B(0)

κ(v) = 2πχ(B).
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Therefore ∑
v∈V2

κ(v) ≤ 0.

Now since each boundary 2-cell has at least two edges which are not on the

boundary of M we have

V1 +
∑
v∈V2

∑
c∋v

1 = V(B) + E(B) − ℓ(∂B) = V2 +
∑
v∈V1

∑
c∋v

1 − V◦(B).

Putting everything together

2πχ(M) ≤
∑
v∈V1

κ(v) −
∑
v∈V2

κ(v)

=
∑
v∈V1

(
π −

∑
c∋v

(
π − ℓ1(c) + ℓ2(c)

r
π

))

−
∑
v∈V2

(
π −

∑
c∋v

(
π − ℓ1(c) + ℓ2(c)

r
π

))

≤
∑
v∈V1

∑
c∋v

ℓ1(c) + ℓ2(c)

r
π −

∑
v∈V2

∑
c∋v

ℓ1(c) + ℓ2(c)

r
π

=
2V(∂M) − 2V(∂M1)

r
π.

It follows that

V(∂M1) ≤ V(∂M) − rχ(M).

Theorem 3.5.2. Let P be a presentation satisfying conditions τ ′−C ′(1
2
) and

such that all its relators have length r, then P has a quadratic Dehn function.

Moreover, if P is finite the group G presented by P has solvable conjugacy

problem.

Proof of the quadratic Dehn function. Let φ : M → KP be a reduced disk

diagram. We show that V(M) ≤ 1
r
V(∂M)2 by induction in the number of
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interior vertices of M . We have

V(M) = V(M1) + V(∂M)

≤ 1

r
V(∂M1)

2 + V(∂M)

≤ 1

r
(V(∂M) − r)2 + V(∂M)

=
1

r
V(∂M)2 − 2V(∂M) + r + V(∂M)

≤ 1

r
V(∂M)2.

The first inequality follows by induction, and the second one follows from

Lemma 3.5.1. Finally, since P satisfies C ′(1
2
), each face of M has at least

three sides. Then we can bound the number of faces of M by the number of

vertices of M , obtaining the desired quadratic isoperimetric inequality.

It follows that the finitely generated groups which admit presentations

satisfying the hypotheses of Theorem 3.5.2 have solvable word problem. This

will be used to prove that they also have solvable conjugacy problem.

We attack the conjugacy problem following the strategy of [68, Section

V.7]).

Remark 3.5.1. Let P = ⟨X | R⟩ be a finite presentation of a group G with

solvable word problem. Suppose that all the relators have the same length r.

Let w1 and w2 be words in the free group F (X). We write w1 ∼ w2 if there

exists a word b in F (X) with |b| < r such that bw1b
−1w−1

2 = 1 in G. Here

|b| denotes the length of the word b. Since the word problem is solvable, the

relation ∼ is decidable. Now let u and v be cyclically reduced words in F (X)

and let d = |u| + |v|. Take W = {w ∈ F (X), |w| ≤ d}. Note that W is finite

since X is finite. Note also that the set W depends on the lengths of u and v

and that u, v ∈ W . We write u ∼ v if there exist words w1, . . . , wk in W such

that u ∼ w1 ∼ . . . ∼ wk ∼ v. Equivalently, ∼ is the transitive closure in W of

the relation ∼. Note that this relation is also decidable since W is finite. In

order to prove that the conjugacy problem is solvable it suffices to prove that

if two words u, v ∈ F (X) are conjugate in G, then u ∼ v.

We will also use the following result of Schupp [68, Section V.7]. Let A

be an annular diagram and L its boundary layer. The diagram A1 = A\L
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(the complement of L in A) may be disconnected, but it has at most one

annular component. A simply connected component of A1 is called a gap.

Let K1, . . . , Kn be the gaps. Then H = A\(L ∪
⋃n

i=1Ki) is the annular

component of A1, assuming there is any. Let σ and τ be the outer and inner

boundaries of H. A pair (D1, D2) of faces (not necessarily distinct) in A is

called a boundary linking pair if σ∩∂D1 ̸= ∅, ∂D1∩∂D2 ̸= ∅, and ∂D2∩τ ̸= ∅.

Lemma 3.5.3 (Schupp). Let A be an annular diagram having at least one

region, and let H be the diagram obtained by removing its boundary layer and

its gaps. If there are no boundary linking pairs, H is an annular diagram.

Proof of the conjugacy problem. Take cyclically reduced words u, v ∈ F (X)

and suppose that they are conjugate in G. Let d = |u|+ |v|. By Remark 3.5.1,

we only have to prove that u ∼ v. Let A be an annular diagram with u and v−1

as inner and outer boundaries. Construct the diagrams A = H0, H1, . . . , Hk,

where Hi+1 is obtained from Hi by removing its boundary layer and its gaps,

and let Hk be the first of such diagrams with a linking pair. By Lemma 3.5.1,

ℓ(∂Hi+1) ≤ ℓ(∂Hi) for each 0 ≤ i ≤ k − 1. Therefore, ℓ(∂Hi) ≤ d for every i

(and so the boundary labels of ∂Hi are in the set W ).

Let σi and τi be the outer and inner boundaries of Hi respectively. Let Si

be the subdiagram of M consisting of σi, σi+1 and all the cells of M between

these two paths. Define Ti in the same manner with respect to τi and τi+1.

It is clear that any boundary face of Si intersects both boundaries of Si. So

there is a path γi from σi to σi+1 with a label of length less than or equal to r.

Let si and s−1
i+1 be the labels of σi and σi+1 starting at a given vertex. Then

si ∼ si+1. Analogously, we have ti ∼ ti+1 where t−1
i and ti+1 are the labels of

Ti.

The last annulus Hk has a boundary linking pair (D1, D2). We have ver-

tices v0 ∈ σk ∩ ∂D1, v1 ∈ ∂D1 ∩ ∂D2, and v2 ∈ ∂D2 ∩ τk. Therefore there are

paths β1 and β2 from v0 to v1 and from v1 to v2 labeled by words b1 and b2
of length smaller than or equal to r

2
. Let β = β1β2, then its label is a word

of length less than r. Let s be the word read in the outer boundary of Hk

starting at v0, and t−1 the word read in the inner boundary of Hk starting at

v2. We have that sb1b2t
−1b−1

2 b−1
1 = 1 in G. Then s ∼ t.

Since s0 and t0 are cyclic permutations of u and v respectively, and s and
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t are cyclic permutations of sk and tk respectively, we have

u ∼ s0 ∼ s1 ∼ . . . ∼ sk ∼ s ∼ t ∼ tk ∼ . . . ∼ t0 ∼ v.

A slight modification in the proof of Lemma 3.5.1 allows one to obtain a

lower bound on the length of the words which represent the trivial element in

the group G, even if the relators have different lengths. This result is in the

spirit of Greendlinger’s lemma (Lemma 1.5.6).

Proposition 3.5.4. Let P = ⟨X | R⟩ be a presentation of a group G, sat-

isfying conditions τ ′ − C ′(1
2
). Let rmin be the length of the shortest relator.

Then any nontrivial word W in the free group generated by X representing the

trivial element in G has length at least rmin. In particular, if P has a relator

of length greater than or equal to 2, then G is nontrivial.

Proof. Let M be a reduced disk diagram. We follow the same steps as in the

proof of Lemma 3.5.1 and we get that

2πχ(M) ≤
∑
v∈V1

∑
c∋v

ℓ1(c) + ℓ2(c)

lr(c)
π −

∑
v∈V2

∑
c∋v

ℓ1(c) + ℓ2(c)

lr(c)
π.

In particular since the terms ℓi(c)
ℓr(c)

in the first sum which do not correspond

to edges in the boundary cancel with terms in the second sum, we have

rminχ(M) ≤ V (∂M). Therefore, since M is a disk, rmin ≤ V (∂M), which

implies that words representing the trivial element have length at least rmin.

For the second statement, by removing all the relators of length 1 along

with the corresponding generators, we can assume that each relator of P has

length at least 2. Note that condition C ′(1
2
) guarantees that each of these

generators can appear in only one relator.

In Theorem 3.5.2 we proved the existence of quadratic Dehn functions and

solvability of the conjugacy problem for presentations satisfying conditions

τ ′ − C ′(1
2
), provided the relators have the same length. We believe that the

result is still valid without the assumption on the lengths of the relators. We

discuss now a strategy to prove solvability of the word problem for a wider

class of groups. Given a presentation P = ⟨X | R⟩ of a group G, our aim
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is to obtain a new presentation P ′ of a group H such that G embeds in H,

and such that P ′ satisfies conditions τ ′ − C ′(1
2
) and the relators have the

same length. By Theorem 3.5.2, this would imply that H, and therefore G,

has solvable word problem. To do so, we will choose a positive integer nx for

some x ∈ X and replace every occurrence of x in the relators by xnx . If the

element x in the group G has infinite order, this corresponds to adding an

nx-th root, or equivalently, to taking the amalgamated product of G with Z
along the subgroup nxZ. If we make these replacements for a finite number

of x ∈ X, we obtain a new presentation P ′ of an overgroup H of G. Of

course, it is not always possible to choose the nx so that all the relators in

the new presentation have the same length and even if this is possible, the

presentation P ′ obtained may not satisfy conditions τ ′ − C ′(1
2
) (even if P

does). The following example illustrates this technique.

Example 3.5.5. Consider the following presentation

P = ⟨a, b, c, s, t | tats−1b−1s−1, tbts−1c−2s−1, tc2ts−1a−1s−1⟩.

Note that the relators do not have the same length. This presentation does

not satisfy conditions C(5), T (4) nor τ ′. Now, it is easy to see that a and b

have infinite order in the group G presented by P , and by choosing na = 2

and nb = 2, we obtain the following presentation

P ′ = ⟨a, b, c, s, t | ta2ts−1b−2s−1, tb2ts−1c−2s−1, tc2ts−1a−2s−1⟩.

Now all the relators have the same length. One can verify that P ′ satisfies

conditions τ ′−C ′(1
2
) (although it does not satisfy conditions C(5) nor T (4)).

This implies that G has solvable word problem.

3.6 Computability of condition τ ′

In this section we give an algorithm to verify whether a finite presentation

P = ⟨X | R⟩ satisfies condition τ ′. Note that a priori it is not clear that

such an algorithm exists, since the definition involves checking a condition

for every possible diagram over P . The algorithm described here has been

implemented in the GAP[83] package SmallCancellation [77].
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We describe a weighted directed graph Γ(P ). The vertices of this graph

are the tuples (r, p, q) such that

• r ∈ R∗,

• p and q are pieces, and

• we can write r = qsp without cancellations.

There is an edge (r, p, q) → (r′, p′, q′) if

• p′ = q−1, and

• r′ ̸= r−1.

The weight of this edge is 1− |p|+|q|
|r| (by simplicity, we divide by π the weights

that we considered in Section 3.4). The weight of a cycle is the sum of the

weights of its edges.

Given a diagram φ : M → KP , we can fix an orientation in M as explained

in Section 1.5. The corners in the diagram inherit the orientations of the

corresponding faces. Note that if c is a corner at an interior vertex v(c),

then (r(c), w1(c), w2(c)) is a vertex in Γ(P ). Here r(c) denotes the relator

read in the boundary of the face, starting from the vertex v(c) and following

the orientation of the face, w1(c) and w2(c) are the subwords written in the

edges of the oriented corner (the first edge being the one oriented towards

v(c)). This remark and the following proposition make clear why this graph

is meaningful. Essentially, this graph codifies the cycles that appear in interior

vertices of reduced diagrams over P .

Proposition 3.6.1. (i) Let v be an interior vertex in a reduced diagram

φ : M → KP . Then there is a directed cycle γ in Γ(P ) of length at least 3 and

weight d(v) − d′F (v).

(ii) Let γ be a directed cycle in Γ(P ) of length at least 3 and weight w.

Then there is a reduced diagram over P and an interior vertex v such that

d(v) − d′F (v) = w.

Proof. We first prove (i). Let v be an interior vertex in a reduced diagram

φ : M → KP . Let c1, . . . , cn be the corners around v, numbered clockwise.



3.6. COMPUTABILITY OF CONDITION τ ′ 79

Then w1(ci+1) = w2(ci)
−1 (indices are modulo n). Since the diagram is re-

duced we have r(ci+1)
−1 ̸= r(ci)

−1 and therefore there is an edge

(r(ci), w1(ci), w2(ci))
ei−→ (r(ci+1), w1(ci+1), w2(ci+1))

in Γ(P ) with weight 1− ℓ1(ci)+ℓ2(ci)
ℓr(ci)

. Then the cycle γ = (e1, . . . , en) has weight

d(v) − d′F (v).

v

v1

v2

v3

v4

v5

r1

r2
r3

r4

r5

p1

p2
p3

p4

p5
s1

s2
s3

s4

s5

(r1, p1, p
−1
2 )

(r2, p2, p
−1
3 )

(r3, p3, p
−1
4 )

(r4, p4, p
−1
5 )

(r5, p5, p
−1
1 )

1 − |p1|+|p2|
|r1|

1 − |p2|+|p3|
|r2|

1 − |p3|+|p4|
|r3|

1 − |p4|+|p5|
|r4| 1 − |p5|+|p1|

|r5|

Figure 3.13: On the left a cycle γ in Γ(P ), on the right the corresponding

diagram constructed in the proof of part (ii) of Proposition 3.6.1.

We now prove (ii). Let n ≥ 3 and let γ be a cycle in Γ(P ) of length n.

By the first condition for the edges of Γ(P ), the vertices of γ can be named

(r1, p1, p
−1
2 ), (r2, p2, p

−1
3 ), . . . , (rn, pn, p

−1
1 ). For each i we consider the word si

such that ri = p−1
i+1sipi without cancellations. We construct a disk diagram ∆

with n+ 1 vertices, 2n edges and n faces as follows. The vertices of ∆ will be

denoted by v, v1, . . . , vn. For each i the diagram has an edge vi
ei−→ v which

reads pi and an edge vi+1
αi−→ vi which reads si. For each i there is a face fi

attached with boundary (e−1
i+1, αi, ei) which reads ri (starting at v) (see Figure

3.13). By the second condition for an edge in Γ(P ), the diagram is reduced.

Note that by construction, d(v) − d′F (v) is the weight of γ.

Corollary 3.6.2. A presentation P satisfies condition τ ′ if and only if each

directed cycle in Γ(P ) of length at least 3 has weight greater than or equal to

2.
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A presentation P satisfies condition τ ′
< if and only if each directed cycle

in Γ(P ) of length at least 3 has weight greater than 2.

Note that Corollary 3.6.2 gives an algorithm to check if a finite presentation

satisfies τ ′, for it is possible to use Dijkstra’s algorithm to find the least weight

of a directed cycle of length at least k in a directed graph with positive edge

weights. This can be done by constructing an auxiliary graph having (k + 1)

vertices for each vertex in the original graph. For more details on this see the

implementation in the GAP package SmallCancellation[77].

From Proposition 3.6.1 we deduce the following result, which is used in

the proof of Theorem 3.4.4.

Corollary 3.6.3. If a finite presentation P satisfies condition τ ′
< there is a

constant N < 0 such that κ(v) ≤ N for every diagram ∆ and every interior

vertex v ∈ ∆.

Proof. Since the weights are positive, we can take N to be −π times the

minimum weight of a simple directed cycle of length at least 3 in Γ(P ). Note

that, since the graph Γ(P ) is finite, there is a finite number of such cycles.

The following examples of groups which do not satisfy τ ′ are consistent

with our conjecture that τ ′−C ′(1
2
) implies a quadratic isoperimetric inequal-

ity even if the presentation has relators of different lengths.

Example 3.6.4. From [6] we know the Baumslag–Solitar group BS(p, q)

has exponential Dehn function if |p| ̸= |q|. Therefore, by Theorem 3.5.2 the

groups BS(n, n + 1) do not satisfy τ ′. It can be seen that the minimum of

d(v) − d′F (v) for v an interior vertex in a diagram for the usual presentation

of BS(n, n+ 1) is 2 − 1
2n+3

, which tends to 2 as n→ ∞. Note that BS(n, n)

satisfies τ ′ − C ′(1
2
) so by Theorem 3.5.2 one can verify the well-known fact

that these groups have quadratic Dehn function.

Example 3.6.5. In [6, Lemma 11] a family of groups Mc,d is considered and

it is proved that the Dehn function of Mc,d has order nc+d. We have that M1,1

(which is a RAAG) satisfies τ ′−C ′(1
2
). Some GAP computations suggest that

the minimum of d(v) − d′F (v) for these groups is 23
20

for any (c, d) ̸= (1, 1).
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Example 3.6.6. In [6] it is proved that the Dehn function of the group

E = ⟨b, s, t | s−1bs = b2, t−1bt = b⟩ is at least 2n. This group does not satisfy

τ ′ (the minimum of d(v) − d′F (v) is 8
5
).

As these examples suggest, it would be interesting to know more about

what the minimum of d(v) − d′F (v) says about a presentation.

3.7 Systolic angled complexes and τ ′

In Section 3.1 we introduced (strictly) systolic angled complexes. Then we

defined a metric small cancelation condition (T ′) that together with condition

C ′(1
4
) assured that one-relator groups were strictly systolic. Conditions τ ′

and τ ′
< were introduced in an attempt to generalize and study conditions

C ′(1
4
) − (T ′) in a combinatorial fashion. It turns out that we could obtain

stronger and more general properties in this way. Even though the approach in

the second half of this chapter has been combinatorial, there is a relationship

with angled systolic complexes. More precisely we can state the following

theorem.

Theorem 3.7.1. Let P be a finite presentation satisfying conditions C ′(1
2
)−

τ ′ (resp. τ ′
<). Then the group presented by P acts geometrically by simplicial

automorphisms on a systolic angled complex (resp. strictly systolic angled

complex).

The proof is exactly the same as the proof of Theorem 3.2.1. The only in-

gredient of the proof that is missing is the fact that 2-cells are embedded in the

presentation complex K̃P . That is, their boundaries have no self-intersections.

This follows if no proper subword of a relator is trivial in the presented group

(which holds for one-relator groups [86, Theorem 2]). Fortunately we have

proved this in Proposition 3.5.4.

Theorem 3.7.1 can be thought of as an angled version of Wise’s result that

states that C(6) groups are systolic [87].





Chapter 4

Systolicity-by-function and

two-dimensional Artin groups

As mentioned in Section 2.3, in this chapter we extend previous results by

Cumplido, Martin and Vaskou [31] on parabolic subgroups of large-type Artin

groups to a broader family of two-dimensional Artin groups. We prove that an

arbitrary intersection of parabolic subgroups of a (2, 2)-free two-dimensional

Artin group is itself a parabolic subgroup. An Artin group is (2, 2)-free if

its defining graph does not have two consecutive edges labeled by 2. As a

consequence of this result, we solve the conjugacy stability problem for this

family by applying an algorithm introduced by Cumplido [29]. All of this is

accomplished by considering systolic-by-function complexes, which generalize

systolic complexes. Systolic-by-function complexes have a more flexible struc-

ture than systolic complexes since we allow the edges to have different lengths.

At the same time, their geometry is rigid enough to satisfy an analogue of the

Cartan–Hadamard theorem and other geometric properties similar to those

of systolic complexes. The results of this chapter can be found in [8].

4.1 The Artin complex

In [31] Cumplido, Martin and Vaskou used a geometric approach to solve

the problem of intersection of parabolic subgroups for Artin groups of large-

type (i.e. those with mst ≥ 3 for all s, t ∈ S). They introduced a simplicial

83
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complex associated to an Artin group, called the Artin complex, on which

the Artin group acts cocompactly and without inversions. This complex was

also previously defined in [20] under the name of Deligne complex (now the

term Deligne complex is commonly reserved for the modified Deligne complex

introduced in [20]).

In this section we recall the construction of the Artin complex. We follow

the description and notation from [31]. The definitions and notations related

to complexes of groups are those of [15, Chapter II.12].

Let AΣ be an Artin group with generator set Σ (with |Σ| ≥ 2). Take K a

simplex of dimension |Σ|−1 and define a simplex of groups over K. First, give

the simplex K a trivial local group. Simplices of codimension 1 are in one-

to-one correspondence with elements σi ∈ Σ, and are denoted by ∆σi
. The

simplex ∆σi
is given the local group ⟨σi⟩. Now every simplex of codimension

k is in one-to-one correspondence with a subset of Σ of cardinality k. Given

Σ′ ⊂ Σ with |Σ′| = k, its corresponding face can be written uniquely as

∆Σ′ = ∩σi∈Σ′∆σi
.

The simplex ∆Σ′ is given the local group AΣ′ .

Given an inclusion ∆Σ′′ ⊂ ∆Σ′ there is a natural inclusion ψΣ′Σ′′ : AΣ′ −→
AΣ′′ . Let P be the poset of standard parabolic subgroups of AΣ with the order

given by the natural inclusions. Since every standard parabolic subgroup is

itself an Artin group [65], there is a simple morphism φ : G(P) −→ AΣ, given

by inclusion, from the complex of groups to AΣ.

Definition 4.1.1. The Artin complex associated to AΣ is the development

XΣ := DK(P , φ) of P over K along φ ([15, Theorem II.12.18]).

In the proof of [15, Theorem II.12.18], an explicit description of XΣ is

given. The simplicial complex XΣ can be defined as

XΣ := AΣ ×K/ ∼,

where (g, x) ∼ (g′, x′) if and only if x = x′ and g−1g′ is in the local group of

the smallest simplex of K containing x.

The action of AΣ in XΣ is by simplicial isomorphisms, without inversions

and cocompact, with strict fundamental domain K. Any simplex ∆ of XΣ is
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in the orbit of exactly one ∆Σ′ ⊂ K for some Σ′ ⊂ Σ. In that case ∆ is said

to be of type Σ′. We now recall some results from [31] about the complex XΣ.

Lemma 4.1.2 ([31], Lemma 4). Let AΣ be an Artin group and let XΣ be its

Artin complex. Then XΣ in connected. Additionally, if |Σ| ≥ 3, then XΣ is

simply connected.

Lemma 4.1.3 ([31], Lemma 6). Let AΣ be an Artin group with Artin complex

XΣ. The link of a simplex of type Σ′ is isomorphic to the Artin complex XΣ′

associated to the Artin group AΣ′.

Lemma 4.1.4 ([31], Lemma 9). Let AΣ be an Artin group with Σ = {σx, σy}.
Then any cycle in XΣ has at least 2mxy edges, and it is a tree if mxy = ∞.

Remark 4.1.1. In [31], they show the previous result formxy ∈ {3, 4, . . . ,∞},
since they work with large-type Artin groups. However, the result also holds

for the case mxy = 2, and the proof is the same as in the other cases.

Now we state the connection between the Artin complex and the intersec-

tion of parabolic subgroups. This result gives a novel approach to the problem

of intersection of parabolic subgroups.

Theorem 4.1.5 ([31], Theorem 11, Remark 15, Corollary 16). Let AΣ be an

Artin group and XΣ its Artin complex. If any time an element of AΣ fixes

two vertices of XΣ it fixes pointwise a combinatorial path joining them, then

an arbitrary intersection of parabolic subgroups of AΣ is a parabolic subgroup

of AΣ.

With this theorem in mind, the question can now be answered in a com-

pletely geometric way. In order to show that large-type Artin groups satisfy

the conditions of the theorem, Cumplido, Martin and Vaskou proved that

their Artin complexes are systolic in the sense of [61]. Then they used the

fact that if a group G acts without inversions on a systolic complex and fixes

two vertices, then it fixes pointwise every combinatorial geodesic between

them ([31, Lemma 14]).

We want to generalize Cumplido, Martin and Vaskou’s result to a broader

class of two-dimensional Artin groups. This will be accomplished by consider-

ing a geometric structure more flexible than systolicity. This flexibility allows

us to include a broader family of examples, while maintaining a rigid enough

geometry.
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4.2 Systolic-by-function complexes

In this section we define systolic-by-function complexes, which are a general-

ization of systolic complexes. We prove some basic properties and a local-to-

global theorem analogous to the Cartan–Hadamard theorem. In Section 4.3

we will make use of this geometric structure to prove the path fixing condition

required by Theorem 4.1.5.

Definition 4.2.1. A length function for a simplicial complex X is a function

l : edges(X) → [0, 1
2
] that assigns a real number between 0 and 1

2
to each edge

of X, satisfying the two following conditions:

• the sum of the lengths of the three edges of any triangle is less than or

equal to 1;

• the triangle inequality holds. That is, given three edges e0, e1, e2 that

form a triangle, l(ei) ≤ l(ei+1) + l(ei+2) (indices modulo 3).

A simplicial complex together with a length function is called a length complex.

A cycle in a (length) complex X is a subcomplex σ homeomorphic to S1.

We denote by |σ| the number of edges in σ. The length of σ is the sum of the

lengths of its edges, and we denote it by l(σ). A path in X is a subcomplex

γ homeomorphic to [0, 1]. We define |γ| and l(γ) analogously.

We recall some definitions from Section 1.3. A subcomplex K of a simpli-

cial complex X is full if any simplex of X spanned by a set of vertices in K is

a simplex of K. A diagonal in a cycle σ in a simplicial complex X is an edge

of X connecting two nonconsecutive vertices of σ. Thus, a cycle is full if and

only if it has no diagonals and does not span a simplex. A simplicial complex

X is flag if every set of vertices pairwise connected by edges spans a simplex

of X.

Definition 4.2.2. A length complex X is large if it is flag and if every full

cycle has length greater than or equal to 2. It is locally large if the link of

every vertex is large.

It is clear from the definitions that a large length complex is locally large.

This is because, since the complex is flag, the links of its vertices are flag and



4.2. SYSTOLIC-BY-FUNCTION COMPLEXES 87

full cycles in the links are full cycles in the complex. The rest of this section

is devoted to showing that the converse holds when X is simply connected.

This is a local-to-global theorem analogous to the classical result for systolic

complexes [61].

Definition 4.2.3. A length complex X is systolic-by-function if it is con-

nected, simply connected and locally large.

Remark 4.2.1. A simplicial complex is systolic if and only if it is systolic-

by-function with constant length function l ≡ 1
3
. In general, a simplicial

complex is k-systolic if and only if it is systolic-by-function with constant

length function l ≡ 2
k
.

Theorem 4.2.4. Let X be a systolic-by-function length complex. Then X is

large.

In order to prove this theorem, we will have to study the structure of dia-

grams over a systolic-by-function complex. A diagram ∆ in X is a simplicial

map φ : M → X. If M is a simplicial structure of a 2-dimensional disk, we

say that ∆ is a disk diagram. A simplicial map is called nondegenerate if it is

injective in every simplex.

Lemma 4.2.5 ([61], Lemma 1.6). Let X be a simplicial complex, and σ a ho-

motopically trivial cycle in X. Then there exists a nondegenerate disk diagram

φ : D → X, which maps the boundary of D isomorphically onto σ.

Such a diagram is called a filling diagram for σ. In a simply connected

length complex, the previous lemma implies that every cycle has a filling

diagram. To understand these diagrams, we will recall some basic notions of

combinatorial curvature. These definitions are analogous to the ones used in

Chapter 3, but in the context of length complexes.

Let X be a 2-dimensional length complex. If v is a vertex of X, its

curvature is defined as

κ(v) = 2 − χ(lkX(v)) −
∑

e∈lkX(v)

l(e).
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Here χ(lkX(v)) denotes the Euler characteristic of the link of v. We define

the curvature of a 2-simplex f of X as

κ(f) =

(∑
e∈∂f

l(e)

)
− 1,

where ∂f is the boundary of f and the sum is over its three edges. Note that

the curvature of a face is always non-positive.

Theorem 4.2.6 (Combinatorial Gauss–Bonnet Theorem for Length Com-

plexes). Let X be a 2-dimensional length complex. Then∑
f∈faces(X)

κ(f) +
∑

v∈vertices(X)

κ(v) = 2χ(X).

Note that the above formulas are not exactly equal to those of Chapter 3.

The size of an angle can be thought of as the length of the side opposite to

it, multiplied by π. We omit the factor of π for simplicity.

Definition 4.2.7. Let σ be a cycle in a simplicial complex X. A filling

diagram φ : D → X for σ is minimal if D has the least amount of 2-simplices

among all filling diagrams for σ.

Observe that if φ : D → X is a minimal filling diagram for a cycle σ, it is

nondegenerate: if an edge e were mapped to a vertex, we could take the two

triangles containing e, delete the interior of their union and glue the remaining

four edges, thus obtaining a filling diagram for σ with fewer 2-simplices. Given

a nondegenerate diagram φ : M → X, where X is a length complex, we can

pull back the length function to M , so that M is a length complex itself.

Lemma 4.2.8. Let X be a large length complex and σ a cycle in X of length

less than 2. Then there exists a filling diagram φ : D → X for σ such that D

has no interior vertices.

Proof. We proceed by induction on |σ|. If |σ| = 3, then the result follows by

flagness. Now suppose |σ| > 3. Since X is large, σ cannot be full. Then σ

has a diagonal e that connects two nonconsecutive vertices of σ. This edge

subdivides σ in two paths, both with less than |σ| − 1 edges. We call them
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σ1 and σ2. Attaching e to both σ1 and σ2, we get two cycles with fewer

edges than σ. By the triangle inequality l(σi ∪ e) ≤ l(σ) for i = 1, 2. By

inductive hypothesis, there exist filling diagrams without interior vertices for

both cycles. Gluing these two diagrams along the two edges mapped to e we

obtain the desired diagram for σ.

Lemma 4.2.9. Let σ be a homotopically trivial cycle in a locally large length

complex X. Then for any minimal filling diagram φ : D → X for σ, D is

locally large when considered with the pullback length.

Proof. Let φ : D → X be a minimal filling diagram for σ. Suppose there

is an interior vertex v of D such that lkD(v) is not large. Since D is sim-

plicial, lkD(v) is a full cycle in D (that has length less than 2). Consider

φ(lkD(v)) as a cycle in lkX(φ(v)). Since X is locally large, lkX(φ(v)) is

a large length complex. Thus, by Lemma 4.2.8, there is a filling diagram

ψ : D′ → lkX(φ(v)) ⊂ X for φ(lkD(v)) with no interior vertices. There are

| lkD(v)| closed 2-simplices in D that contain v. Since ψ is a filling diagram

for φ(lkD(v)) and D′ has no interior vertices, the number of 2-simplices in

D′ is |φ(lkD(v))| − 2 < | lkD(v)|. Therefore, if we replace the set of closed

2-simplices of D that contain v by this new diagram, we obtain a filling dia-

gram for σ with fewer 2-simplices, which is a contradiction. Hence D is locally

large.

Remark 4.2.2. If φ : M → X is a nondegenerate disk diagram, then being

locally large is equivalent to κ(v) ≤ 0 for every interior vertex v of M . This

is because, for an interior vertex v, κ(v) = 2 −
∑

e∈lkM (v) l(e).

Let φ : D → X be a disk diagram. The boundary layer L of D consists

of every vertex in the boundary of D, every edge incident to a vertex in

the boundary, and every open 2-simplex whose closure has a vertex in the

boundary. Here we consider open 2-simplices because we do not want edges

that are not incident to a vertex in the boundary to be part of the boundary

layer. Note that L is usually not a simplicial complex. If D has at least

two interior vertices, and no edge connecting nonconsecutive vertices of the

boundary, we define the following complex. Consider the simplicial complex A

constructed by taking the disjoint union of the vertices, edges and 2-simplices

(now closed) of the boundary layer of D and identifying the boundaries of the
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closed 2-simplices but only in the vertices and edges of the boundary layer of

D (see Figure 4.1). Since D has more than one interior vertex and no edge

connecting nonconsecutive vertices of the boundary, A is an annulus without

interior vertices. We call A the boundary complex of D. It has two boundary

components ∂1A and ∂2A, the first of which is isomorphic to ∂D. If D is a

length complex, then A is a length complex with the induced length. Note

that if D has exactly two interior vertices, its boundary complex A is not a

simplicial complex, since it has a double edge. However, it is easy to see that

all the definitions and results can be adapted to this case.

Note that if the disk had only one interior vertex, its boundary complex

would be the disk itself. This is why that case is excluded from the previous

definition.

D A

Figure 4.1: A disk D and its boundary complex A

Lemma 4.2.10. Let φ : D → X be a minimal filling diagram for a cycle σ in

a locally large length complex X, where D has at least two interior vertices,

and no edge connecting nonconsecutive vertices of the boundary. Let A be the

boundary complex of D. Then:

l(∂1A) ≥ l(∂2A) + 2.

Proof. We apply Gauss–Bonnet to D and A to obtain (after simplifying the

notation of the indices of the sums)

2 =
∑
f∈D

κ(f) +
∑
v∈D

κ(v) ≤
∑
f∈A

κ(f) +
∑
v∈∂D

κ(v) =
∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v),

0 =
∑
f∈A

κ(f) +
∑

v∈∂1A∪∂2A

κ(v).
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The first and last equalities hold because the Euler characteristic of a disk

and an annulus are 1 and 0 respectively. The first inequality is due to the fact

that the curvature of faces and interior vertices is always non-positive.

By taking the double of the first expression and subtracting the second

expression we get

4 ≤ 2

(∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v)

)
−
∑
f∈A

κ(f) −
∑

v∈∂1A∪∂2A

κ(v)

=
∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v) −
∑
v∈∂2A

κ(v).

(4.1)

Observe that the Euler characteristic of the link of a vertex in the boundary

is equal to 1. We note by F1 and F2 the sets of 2-simplices of A having one

edge in ∂1A and ∂2A respectively. For a face f in F1 or F2 we denote its

three sides by ef1 , ef2 and ef3 , where ef1 is the one lying in the corresponding

boundary component. We also denote their respective lengths by lf1 , lf2 and

lf3 . Note that the cardinality of Fi is |∂iA| for i = 1, 2. From this we have

4 ≤
∑
f∈A

((∑
e∈∂f

l(e)

)
− 1

)
+
∑
v∈∂1A

1 −
∑

e∈LkA(v)

l(e)


−
∑
v∈∂2A

1 −
∑

e∈LkA(v)

l(e)


=
∑
f∈F1

((∑
e∈∂f

l(e)

)
− 1 + 1 + lf1 − lf2 − lf3

)

+
∑
f∈F2

((∑
e∈∂f

l(e)

)
− 1 − 1 − lf1 + lf2 + lf3

)
=
∑
f∈F1

2lf1 +
∑
f∈F2

(
−2 + 2lf2 + 2lf3

)
≤
∑
f∈F1

2lf1 +
∑
f∈F2

−2lf1

= 2l(∂1A) − 2l(∂2A).

The first equality is a rearrangement of the terms using the new notation

and the remark about the cardinalities of the Fi. The last inequality holds
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because the sum of the lengths of the sides of any 2-simplex is less than

or equal to 1. Dividing both sides by 2, we obtain the desired inequality

l(∂1A) ≥ l(∂2A) + 2.

We now have all the necessary ingredients to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. We have to show that every full cycle in X has length

greater than or equal to 2, and that X is flag. Let σ be a full cycle in X. Since

X is simply connected, by Lemma 4.2.5 there is a minimal filling diagram for

σ, say φ : D → X. We know that φ is nondegenerate because it is minimal.

Hence by Lemma 4.2.9, D is locally large. Since σ is full, there are no edges

in D connecting nonconsecutive vertices of its boundary, and D has at least

one interior vertex. If D has only one interior vertex v we have

0 ≥ κ(v) = 2 −
∑

e∈lkD(v)

l(e) = 2 − l(σ).

Therefore l(σ) ≥ 2. If D has more than one interior vertex, then we are under

the hypotheses of Lemma 4.2.10, and l(σ) = l(∂1A) ≥ 2.

Now we show that X is flag. We are going to see that it suffices to show

that every cycle with three edges spans a 2-simplex in X. Indeed, suppose we

have vertices v1, . . . , vn that are pairwise connected. If every triangle is filled,

we have the 1-skeleton of an (n− 1)-simplex in lkX(v1). Since the links of the

vertices are flag, v1, . . . , vn must span an n-simplex in X.

Take a cycle σ with three edges, and let φ : D → X be a minimal filling

diagram for σ. If D has more than one interior vertex, then by Lemma 4.2.10,

l(σ) ≥ 2, which is impossible. If D has exactly one interior vertex v, then just

as before

0 ≥ κ(v) = 2 −
∑

e∈lkD(v)

l(e) = 2 − l(σ).

Once again, this would imply that l(σ) ≥ 2. So the only possibility is that D

has no interior vertices. Hence, σ spans a 2-simplex in X.

4.3 Parabolic subgroups

We now define a length function for the Artin complex of a given (2, 2)-free

two-dimensional Artin group, and show that it is a systolic-by-function length
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complex. Then we make use of its geometric structure to prove the following

theorem. The definition of geodesic used in the theorem will be introduced

once we have defined the length function for the Artin complex.

Theorem 4.3.1. Let AΣ be a (2, 2)-free two-dimensional Artin group with

|Σ| ≥ 3 and XΣ its Artin complex. Let u and v be vertices of XΣ. Then there

exists a path joining u and v such that if an element of AΣ fixes u and v, it

fixes this path pointwise.

As an immediate consequence, the results of Theorem 4.1.5 hold for all

(2, 2)-free two-dimensional Artin groups (the cases with less than 3 generators

were established in [30, 31]). In particular, we derive the main result of this

chapter.

Theorem 4.3.2. Let AΣ be a (2, 2)-free two-dimensional Artin group. Then

the intersection of an arbitrary family of parabolic subgroups is a parabolic

subgroup.

We start by proving a characterization of (2, 2)-free two-dimensional Artin

groups.

Proposition 4.3.3. A two-dimensional Artin group AΓ is (2, 2)-free if and

only if there exist numbers m′
xy ∈ {2, 3, 4, 6} with m′

xy ≤ mxy and m′
xy = m′

yx

for every x, y ∈ V (Γ), such that 1
m′

xy
+ 1

m′
yz

+ 1
m′

zx
≤ 1 and 1

m′
xy

≤ 1
m′

yz
+ 1

m′
zx

for every x, y, z ∈ V (Γ).

Proof. It is clear that if such m′
xy exist, then AΣ is (2, 2)-free. Now suppose

that Γ does not have two consecutive edges labeled by 2. Then we can define

the m′
xy in the following way:

• if mxy = 2, then m′
xy = 2;

• if mxy = 3, then m′
xy = 3;

• if mxy > 3 and the edge is not adjacent to an edge labeled by 2, then

m′
xy = 3;

• if mxy forms a triangle with a 2 and a 3, then m′
xy = 6;

• in any other case, m′
xy = 4.
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It is easy to see that such labeling is well defined since AΣ is a (2, 2)-free

two-dimensional Artin group, and that it satisfies the required conditions.

Let AΣ be a (2, 2)-free two-dimensional Artin group. We define a length

function for XΣ, l : edges(XΣ) → [0, 1
2
] as follows. Edges in XΣ are simplices

of codimension |Σ| − 2, so they correspond to subsets of Σ that are missing

two elements. We define the length of an edge of type Σ\{σx, σy} to be 1
m′

xy
,

where the m′
xy are the ones in Proposition 4.3.3. Since AΣ is (2, 2)-free and

two-dimensional, the sum of the lengths of the three edges of every triangle is

less than or equal to 1, and the triangle inequality holds, so l is well defined.

Theorem 4.3.4. Let AΣ be a (2, 2)-free two-dimensional Artin group with

|Σ| ≥ 3. Then XΣ with the length function defined as above is systolic-by-

function.

Proof. The proof proceeds by induction on |Σ| by using our local-to-global

Theorem 4.2.4.

If |Σ| = 3, by Lemma 3.2.3 XΣ is connected and simply connected. Let v

be a vertex of XΣ. Lemma 4.1.3 says that lkXΣ
(v) is isomorphic to the Artin

complex XΣ′ associated to the Artin group AΣ′ , where Σ′ ⊂ Σ with |Σ′| = 2.

The complex XΣ′ is a graph and it inherits the length function from XΣ. If

XΣ′ is a tree, then it is clearly a large length complex. If it is not a tree, then

by Proposition 4.3.3, the length of its edges is greater than or equal to 1
m

,

where m is the label in AΣ′ . By Lemma 4.1.4 all cycles in XΣ′ have at least

2m edges, so it is a large length complex. Thus XΣ is systolic-by-function.

Now assume that |Σ| > 3 and that the claim holds for every (2, 2)-free

two-dimensional Artin group with fewer generators. Once again, we know

XΣ is connected and simply connected from Lemma 3.2.3. Applying Lemma

4.1.3 we get that the link of every vertex is systolic-by-function. Hence, by

Theorem 4.2.4, the link of every vertex is large. Therefore XΣ is systolic-by-

function.

With the length function defined as above, one can give XΣ a metric such

that it is metrically systolic in the sense of [57] (see Section 1.4). Concretely,

if an edge e ∈ XΣ has l(e) = 1
k
, then the length of e in the metric is sin(π

k
).

More generally, if X is a systolic-by-function complex with length function l,

where the image of l is finite and l is positive, then X can be made into a
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metrically systolic complex. Just as in the Artin complex, the length of an

edge e in the metric is sin(πl(e)). This assignment works because of the law

of the sines. We will not use metric systolicity in this chapter, but this fact

may be of interest for other applications.

We define the distance between two vertices u, v ∈ XΣ as

d(u, v) = min{l(γ) | γ is a path connecting u and v}.

Note that this minimum is attained, because XΣ is connected and the image

of l is a finite subset of [0, 1
2
]. We say that a path γ between u and v is a

geodesic if it is of minimum length.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Let u and v be vertices of XΣ. We want to show

that for every pair of vertices u, v ∈ X
(0)
Σ there exists a path joining u and

v such that if an element g ∈ AΣ fixes both u and v, it fixes pointwise this

path. Suppose it is not the case. Take vertices u and v such that there is

no such path and such that d(u, v) is minimal among such pairs. Let γ be a

geodesic between them (it exists because XΣ is connected), and g ∈ AΣ an

element that fixes u and v, but not γ. Then g maps γ to another geodesic γ′

between u and v. Since d(u, v) is minimal, the union of γ and γ′ determines

a cycle in XΣ. We will show that we can fill the cycle with a minimal filling

diagram and find a shortcut (i.e. a path shorter than γ) between u and v,

contradicting the fact that γ is a geodesic.

Let φ : D → XΣ be a minimal filling diagram for the concatenation of

γ and γ′ (it exists because XΣ is simply connected). We label the vertices

of γ in D as u = v0, v1, . . . , v|γ|−1, v|γ| = v, and the vertices of γ′ in D as

u = v′0, v
′
1, . . . , v

′
|γ′|−1, v

′
|γ′| = v. Note that

1. we may assume, without loss of generality, that there is no edge between

nonconsecutive vertices of γ, or between nonconsecutive vertices of γ′,

because γ is a geodesic, and

2. there is no edge between vi and v′i for 1 ≤ i ≤ |γ| − 1, because vertices

of the same type are not connected by an edge in XΣ.

However, there may be an edge between vi and v′j if i ̸= j. Take the

rightmost of these edges. We call it e and assume that it connects vk with
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v′k+r (see Figure 4.2). Let D̃ be the disk delimited by e, and let γ̃ and γ̃′ be

the paths connecting vk and v along the boundary of D̃, where γ̃′ contains e.

If there is no such edge e, we consider D̃ = D, γ̃ = γ and γ̃′ = γ′, and continue

in the same way. It is clear that γ̃ is a geodesic. Then l(e) ≥ d(vk, vk+r). We

also have that l(e) ≤ d(vk, vk+r). To see so, we project both e and the path in

γ̃ between vk and vk+r to the fundamental domain K, and apply the triangle

inequality r − 1 times. Hence, l(γ̃′) = l(γ̃). From the previous observations,

D̃ has no edges connecting nonconsecutive boundary vertices. Therefore, it

has at least one interior vertex. As in the proof of Theorem 4.2.4 we get that

l(∂D̃) = l(γ̃) + l(γ̃′) ≥ 2.

e

vk

v′k+r

u v

γ

γ′

D

γ̃

γ̃′

D̃

Figure 4.2: Disk D, the rightmost edge e and disk D̃

If either vk or v have degree greater than 3, then by Lemma 4.2.10 we could

find a path in D̃ connecting vk and v shorter than γ̃. That would contradict

the fact that γ is a geodesic. So we can assume that both vk and v have degree

3 (it is clear that they cannot have degree 2). Let e1 and e2 be the interior

edges incident to vk and v respectively. If either of them has length less than
1
2
, then either by Lemma 4.2.10, in case D̃ has more than one interior vertex,

or by the inequality l(∂D̃) ≥ 2 if D̃ has exactly one interior vertex, we can

find a shortcut and get a contradiction.

The only situation remaining is when vk and v have degree 3, and l(e1) =

l(e2) = 1
2
. In that case we can find a path σ in D̃ starting at vk and ending

with e2, with l(σ) ≤ l(γ̃). If the inequality is strict the proof is finished. If

l(σ) = l(γ̃), consider the geodesic τ from u to v consisting of concatenating

the subpath of γ that goes from u to vk with φ(σ). We can assume φ(σ) is

a path in XΣ, because otherwise we would have found a shortcut. Since this

geodesic ends with an edge of length 1
2

and no triangle has two edges of length
1
2
, applying the same procedure to τ gives us a path between u and v shorter
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than γ, obtaining the desired contradiction.

Theorem 4.3.2 follows immediately from Theorems 4.1.5 and 4.3.1. Ap-

plying this Theorem 4.3.2 together with previous results we get following

corollary.

Corollary 4.3.5. Let AΣ be an Artin group with at most three generators.

Then the intersection of an arbitrary family of parabolic subgroups of AΣ is a

parabolic subgroup of AΣ.

Proof. Such an Artin group is either spherical type, right-angled or (2, 2)-free

two-dimensional. Therefore, either by [30] for the spherical case; by [38] for

the right-angled case; or by Theorem 4.3.2 for the (2, 2)-free two-dimensional

case, we get the desired result.

Combining recent work of Möller, Paris and Varghese [69] with Theorem

4.3.2, we get the a partial result for all two-dimensional Artin groups.

Corollary 4.3.6. Let AΓ be a two-dimensional Artin group. Let P1 be a

parabolic subgroup corresponding to a complete subgraph of Γ, and let P2 be

an arbitrary parabolic subgroup. Then P1 ∩ P2 is a parabolic subgroup of AΓ.

Unfortunately, a result analogous to Theorem 4.3.1 does not hold for all

Artin groups. Hence, this method of finding a fixed path in the Artin com-

plex does not work as a unifying approach to the problem of intersection of

parabolic subgroups. We give two examples where it fails. One of them is not

(2, 2)-free and the other one is not two-dimensional.

Example 4.3.7. Consider first the example in the left of Figure 4.3. The

label n can be taken to be ∞, in which case the corresponding Artin group is

two-dimensional, but still not (2, 2)-free. In any case, the element σxσz fixes

all vertices of type ⟨σx, σz⟩. However it does not fix any vertex of type ⟨σx, σy⟩
or ⟨σy, σz⟩. Hence it does not fix any path between vertices of type ⟨σx, σz⟩.

Now lets look at the example on the right. This Artin group is (2, 2)-

free, but not two-dimensional. The element σaσb fixes vertices ⟨σa, σb⟩ and

σcσaσbσc⟨σa, σb⟩, but does not fix any path joining them.

In both examples it can be easily checked by hand that the proposed ele-

ments work. Nonetheless, there is a geometric intuition behind them. When
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the Artin group is spherical, the corresponding Coxeter group is finite. The

associated Coxeter complex (which is defined in the same fashion as the Artin

complex, but considering the Coxeter group) is a sphere. If vertices in the

Artin complex were to be fixed by an automorphism, then the corresponding

elements in the Coxeter complex should also be fixed. What we are doing in

these examples is picking opposite poles in the Coxeter complex and rotating

along the axis that connects them.

n

22

3

32

x

y

z a

b

c

Figure 4.3: Graphs of the failing examples.

We finish this chapter by applying our results and the algorithm introduced

in [29, Algorithm 4] to solve the conjugacy stability problem for (2, 2)-free two-

dimensional Artin groups. A subgroup H of a group G is conjugacy stable if,

for every pair h, h′ ∈ H such that there exists g ∈ G with g−1hg = h′, there

is h̃ ∈ H such that h̃−1hh̃ = h′. The conjugacy stability problem consists in

deciding which of the parabolic subgroups of an Artin group are conjugacy

stable. We follow the notation and definitions of [29].

Theorem 4.3.8 ([29], Theorem A). Let AΣ be a standardisable Artin group

satisfying the ribbon property, and such that every element in AΣ admits a

parabolic closure. Then, there is an algorithm that decides if a parabolic sub-

group P of AΣ is conjugacy stable or not.

It is known by results of Godelle [47] that two-dimensional Artin groups are

standardisable and satisfy the ribbon property. Also, by Theorem 4.3.1 and

Theorem 4.1.5, any element in a (2, 2)-free two-dimensional Artin group has a

parabolic closure. Therefore, (2, 2)-free two-dimensional Artin groups satisfy
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the hypothesis of Theorem 4.3.8. By examining the aforementioned algorithm

in the (2, 2)-free two-dimensional case we obtain the following classification

theorem.

Theorem 4.3.9. Let AΓ be a (2, 2)-free two-dimensional Artin group and

AΓX
a standard parabolic subgroup. Then AΓX

is not conjugacy stable if and

only if there exist vertices x, y in ΓX that are connected by an odd-labeled path

in Γ, but are not connected by an odd-labeled path in ΓX .

Proof. We need to understand [29, Algorithm 4] in the case of a (2, 2)-free

two-dimensional Artin group AΓ and a standard parabolic subgroup AΓX
.

Since AΓ is two-dimensional, the only spherical-type parabolic subgroups are

dihedral Artin groups of type I2(m). Thus, the algorithm reduces to checking

if there exist vertices x, y in ΓX that are connected by an odd-labeled path in

Γ, but are not connected by an odd-labeled path in ΓX . This is exactly the

criterion we wanted to prove.

For a more detailed proof of this fact, see [31, Theorem C]. Their proof is

for large-type Artin groups, but it also works in the (2, 2)-free two-dimensional

case.





Chapter 5

Parabolics inside parabolics

In this chapter we prove Theorem 2.3.1. That is, we show that a parabolic

subgroup of an Artin group which is contained in another parabolic subgroup

is a parabolic subgroup of said parabolic subgroup. The results presented are

joint work with Luis Paris and can be found in [11].

Theorem 2.3.1 was proved by Rolfsen in [76] and by Fenn, Rolfsen and

Zhu in [40] for braid groups, by Paris in [73] and by Godelle in [45] for Artin

groups of spherical type, by Godelle in [46] for Artin groups of FC type, by

Godelle in [47] for two-dimensional Artin groups and by Haettel in [51] for

some Euclidean type Artin groups. Our proof is independent from these works

and it is valid for all Artin groups. Notice that results proved for all Artin

groups are quite uncommon in the literature, so our theorem is in some sense

a rarity.

We follow the notation introduced in Chapter 2. Let X ⊂ V (Γ). In order

to achieve our goal we construct a set-retraction πX : AΓ → AX to the inclu-

sion map AX ↪→ AΓ (see Proposition 5.1.3). This map is defined directly on

the words that represent the elements of A, but it is not a homomorphism,

although its restriction to the so-called colored subgroup is a homomorphism.

The construction of this map is interesting by itself and it can be considered

as an important result of the chapter. However, we underline that this con-

struction is implicit in the proof of Theorem 1.2 of Charney and Paris [22]

and our contribution consists in making it explicit.

101
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5.1 The proofs

Let X be a subset of V (Γ). We set SX = {sx | x ∈ X} and we denote by

WX the subgroup of WΓ generated by SX . We know by Bourbaki [12] that

WX is naturally isomorphic to WΓX
, hence, as for Artin groups, we will not

differentiate WX from WΓX
. The subgroup WX is called a standard parabolic

subgroup of WΓ and a subgroup conjugate to WX is called a parabolic subgroup

of WΓ.

We denote by θ : AΓ → WΓ the natural epimorphism which sends σx to sx
for all x ∈ V (Γ). The kernel of θ is denoted by CAΓ and it is called the colored

Artin group of Γ. The epimorphism θ has a natural set-section ι : WΓ → AΓ

defined as follows. For w ∈ WΓ the word length of w with respect to S is

denoted by ℓS(w), and an expression w = sx1sx2 · · · sxp is called reduced if

p = ℓS(w). Let w ∈ WΓ. We choose a reduced expression w = sx1sx2 · · · sxp

and we set ι(w) = σx1σx2 · · · σxp . By Tits [85] this definition does not depend

on the choice of the reduced expression. Notice that ι is not a homomorphism,

but, if u, v ∈ WΓ are such that ℓS(uv) = ℓS(u) + ℓS(v), then ι(uv) = ι(u) ι(v).

We clearly have θ ◦ ι = id.

For X ⊂ V (Γ) we set CAX = CAΓ ∩ AX . Since the inclusion map from

ΓX to Γ induces isomorphisms WΓX
→ WX and AΓX

→ AX , the isomorphism

AΓX
→ AX restricts to an isomorphism CAΓX

→ CAX . So, as for WX and

AX , we will not differentiate CAX from CAΓX
.

The following lemma arises from the exercises of Chapter 4 of Bourbaki

[12] (see also Davis [34, Section 4.3]) and it is widely used in the study of

Coxeter groups.

Lemma 5.1.1 (Bourbaki [12]). Let X, Y ⊂ V (Γ) and let w ∈ WΓ.

(1) There exists a unique element of minimal length in the double-coset

WX wWY .

(2) Let w0 be the element of minimal length in WX wWY . For each v ∈
WX wWY there exist u1 ∈ WX and u2 ∈ WY such that v = u1w0u2 and

ℓS(v) = ℓS(u1) + ℓS(w0) + ℓS(u2).

(3) Let w0 be the element of minimal length inWX wWY . For each u1 ∈ WX

we have ℓS(u1w0) = ℓS(u1) + ℓS(w0), and for each u2 ∈ WY we have
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ℓS(w0u2) = ℓS(w0) + ℓS(u2).

Let X, Y ⊂ V (Γ) and w0 ∈ WΓ. We say that w0 is (X, Y )-minimal if it is

of minimal length in the double-coset WX w0WY .

The first ingredient in the proof of Theorem 2.3.1 is the following. It

essentially states that the conclusion of Theorem 2.3.1 holds if we are under

the same hypothesis, but over the Coxeter group.

Lemma 5.1.2. Let X, Y ⊂ V (Γ) and w ∈ WΓ such that wWYw
−1 ⊂ WX .

Then there exist Y ′ ⊂ X and α ∈ AX such that ι(w)AY ι(w)−1 = αAY ′α−1.

In particular, ι(w)AY ι(w)−1 ⊂ AX .

Proof. Let w0 be the element of minimal length in the double-coset WX wWY .

By Lemma 5.1.1 there exist u1 ∈ WX and u2 ∈ WY such that w = u1w0u2
and ℓS(w) = ℓS(u1) + ℓS(w0) + ℓS(u2). Since wWYw

−1 ⊂ WX , u1 ∈ WX and

u2 ∈ WY , we have w0WYw
−1
0 ⊂ WX .

Let y ∈ Y , and let ψ(y) = w0syw
−1
0 ∈ WX . We have that w0sy =

ψ(y)w0. Furthermore, by Lemma 5.1.1 (3), we have ℓS(w0) + 1 = ℓS(w0sy) =

ℓS(ψ(y)w0) = ℓS(ψ(y)) + ℓS(w0), and hence ℓS(ψ(y)) = 1. So, there exists

f(y) ∈ X such that w0syw
−1
0 = ψ(y) = sf(y). Note that the above defined

map f : Y → X is injective since conjugation by w0 is an automorphism. We

set Y ′ = f(Y ) ⊂ X.

Let y ∈ Y . We have w0sy = sf(y)w0 and ℓS(w0sy) = ℓS(sf(y)w0) = ℓS(w0)+

1, hence

ι(w0)σy = ι(w0) ι(sy) = ι(w0sy) = ι(sf(y)w0) = ι(sf(y)) ι(w0) = σf(y) ι(w0) .

This implies that ι(w0) ΣY ι(w0)
−1 = ΣY ′ , thus ι(w0)AY ι(w0)

−1 = AY ′ .

We set α = ι(u1) ∈ AX . Then, since ι(u2) ∈ AY ,

ι(w)AY ι(w)−1 = ι(u1) ι(w0) ι(u2)AY ι(u2)
−1ι(w0)

−1ι(u1)
−1 =

ι(u1) ι(w0)AY ι(w0)
−1ι(u1)

−1 = ι(u1)AY ′ ι(u1)
−1 = αAY ′α−1 .

We now turn to construct a set-retraction of the inclusion map from AX

into AΓ, that is, a map πX : AΓ → AX which satisfies πX(α) = α for all

α ∈ AX . This map will be used to prove Lemma 5.1.4 which is the second
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and last ingredient in the proof of Theorem 2.3.1. Note that the main ideas of

the proof of Proposition 5.1.3 come from the proof of Theorem 1.2 of Charney

and Paris [22].

Recall that (Σ⊔Σ−1)∗ denotes the free monoid freely generated by Σ⊔Σ−1,

that is, the set of words over the alphabet Σ ⊔ Σ−1. Let X ⊂ V (Γ). Let

α̂ = σε1
z1
σε2
z2
· · ·σεp

zp ∈ (Σ ⊔ Σ−1)∗. We set u0 = 1 ∈ WΓ and, for i ∈ {1, . . . , p},

we set ui = sz1sz2 · · · szi ∈ WΓ. We write each ui in the form ui = viwi where

vi ∈ WX and wi is (X, ∅)-minimal. Let i ∈ {1, . . . , p}. We set ti = wi−1sziw
−1
i−1

if εi = 1 and ti = wisziw
−1
i if εi = −1. If ti ̸∈ SX , then we set τi = 1. Suppose

that ti ∈ SX , and let xi ∈ X such that ti = sxi
. Then we set τi = σεi

xi
. Finally,

we set

π̂X(α̂) = τ1τ2 · · · τp ∈ (ΣX ⊔ Σ−1
X )∗ .

Proposition 5.1.3. Let X ⊂ V (Γ).

(1) Let α̂, β̂ ∈ (Σ⊔Σ−1)∗. If α̂ and β̂ represent the same element of AΓ, then

π̂X(α̂) and π̂X(β̂) represent the same element of AX . In other words, the

map π̂X : (Σ⊔ Σ−1)∗ → (ΣX ⊔ Σ−1
X )∗ induces a set-map πX : AΓ → AX .

(2) We have πX(α) = α for all α ∈ AX .

(3) The restriction of πX to CAΓ is a homomorphism πX : CAΓ → CAX .

While the definition of π̂X may seem ad hoc at first, it will become clear in

Section 5.2, where we introduce the Salvetti complex and prove Proposition

5.1.3. Now, thanks to Proposition 5.1.3 we can prove the second ingredient

of the proof of Theorem 2.3.1.

Lemma 5.1.4. Let X ⊂ V (Γ), α ∈ AX and β ∈ CAΓ. If βαβ−1 ∈ AX , then

βαβ−1 = πX(β)απX(β)−1.

Proof. We assume that βαβ−1 ∈ AX . We choose a word σε1
z1
σε2
z2
· · ·σεp

zp ∈
(Σ⊔Σ−1)∗ which represents β and a word σµ1

x1
σµ2
x2

· · ·σµq
xq ∈ (ΣX ⊔Σ−1

X )∗ which

represents α. We start with the definition of πX(βαβ−1) which uses the rep-

resentative word σε1
z1
· · · σεp

zpσ
µ1
x1

· · ·σµq
xqσ

−εp
zp · · ·σ−ε1

z1
. We set u0,1 = 1 and, for

i ∈ {1, . . . , p}, we set ui,1 = sz1sz2 · · · szi . We write each ui,1 in the form

ui,1 = vi,1wi,1 where vi,1 ∈ WX and wi,1 is (X, ∅)-minimal. Let i ∈ {1, . . . , p}.

We set ti,1 = wi−1,1sziw
−1
i−1,1 if εi = 1, and ti,1 = wi,1sziw

−1
i,1 if εi = −1. We
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set τi,1 = 1 if ti,1 ̸∈ SX , and τi,1 = σεi
xi,1

if ti,1 ∈ SX , where xi,1 is the element

of X such that ti,1 = sxi,1
. We set u0,2 = θ(β) and, for i ∈ {1, . . . , q}, we

set ui,2 = θ(β) sx1sx2 · · · sxi
. We write each ui,2 in the form ui,2 = vi,2wi,2,

where vi,2 ∈ WX and wi,2 is (X, ∅)-minimal. Let i ∈ {1, . . . , q}. We set

ti,2 = wi−1,2sxi
w−1

i−1,2 if µi = 1, and ti,2 = wi,2sxi
w−1

i,2 if µi = −1. We set

τi,2 = 1 if ti,2 ̸∈ SX , and τi,2 = σµi
xi,2

if ti,2 ∈ SX , where xi,2 is the element of X

such that ti,2 = sxi,2
. We set up+1,3 = θ(β) θ(α) and, for i ∈ {1, . . . , p}, we set

ui,3 = θ(β) θ(α) szpszp−1 · · · szi . We write each ui,3 in the form ui,3 = vi,3wi,3,

where vi,3 ∈ WX and wi,3 is (X, ∅)-minimal. Let i ∈ {1, . . . , p}. We set

ti,3 = wi+1,3sziw
−1
i+1,3 if εi = −1, and ti,3 = wi,3sziw

−1
i,3 if εi = 1. We set τi,3 = 1

if ti,3 ̸∈ SX , and τi,3 = σ−εi
xi,3

if ti,3 ∈ SX , where xi,3 is the element of X such

that ti,3 = sxi,3
. Then, by definition,

πX(βαβ−1) = τ1,1τ2,1 · · · τp,1τ1,2τ2,2 · · · τq,2τp,3 · · · τ2,3τ1,3 .

We also have πX(βαβ−1) = βαβ−1, since βαβ−1 ∈ AX .

We have τ1,1τ2,1 · · · τp,1 = πX(β) by definition. Let i ∈ {0, 1, . . . , q}. We

have θ(β) = 1 since β ∈ CA, hence ui,2 = sx1sx2 · · · sxi
∈ WX . It follows

that vi,2 = ui,2 and wi,2 = 1. Let i ∈ {1, . . . , q}. Then ti,2 = sxi
∈ SX and

τi,2 = σµi
xi

. So,

τ1,2τ2,2 · · · τq,2 = σµ1
x1
σµ2
x2

· · ·σµq
xq

= α .

Let i ∈ {0, 1, . . . , p}. We have 1 = θ(β) = sz1 · · · sziszi+1
· · · szp , hence

szp · · · szi+1
= sz1 · · · szi = ui,1, and therefore

ui,3 = θ(β) θ(α) szp · · · szi = θ(α)ui−1,1 = θ(α) vi−1,1wi−1,1 .

Since θ(α) ∈ WX , it follows that vi,3 = θ(α) vi−1,1 and wi,3 = wi−1,1. Let

i ∈ {1, . . . , p}. If εi = 1, then

ti,3 = wi,3sziw
−1
i,3 = wi−1,1sziw

−1
i−1,1 = ti,1 .

Similarly, if εi = −1, then

ti,3 = wi+1,3sziw
−1
i+1,3 = wi,1sziw

−1
i,1 = ti,1 .

In both cases it follows that τi,3 = τ−1
i,1 . So,

τp,3 · · · τ2,3τ1,3 = τ−1
p,1 · · · τ−1

2,1 τ
−1
1,1 = πX(β)−1 .
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Finally,

βαβ−1 = πX(βαβ−1) = πX(β)απX(β)−1 .

Proof of Theorem 2.3.1. Let X, Y ⊂ V (Γ) and α ∈ A such that αAY α
−1 ⊂

AX . Let w = θ(α). We have wWYw
−1 ⊂ WX , hence, by Lemma 5.1.2,

there exist Y ′ ⊂ X and β2 ∈ AX such that ι(w)AY ι(w)−1 = β2AY ′β−1
2 . Let

β1 = α ι(w)−1. Then

αAY α
−1 = α ι(w)−1 ι(w)AY ι(w)−1 ι(w)α−1 = β1β2AY ′β−1

2 β−1
1 .

We have β1 ∈ CA, since θ(β1) = ww−1 = 1. Now, β2AY ′β−1
2 ⊂ AX and

β1(β2AY ′β−1
2 )β−1

1 ⊂ AX , hence, by Lemma 5.1.4,

αAY α
−1 = β1(β2AY ′β−1

2 )β−1
1 = πX(β1) (β2AY ′β−1

2 ) πX(β1)
−1 .

So, if γ = πX(β1) β2, then γ ∈ AX and αAY α
−1 = γAY ′γ−1.

5.2 The Salvetti complex

In this section we recall a geometric construction associated to an Artin group

and use it to prove Proposition 5.1.3. The Salvetti complex of Γ is a CW-

complex Sal(Γ) whose 2-skeleton coincides with the 2-complex associated with

the standard presentation of AΓ (see Godelle and Paris [48], Paris [74], Salvetti

[78], or Charney and Davis [19] for a precise definition). In particular, Sal(Γ)

has a unique vertex o0, and it has one edge āx for each x ∈ V (Γ). We also have

an isomorphism AΓ → π1(Sal(Γ)) which sends σx to the homotopy class of āx
for all x ∈ V (Γ). Let p : Sal(Γ) → Sal(Γ) be the regular covering associated

with θ : AΓ → WΓ. Note that Sal(Γ) has fundamental group CAΓ. The set of

vertices of Sal(Γ) is a set {o(u) | u ∈ WΓ} in one-to-one correspondence with

WΓ and the set of edges is a set {ax(u) | x ∈ V (Γ) , u ∈ WΓ} in one-to-one

correspondence with V (Γ) ×WΓ. An edge ax(u) connects o(u) with o(usx),

and it is assumed to be oriented from o(u) to o(usx). We have p(o(u)) = o0
for all u ∈ WΓ and p(ax(u)) = āx for all (x, u) ∈ V (Γ) ×WΓ. We have an

action of WΓ on Sal(Γ) by deck transformations, and Sal(Γ)/W = Sal(Γ).

This action is defined on the vertices and edges as follows:

v o(u) = o(vu) , v ax(u) = ax(vu) .
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Let X ⊂ V (Γ). We have an embedding ν̄X : Sal(ΓX) → Sal(Γ) which sends

āx to āx for all x ∈ X and which induces the natural embedding of AX into AΓ.

We also have an embedding νX : Sal(ΓX) → Sal(Γ) which sends o(u) to o(u)

for all u ∈ WX , which sends ax(u) to ax(u) for all (x, u) ∈ X×WX , and which

induces the natural embedding of CAX into CAΓ. These two embeddings are

linked with the following commutative diagram:

Sal(ΓX)
νX //

p
��

Sal(Γ)

p
��

Sal(ΓX)
ν̄X // Sal(Γ)

We know by Godelle and Paris [48, Theorem 2.2] that the embedding

νX : Sal(ΓX) → Sal(Γ) admits a continuous retraction ρX : Sal(Γ) → Sal(ΓX).

This retraction is cellular in the sense that it sends the k-skeleton of Sal(Γ)

to the k-skeleton of Sal(ΓX) for all k ≥ 0. The following explicit description

of ρX on the 0 and 1-skeletons of Sal(Γ) is proved by Charney and Paris in

[22, Lemma 2.6]. Let u ∈ WΓ and z ∈ V (Γ). We write u in the form u = vw

where v ∈ WX and w is (X, ∅)-minimal.

• ρX(o(u)) = o(v).

• If wszw
−1 ̸∈ SX , then ρX(az(u)) = o(v).

• Suppose that wszw
−1 ∈ SX . Let x ∈ X such that wszw

−1 = sx. Then

ρX(az(u)) = ax(v).

In what follows we compose paths from left to right. Let α̂ = σε1
z1
σε2
z2
· · ·σεp

zp

be an element of (Σ ⊔ Σ−1)∗. Let

γ̄(α̂) = āε1z1 ā
ε2
z2
· · · āεpzp .

We see that, if α is the element of AΓ represented by α̂, then α, regarded as

an element of π1(Sal(Γ)) = AΓ, is represented by the loop γ̄(α̂). Let γ(α̂)

be the lift of γ̄(α̂) in Sal(Γ) starting at o(1). We set u0 = 1 ∈ WΓ and, for

i ∈ {1, . . . , p}, we set ui = sz1sz2 · · · szi ∈ WΓ. For i ∈ {1, . . . , p} we set

ai = azi(ui−1) if εi = 1, and ai = azi(ui) if εi = −1. Then

γ(α̂) = aε11 a
ε2
2 · · · aεpp .
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Let γX(α̂) = ρX(γ(α̂)). We write each ui in the form ui = viwi where vi ∈ WX

and wi is (X, ∅)-minimal. Let i ∈ {1, . . . , p}. We set ti = wi−1sziw
−1
i−1 if εi = 1,

and ti = wisziw
−1
i if εi = −1. If ti ̸∈ SX , then, as shown by Charney and

Paris in [22, Lemma 2.6], vi = vi−1. In that case we denote by bi the constant

path at o(vi−1) = o(vi). Suppose that ti ∈ SX . Let xi ∈ X such that ti = sxi
.

We set bi = axi
(vi−1) if εi = 1, and bi = axi

(vi)
−1 if εi = −1. It follows from

the description of the map ρX on the 0 and 1-skeletons given above that

γX(α̂) = b1b2 · · · bp .

Let γ̄X(α̂) = p(γX(α̂)). Let i ∈ {1, . . . , p}. If ti ̸∈ SX , then we denote by b̄i
the constant loop in Sal(ΓX) based at o0. Suppose ti ∈ SX . Let xi ∈ X such

that ti = sxi
as before. We set b̄i = āxi

if εi = 1, and b̄i = ā−1
xi

if εi = −1.

Then

γ̄X(α̂) = b̄1b̄2 · · · b̄p .

Let α′ ∈ AX = π1(Sal(ΓX)) be the element represented by the loop γ̄X(α̂).

Then we easily see that α′ is exactly the element of AX represented by the

word π̂X(α̂) ∈ (ΣX ⊔ Σ−1
X )∗.

Proof of Proposition 5.1.3. Proof of Part (1). Let α̂, β̂ ∈ (Σ ⊔ Σ−1)∗ be two

words that represent the same element of AΓ. Then γ̄(α̂) and γ̄(β̂) represent

the same element of AΓ = π1(Sal(Γ)), hence γ̄(α̂) and γ̄(β̂) are homotopic

loops. Since p : Sal(Γ) → Sal(Γ) is a covering map, γ(α̂) and γ(β̂) are homo-

topic relative to the extremities. Since ρX is continuous, it follows that γX(α̂)

and γX(β̂) are also homotopic relative to the extremities. Again, the map

p : Sal(ΓX) → Sal(ΓX) is continuous, hence γ̄X(α̂) and γ̄X(β̂) are homotopic

loops, and therefore they represent the same element of AX = π1(Sal(ΓX)).

We conclude that π̂X(α̂) and π̂X(β̂) represent the same element of AX .

Proof of Part (2). Let α ∈ AX . We choose a word α̂ = σε1
x1
σε2
x2
· · ·σεp

xp ∈
(ΣX ⊔Σ−1

X )∗ which represents α. Following the above definition, we set u0 = 1

and, for i ∈ {1, . . . , p}, we set ui = sx1sx2 · · · sxi
. We write each ui in the form

ui = viwi where vi ∈ WX and wi is (X, ∅)-minimal. Note that ui ∈ WX , hence

vi = ui and wi = 1. Let i ∈ {1, . . . , p}. We set ti = wi−1sxi
w−1

i−1 if εi = 1, and

ti = wisxi
w−1

i if εi = −1. In both cases we have ti = sxi
, and so τi = σεi

xi
. So,

π̂X(α̂) = τ1τ2 · · · τp = σε1
x1
σε2
x2
· · ·σεp

xp
= α̂ ,
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hence πX(α) = α.

Proof of Part (3). Observe that the restriction of πX to CAΓ coincides with

the homomorphism ρX,∗ : CAΓ = π1(Sal(Γ)) → π1(Sal(ΓX)) = CAX induced

by the map ρX : Sal(Γ) → Sal(ΓX). To see this, note that ρX does to edge

paths in Sal(Γ) what π̂X does to elements in (Σ⊔Σ−1)∗ (where the ε appearing

in the definition of π̂X reflect the orientation of the edges in Sal(Γ)). Hence

the restriction of πX to CAΓ is a homomorphism πX : CAΓ → CAX .
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algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits.
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