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Abstract. We compute necessary conditions on Yetter-Drinfeld modules over

the groups PGL(2, q) = PGL(2, Fq) and PSL(2, q) = PSL(2, Fq) to generate
finite dimensional Nichols algebras. This is a first step towards a classification

of pointed Hopf algebras with group of group-likes isomorphic to one of these

groups.
As a by-product of the techniques developed in this work, we prove that

any finite-dimensional pointed Hopf algebra over the Mathieu groups M20 or

M21 = PSL(3, 4) is the group algebra.

1. Introduction

Quantum groups, introduced by Drinfeld and Jimbo in the 1980’s, were con-
structed as a mean to solve the Quantum Yang-Baxter Equation. They are defor-
mations of enveloping algebras of semisimple complex Lie algebras. But they are
also pointed Hopf algebras, and this marked the beginning of an algebraic program:
classifying pointed Hopf algebras. A new chapter in this program was introduced
by Lusztig: when the deformation parameter q is a root of unit, we can consider
the so called Frobenius-Lusztig kernels. These are now finite dimensional pointed
Hopf algebras, which carry the combinatorial information of a Cartan matrix and
a Weyl group.

Soon, the question became how to construct new finite dimensional pointed Hopf
algebras, and how Cartan matrices and Weyl groups appear in them. To keep this
Introduction short, let us just mention that the Lifting Procedure [AS02] was the
answer to the first question and the introduction of a Weyl groupoid [Hec06a] was
the answer to the second one.

When the group of grouplikes is abelian, the whole procedure is well understood
nowadays. However, when the group is not abelian, we are still far away from the
classification. Not only so, but even the construction of finite dimensional pointed
Hopf algebras over non abelian groups is an elusive matter [Gr].

Let us recall that, according to the Lifting Procedure, to classify finite dimen-
sional pointed Hopf algebras with a specific group of grouplikes, the key step is to
compute the Nichols algebras generated by Yetter-Drinfeld modules over the group
which are finite dimensional. With the abelian tools at hand, it is possible to rule
out, for a given group (or a family of groups), a large class of Yetter-Drinfeld mod-
ules which can be shown to produce infinite dimensional Nichols algebras. There-
fore, the next step to classify f.d. pointed Hopf algebras over those groups is to
study the Nichols algebras produced by the remaining modules.

One of the key tools to produce Yetter-Drinfeld modules over groups is that of
racks and 2-cocycles. They allow to work with the braided vector spaces without
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having to resort to groups. However, when trying to classify pointed Hopf algebras
parametrized by groups, sometimes the rack 2-cocycles are “too general”. When
the group is fixed, a conjugacy class can not hold any 2-cocycle, but only some of
them. Many times, one can prove that all Nichols algebras produced by a conjugacy
class within a group are infinite-dimensional, while one is not able to prove that, as
a rack, the same thing happens with any 2-cocycle. Therefore, we develop in this
article the concept of class of type B, as follows (CG(g) is the centralizer of g ∈ G
and B(C, ρ) stands for the Nichols algebra produced by the Yetter-Drinfeld module
M(C, ρ) -see below-):

Definition 1.1. Let G be a group, g ∈ G and C = {xgx−1 : x ∈ G} its conjugacy
class. We say that C is a class of type B if for any representation ρ ∈ ĈG(g) the
Nichols algebra B(C, ρ) is infinite dimensional. We also say that g is of type B if
its conjugacy class is. We say that the group G is of type B if all its conjugacy
classes are.

Remark 1.2. By the lifting procedure, if G is of type B then any finite dimensional
pointed Hopf algebra with group of grouplikes (isomorphic to) G is (isomorphic to)
the group algebra of G.

Remark 1.3. It is proved in [AFGV08] that if g ∈ G is of type B and f : G ↪→ H
is a monomorphism of groups then f(g) is of type B in H. This is the reason why
this concept turns out to be a powerful tool.

In [FGV07] Nichols algebras over GL(2, q) and SL(2, q) were studied. In that
paper it is proved that SL(2, 2n) is of type B for n > 1. In this paper we deal
with the groups PGL(2, q) and PSL(2, q) for q a power of an odd prime number
(recall that if q is even then PSL(2, q) = PGL(2, q) = SL(2, q)). For definitions
and elementary properties of these groups, see for example [AB95].

One of the main results of this work is Theorem 1.4.

Theorem 1.4. The Mathieu groups M20 and M21 = PSL(3, 4) are of type B.

It is interesting to note that M20 is non-simple. Also, notice that this is the first
example of a non-simple group which is of type B. Other results of this work are
(see notations below):

Theorem 1.5. Let G = PGL(2, q) (see Table 4 in §5 for the conjugacy classes of
G). Then, class C2 is of type B. Also, the conditions to obtain finite-dimensional
Nichols algebras on the representations for classes C3, C4, C5 and C6 are given in
propositions 5.1, 5.2, 5.3 and 5.4.

Theorem 1.6. Let G = PSL(2, q) (see Tables 2 and 3 in §4). Then, classes Ci
are of type B for i < 6. Also, the conditions to obtain finite-dimensional Nichols
algebras on the representation for class C6 are given in Proposition 4.2 if q ≡ 1
(mod 4), or in Proposition 4.4 if q ≡ 3 (mod 4).

2. Preliminaries

2.1. Notations. As said, we use the same notation as in [FGV07]. The number p
will be an odd prime number and q a power of p, E = Fq2 will be the quadratic
extension of Fq, x = xq will be the Galois conjugate of x ∈ E, k will be an
algebraically closed field of characteristic zero, and we will write Rn for the set of
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Table 1. Character table of Dn (n even)

Degree rk srk

χ1 1 1 1
χ2 1 1 −1
χ3 1 (−1)k (−1)k

χ4 1 (−1)k (−1)k+1

µh (0 < h < n
2 ) 2 2 cos 2πhk

n 0

primitive n-th roots of 1 in k. If q ≡ 1 (mod 4) we write ±i for the square roots
of −1 in Fq. Following the notation in [Ada02], we fix an element ∆ ∈ Fq \ F2

q and
an element δ ∈ E which is a square root of ∆. We consider elements z ∈ E being
written as z = x+ δy, with x, y ∈ Fq.

If G is a finite group, C is a conjugacy class of g ∈ G, and ρ is an irreducible
representation of the centralizer CG(g), we write B(C, ρ) (or B(C) if no confusion
can arise) for the Nichols algebra generated by the Yetter-Drinfeld module V (g, ρ)
(see for example [AG99]).

2.2. Representations of the Dihedral group. We present the Dihedral group
Dn of order 2n by generators r and s and relations

rn = s2 = 1, srs = r−1.

When n is even, the irreducible representations are given in Table 1 (see [Ser77,
Section 5.3]). We will not need the Dihedral groups Dn with n odd.

2.3. Main tools. Note that, since ρ is irreducible and g ∈ Z(CG(g)) (the center of
CG(g)), then ρ(g) is a scalar (by Schur lemma). The following lemmas are contained
in [AF07a, AF07b, AZ07, FGV07, Hec06b].

Lemma 2.1. Assume that dim B(C, ρ) <∞. If g−1 ∈ C then ρ(g) = −1.

Proof. See [AZ07]. �

As in the cited papers, a conjugacy class is called real if it contains the inverses
of its elements.

Lemma 2.2. Assume that dim B(C, ρ) <∞. If there exist n > 1 such that gn ∈ C
then ρ(g) = −1 or ρ(g) ∈ R3. Moreover, if gn

2 6= g then ρ(g) = −1.

Proof. For the proof see for example [FGV07]. �

As in the cited papers, a conjugacy class is called quasireal if it contains proper
powers of its elements.

The next lemma is useful to treat, for instance, some conjugacy classes of invo-
lutions. A particular case of this Lemma appears also in [Fan07].

Lemma 2.3. Let G be a group.
(1) Assume that g0, g1, g2 ∈ G are conjugate and commute to each other, that

x1x2 and x2x1 belong to CG(g0), (where xi are such that gi = xig0x
−1
i for

i = 1, 2), and that g1g2 = gm0 for an odd integer m. Then g0 is of type B.
(2) The conjugacy class of involutions in the alternating group A4 is of type B.
(3) If g0, x ∈ G are such that g0 has order 2 and both x and g0x have order 3,

then g0 is of type B.
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Proof. Part 2 is a consequence of Part 1 by taking g0 = (1 2)(3 4), g1 = (1 3)(2 4),
g2 = (1 4)(2 3), x1 = (2 4 3) and x2 = x−1

1 (we have g1g2 = g0 in this way).
Also, Part 3 is a consequence of Part 2 and Remark 1.3 since, as proved in [Dic58,
Theorem 265] (or use GAP to check it), A4 can be presented by generators g0 and
x and relations

g2
0 = x3 = (g0x)3 = 1.

Therefore, we need to prove Part 1. First notice that, since gigj = gjgi, there
exists w ∈ V \ {0} and λi ∈ C such that ρ(gi)(w) = λiw for i = 0, 1, 2. For any
0 ≤ i, j ≤ 2, let γij = x−1

j gixj ∈ CG(g0). It is easy to see that

γ = (γij) =

 g0 g2 g1

g1 g0 gm1 g
−1
0

g2 gm2 g
−1
1 g0

 .

Then, W = span{x1 ⊗ w, x2 ⊗ w, x3 ⊗ w} is a braided vector subspace of M(C, ρ)
of abelian type with Dynkin diagram given by

d d�
�
d
A
A

λ0

λ0

λ0

λm0 λm
2−2

0

λm0

For B(C, ρ) to be finite dimensional, we should have λ0 = −1 (see [Hec05, Table
3]) and m should be an even number, which contradicts our assumption. �

3. Two examples: M20 and M21

In [Fan07] the five simple Mathieu groups are studied. In this section we will
study finite dimensional Nichols algebras over the Mathieu groups M20 and M21

(= PSL(3, 4)). We begin with the non-simple Mathieu group M20. For a definition
and elementary properties of this group, see [Hup67, Chapter XII]. Since we do
computations with GAP, we use the product in the symmetric groups as they do:
the product of two permutations σ and τ means the composition of the permutation
σ followed by τ .

We know (see for example [ATLAS]) that M20 = 〈α, β〉 as a subgroup of S20,
where

α = (1, 2, 4, 3)(5, 11, 7, 12)(6, 13)(8, 14)(9, 15, 10, 16)(1, 19, 20, 18),

β = (2, 5, 6)(3, 7, 8)(4, 9, 10)(11, 17, 12)(13, 16, 18)(14, 15, 19).

This is a group of order 960. The conjugacy classes are 1A, 2A, 2B, 3A, 4A, 4B,
4C, 5A, 5B (we are using the ATLAS notation for conjugacy classes, the name of a
class begins with the order of its elements).

Proposition 3.1. The Mathieu group M20 is of type B.

Proof. By [AZ07, Remark 1.1] we know that the class 1A gives infinite dimensional
Nichols algebras for every representation. Using GAP it is easy to check that all
conjugacy classes of M20 are real. Therefore, by Lemma 2.1, the conjugacy classes
with representatives of odd order (i.e. 3A, 5A, 5B) will also give infinite dimensional
Nichols algebras.

All the remaining classes are dealt with Lemma 2.3. We just list the elements g1,
g2 and x1 for each of them. In all the cases, we put g0 = g1g2 and x2 = x−1

1 . We have
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used GAP to find those elements, with the help of some scripts which may be down-
loaded from the third author’s web page: http://mate.dm.uba.ar/~lvendram/.

For class 2A, we take

g1 = (2, 3)(5, 19)(6, 13)(7, 18)(8, 14)(11, 17)(12, 20)(15, 16),

g2 = (2, 15)(3, 16)(5, 18)(6, 8)(7, 19)(11, 12)(13, 14)(17, 20),

x1 = (1, 4, 10)(3, 16, 15)(5, 11, 14)(6, 18, 17)(7, 12, 8)(13, 19, 20).

For class 2B,

g1 = (1, 15)(2, 10)(3, 4)(5, 13)(6, 7)(8, 18)(9, 16)(14, 19),

g2 = (1, 13)(2, 7)(3, 19)(4, 14)(5, 15)(6, 10)(8, 9)(16, 18),

x1 = (2, 19, 8)(3, 18, 6)(4, 9, 10)(5, 13, 15)(7, 14, 16)(12, 17, 20).

For class 4A,

g1 = (1, 2, 10, 15)(3, 4, 16, 9)(5, 14, 7, 8)(6, 19, 13, 18)(11, 12)(17, 20),

g2 = (1, 5, 4, 19)(2, 14, 16, 13)(3, 6, 15, 8)(7, 9, 18, 10)(11, 17)(12, 20),

x1 = (2, 6, 5)(3, 8, 7)(4, 10, 9)(11, 12, 17)(13, 18, 16)(14, 19, 15).

For class 4B,

g1 = (1, 3, 4, 15)(2, 10, 16, 9)(5, 8, 19, 6)(7, 14, 18, 13)(11, 20)(12, 17),

g2 = (1, 7, 9, 19)(2, 6, 3, 14)(4, 18, 10, 5)(8, 15, 13, 16)(11, 12)(17, 20),

x1 = (2, 6, 5)(3, 8, 7)(4, 10, 9)(11, 12, 17)(13, 18, 16)(14, 19, 15).

For class 4C,

g1 = (1, 16, 9, 15)(2, 10, 3, 4)(5, 6, 18, 14)(7, 13, 19, 8)(11, 17)(12, 20),

g2 = (1, 18, 10, 19)(2, 13, 15, 6)(3, 8, 16, 14)(4, 7, 9, 5)(11, 20)(12, 17),

x1 = (2, 6, 5)(3, 8, 7)(4, 10, 9)(11, 12, 17)(13, 18, 16)(14, 19, 15).

�

We do the same now with M21:

Proposition 3.2. The Mathieu group M21 = PSL(3, 4) is of type B.

Proof. As in all groups, the trivial class 1A is of type B. Classes 3A, 3B, 5A and
5B are real, as can be checked with GAP using the function RealClasses. Then
these classes are of type B by Lemma 2.1. Classes 7A and 7B are quasireal, as can
be checked with GAP with the function PowerMaps. Then these classes are of type
B by Lemma 2.2.

We are left with classes 2A, 4A, 4B, 4C. By ATLAS, we know that the semidirect
product 24 : A5 = M20 is a maximal subgroup of PSL(3, 4) (see [CCN+85, pp. 23]).
Now the result follows from 3.1, by looking at how classes of even order in M20 sit
into M21, by using the function PossibleClassFusions: since M20 is a subgroup
of M21 there exists a monomorphism f : M20 ↪→ M21 and therefore there exist a
fusion of conjugacy classes. Moreover, with GAP we calculate all possible fusion of
conjugacy classes and by inspection of all of these fusions it is easy to arrive to the
desired result (see the file fgv.log for the results).

�
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4. Nichols algebras over PSL(2, q)

In this section we deal with the groups PSL(2, q) = SL(2,Fq)/{±I}, which have
order (q−1)q(q+1)

2 . Recall that if q 6= 2, 3 then PSL(2, q) is simple (see eg. [AB95,
Theorem 2.6.8]).

Table 2. Conjugacy classes of PSL(2,Fq) for q ≡ 1(4)

Representative Number Size

C1 c1 =
(

1
1

)
1 1

C2 c2 =
(

1 1
1

)
1 q2−1

2

C3 c3 =
(

1 ∆
1

)
1 q2−1

2

C4 c4(z) =
(
x ∆y
y x

)
(N(z) = x2 −∆y2 = 1, y 6= 0) q−1

4 q(q − 1)

C5 c5 =
(
i
−i

)
1 q(q+1)

2

C6 c6(x) =
(
x

x−1

)
(x /∈ {±1,±i}) q−5

4 q(q + 1)

4.1. The case q ≡ 1(4). There are q+5
2 conjugacy classes, which are listed in

Table 2 (see [Ada02]).

Proposition 4.1. Classes Ci are of type B for i = 1, 2, 3, 4, 5.

Proof. The trivial class is of type B for any group. For class C2 (resp. C3) we apply
Lemma 2.1, since c2 and c−1

2 (resp. c3 and c−1
3 ) are conjugate and have odd order

p.
For i = 4, we notice that c4(z)−1 = c4(z−1) =

(
x −∆y
−y x

)
, which is conjugate

to c4(z). Indeed, c5c4(z)c−1
5 = c4(z−1). Then the result follows from Lemma 2.1,

since the order of c4(z) is a divisor of q+1
2 , which is odd.

Table 3. Conjugacy classes of PSL(2, q) for q ≡ 3(4)

Representative Number Size

C1 c1 =
(

1
1

)
1 1

C2 c2 =
(

1 1
1

)
1 q2−1

2

C3 c3 =
(

1 ∆
1

)
1 q2−1

2

C4 c4(z) =
(
x ∆y
y x

)
(N(z) = x2 −∆y2 = 1, xy 6= 0) q−3

4 q(q − 1)

C5 c5 =
(

−1
1

)
1 q(q−1)

2

C6 c6(x) =
(
x

x−1

)
(x /∈ {±1}) q−3

4 q(q + 1)
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For i = 5, we notice that A4 is a subgroup of PSL(2, q) (see [Dic58, Ch. XII] or
[Hup67, Satz II.8.18 (b)]). Since the only involutions in PSL(2, q) lie in class C5,
Lemma 2.3 part 2 and Remark 1.3 say that C5 is of type B. �

The centralizer of c6(x) is isomorphic to F∗q/{±1} ' Z/ q−1
2 .

Proposition 4.2. If dim B(C6, ρ) <∞ then c6(x) has even order and ρ(c6(x)) =
−1.

Proof. Again, C6 is a real class, since conjugating c6(x) by
( −1

1

)
gives c6(x−1) =

c6(x)−1. The result then follows from Lemma 2.1. �

4.2. The case q ≡ 3(4). There are q+5
2 conjugacy classes, which are listed in

Table 3 (see [Ada02]).

Proposition 4.3. Classes Ci are of type B for i = 1, 2, 3, 5, 6.

Proof. It is entirely analogous to that of Proposition 4.1. The only difference is
that now classes C6 have elements of odd order, instead of classes C4. �

The centralizer of c4(x) is isomorphic to Z/ q+1
2 . Again, by using Lemma 2.1 we

have

Proposition 4.4. If dim B(C4, ρ) <∞, then c4(z) has even order and ρ(c4(z)) =
−1.

5. Nichols algebras over PGL(2, q)

We deal in this section with PGL(2, q) = GL(2, q)/{tI : t ∈ F×q }, which has
order (q−1)q(q+1). Since PGL(2, 3) ' S4 and PGL(2, 5) ' S5 (which are treated
in [AZ07]) we may assume that q > 5. There are q+ 2 conjugacy classes, which are
listed in Table 4 (see [Ada02]).

Table 4. Conjugacy classes of PGL(2, q)

Representative Number Size

C1 c1 =
(

1
1

)
1 1

C2 c2 =
(

1 1
1

)
1 q2 − 1

C3 c3(x) =
(
x

1

)
(x 6= ±1) q−3

2 q(q + 1)

C4 c4 =
(
−1

1

)
1 q(q+1)

2

C5 c5(z) =
(
x ∆y
y x

)
(xy 6= 0) q−1

2 q(q − 1)

C6 c6 =
(

∆
1

)
1 q(q−1)

2
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By considering the inclusion PSL(2, q) ↪→ PGL(2, q), we get from the previous
section that the following classes are of type B:

C1, C2
C3 if q ≡ 3 (mod 4) and x ∈ F2

q

C4 if q ≡ 1 (mod 4) (because it is class C5 in PSL(2, q))

C5 if q ≡ 1 (mod 4) and N(z) = x2 −∆y2 ∈ F2
q

C6 if q ≡ 3 (mod 4) (because it is class C5 in PSL(2, q))

We consider now the other cases. They are not of type B, but one can restrict
the representations anyway.

The centralizer of c3(x) is given by the classes in PGL(2, q) of matrices ( σ 1 )
and therefore it is isomorphic to F×q .

Proposition 5.1. Let q ≡ 1 (mod 4). If dim B(C3, ρ) <∞, then x has even order
and ρ(c3(x)) = −1.

Proof. Notice that C3 is a real class, and use Lemma 2.1. �

The centralizer of c4 is given by the classes in PGL(2, q) of matrices ( 1
σ ) and

( 1
σ ) for σ ∈ F×q . It is easy to see that this group is isomorphic to Dq−1. In the

presentation by r, s given at §2.2, c4 corresponds to r
q−1
2 .

Proposition 5.2. Let q ≡ 3 (mod 4) and let ρ be a representation of CPGL(2,q)(c4)
with character χ. If dim B(C4) <∞, then χ ∈ {χ3, χ4, µh (h odd)} (see Table 1).

Proof. Since c4 is an involution, we must have ρ(c4) = −1. Then, the result follows
by inspection of the Table. �

The centralizer of c5(z) is isomorphic to E∗/F∗q ' Z/q + 1 (see [Ada02]).

Proposition 5.3. Let q ≡ 3 (mod 4). If dim B(C5, ρ) < ∞, then c5(z) has even
order and ρ(g) = −1.

Proof. In a similar way as the proof of Prop. 4.1, we see that classes C5 are real by
conjugating c5(z) with c4. Now, we apply Lemma 2.1. �

The centralizer of c6 is given by the classes in PGL(2, q) of matrices
(
x ±∆y
y x

)
.

It is easy to see that this group is isomorphic to Dq+1. In the presentation by r, s
given at §2.2, c6 corresponds to r

q+1
2 .

Proposition 5.4. Let q ≡ 1 (mod 4) and let χ be the character of the representa-
tion ρ. If dim B(C6) <∞, then χ ∈ {χ3, χ4, µh (h odd)} (see Table 1).

Proof. Analogous to that of Prop. 5.2. �

6. The class of order 4 in SL(2, q)

In this section we use the tools in the present paper to improve a result in
[FGV07]. There, we considered in SL(2, q) the classes C7 of c7(x) =

(
x 0
0 x−1

)
, and

C8 of c8(z) =
(
x ∆y
y x

)
, where z = x + δy ∈ E \ Fq. Propositions 3.4 (resp. 3.5) in

[FGV07] prove that in order for B(C7) (resp. B(C8)) to be finite dimensional, the
order of x (resp. z) must be even. On the other hand, when q = 3 there is only
one class C8, and it is proved in [AFGV08] that it is of type B. We prove here that
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SL(2, 3) is a subgroup of SL(2, q). This implies that when q ≡ 1 (mod 4) and x
has order 4, the class of c7(x) ∈ SL(2, q) is of type B, and when q ≡ 3 (mod 4) and
z has order 4, the class of c8(z) ∈ SL(2, q) is of type B.

One possible presentation of SL(2, 3) is given by generators x, y and relations
x3 = y4 = (xy3)3 = 1, xy2 = y2x. In fact, one can take

x =
(

1 1
0 1

)
, y =

(
1 1
1 2

)
.

Then, if a group G has elements A,B,C of orders 3, 3 and 4 respectively such that
ABC = [B,C2] = 1, then G has a subgroup isomorphic to SL(2, 3). Indeed, take
the map x 7→ B, y 7→ C3. It is easy to see that this defines a map SL(2, 3) → G.
It is injective because otherwise the orders of A, B or C would be smaller than
stated, as can be seen by considering the normal subgroups of SL(2, 3) (the non-
trivial ones being isomorphic to C2 and the quaternion group Q of order 8). Also,
any C ∈ SL(2, q) has order 4 if and only if trC = 0. Indeed, it is easy to see that
if α = trC, then C4 = (α3 − 2α)C + (1− α2), which implies the claim. Therefore,
there is only one class in SL(2, q) of order 4. This means that the embedding we
shall find SL(2, 3) ↪→ SL(2, q) sends the class of

(
0 −1
1 0

)
∈ SL(2, 3) of type B to it.

We prove now the existence of the embedding SL(2, 3) ↪→ SL(2, q). Since
SL(2, p) embeds in SL(2, q), it is enough to prove that SL(2, 3) embeds in SL(2, p).
Let x ∈ F×p be of order p− 1 and let Gl be the class of c7(xl). Let z ∈ E generate
the group {a + δb ∈ E | a2 − ∆b2 = 1} and let Hm be the class of c8(zm). The
character table of SL(2, p) restricted to the classes Gl and Hm is given in Table 5,
where we write c[ab ] = e

2πia
b + e−

2πia
b . There, 1 ≤ i ≤ p−3

2 for ζi and 1 ≤ i ≤ p−1
2

for θi.

Table 5. Character table on classes Gl and Hm.

1 ψ ζi ξ1 ξ2 θi η1 η2

deg 1 p p+ 1 1
2 (p+ 1) 1

2 (p+ 1) p− 1 1
2 (p− 1) 1

2 (p− 1)
Gl 1 1 c[ il

p−1 ] (−1)l (−1)l 0 0 0
Hm 1 −1 0 0 0 −c[ imp+1 ] (−1)m+1 (−1)m+1

When p ≡ 1 (mod 3), classes Gl have order 3 for l = p−1
3 and l = 2(p−1)

3 . On
the other hand, when p ≡ 2 (mod 3), classes Hm have order 3 for m = p+1

3 and
m = 2(p+1)

3 . We use then classes Gl and Hm for A, B or C depending on the class
of p (mod 12).

We apply then the well-known formula (see e.g. [Go68, Theorem 2.12])

S(Ci, Cj , Ck) =
|Ci||Cj ||Ck|
|G|

∑
χ

χ(Ci)χ(Cj)χ(Ck)
χ(1)

which counts solutions of the equation abc = 1 with a, b, c respectively in classes Ci,
Cj and Ck. Therefore, it is enough to see that for any p we have S(Ci, Cj , Ck) > 0,
where classes Ci, Cj and Ck have orders 3, 3 and 4. We have then the following
possibilities:

• If p ≡ 5 (mod 12), the element of order 4 belongs to the class G with
l = p−1

4 and the element of order 3 belongs to the class H with m = p+1
3 .
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Then,

S(H,H,G) =
p3(p− 1)2(p+ 1)
p(p− 1)(p+ 1)

(
1 +

1
p

)
= (p− 1)p(p+ 1) > 0.

• If p ≡ 7 (mod 12), the element of order 4 belongs to the class H with
m = p+1

4 and the element of order 3 belongs to the class G with l = p−1
3 .

Then,

S(G,G,H) =
p3(p+ 1)2(p− 1)
p(p− 1)(p+ 1)

(
1− 1

p

)
= (p− 1)p(p+ 1) > 0.

• If p ≡ 1 (mod 12)

S(G p−1
3
,G p−1

3
,G p−1

4
)

=
p2(p+ 1)2

p− 1

1 +
1
p

+

p−3
2∑
j=1

1
p+ 1

c[
j

3
]2c[

j

4
] + 4

(−1)
p−1
4

p+ 1


≥ p2(p+ 1)2

p− 1

1 +
1
p

+

p−3
2∑
j=1

8
p+ 1

cos(
2πj
3

)2 cos(
2πj
4

)− 4
p+ 1


=
p2(p+ 1)2

p− 1

1 +
1
p

+
8

p+ 1

[ p−3
4 ]∑
l=1

cos(
4πl
3

)2 cos(πl)− 4
p+ 1



=
p2(p+ 1)2

p− 1

1 +
1
p

+
8

p+ 1

( [ p−3
4 ]∑
l=1
l≡0(3)

cos(πl) +
[ p−3

4 ]∑
l=1
l 6≡0(3)

1
4

cos(πl)
)
− 4
p+ 1



=
p2(p+ 1)2

p− 1

1 +
1
p

+
2

p+ 1

( [ p−3
4 ]∑
l=1
l≡0(3)

3 cos(πl) +
[ p−3

4 ]∑
l=1

cos(πl)
)
− 4
p+ 1


≥ p2(p+ 1)2

p− 1

(
1 +

1
p
− 12
p+ 1

)
> 0
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• If p ≡ 11 (mod 12)

S(H p+1
3
,H p+1

3
,H p+1

4
)

=
p2(p− 1)2

p+ 1

1− 1
p
−

p−1
2∑
j=1

1
p− 1

c[
j

3
]2c[

j

4
] + 4

(−1)
p+5
4

p− 1


≥ p2(p− 1)2

p+ 1

1− 1
p
−

p−1
2∑
j=1

8
p− 1

cos(
2πj
3

)2 cos(
2πj
4

)− 4
p− 1


=
p2(p− 1)2

p+ 1

1− 1
p
− 8
p− 1

[ p−1
4 ]∑
l=1

cos(
4πl
3

)2 cos(πl)− 4
p− 1



=
p2(p− 1)2

p+ 1

1− 1
p
− 8
p− 1

( [ p−1
4 ]∑
l=1
l≡0(3)

cos(πl) +
[ p−1

4 ]∑
l=1
l 6≡0(3)

1
4

cos(πl)
)
− 4
p− 1



=
p2(p− 1)2

p+ 1

1− 1
p
− 2
p− 1

( [ p−1
4 ]∑
l=1
l≡0(3)

3 cos(πl) +
[ p−1

4 ]∑
l=1

cos(πl)
)
− 4
p− 1


≥ p2(p− 1)2

p+ 1

(
1− 1

p
− 4
p− 1

)
> 0
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