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M. GRAÑA, J.A. GUCCIONE, AND J.J. GUCCIONE

Abstract. Every finite dimensional Hopf algebra is a Frobenius algebra, with

Frobenius homomorphism given by an integral. The Nakayama automorphism
determined by it yields a decomposition with degrees in a cyclic group. For a

family of pointed Hopf algebras, we determine necessary and sufficient condi-

tions for this decomposition to be strongly graded.

1. Introduction

Let k be a field, A a finite dimensional k-algebra and DA the dual space
Homk(A,k), endowed with the usual A-bimodule structure. Recall that A is said
to be a Frobenius algebra if there exists a linear form ϕ : A → k, such that the
map A → DA, defined by x 7→ xϕ, is a left A-module isomorphism. This linear
form ϕ : A → k is called a Frobenius homomorphism. It is well known that this is
equivalent to say that the map x 7→ ϕx, from A to DA, is an isomorphism of right
A-modules. From this it follows easily that there exists an automorphism ρ of A,
called the Nakayama automorphism of A with respect to ϕ, such that xϕ = ϕρ(x),
for all x ∈ A. It is easy to check that a linear form ϕ̃ : A → k is another Frobe-
nius homomorphism if and only if there exists an invertible element x in A, such
that ϕ̃ = xϕ. It is also easy to check that the Nakayama automorphism of A with
respect to ϕ̃ is the map given by a 7→ ρ(x)−1ρ(a)ρ(x).

Let A be a Frobenius k-algebra, ϕ : A → k a Frobenius homomorphism and
ρ : A → A the Nakayama automorphism of A with respect to ϕ.

Definition 1.1. We say that ρ has order m ∈ N and we write ordρ = m, if
ρm = idA and ρr 6= idA, for all r < m.

Let G be a group. Recall that a G-graded algebra is a k-algebra A together with
a decomposition A =

⊕
g∈G Ag of A as a direct sum of subvector spaces, such that

AgAg′ ⊆ Agg′ for all g, g′ ∈ G. When AgAg′ = Agg′ for all g, g′ ∈ G, the grading
is called strong, and the algebra is said to be strongly graded. Assume that ρ has
finite order and that k has a primitive ordρ-th root of unity ω. For n ∈ N, let Cn be
the group of n-th roots of unity in k. Since the polynomial Xordρ − 1 has distinct
roots ωi (0 ≤ i < ordρ), the algebra A becomes a Cordρ

-graded algebra

(1.1) A = Aω0 ⊕ · · · ⊕Aωordρ −1 , where Az = {a ∈ A : ρ(a) = za}.
As it is well known, every finite dimensional Hopf algebra H is Frobenius, being a
Frobenius homomorphism any nonzero right integral ϕ ∈ H∗. Let t be a nonzero
right integral of H. Let α ∈ H∗ be the modular element of H, defined by at = α(a)t
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(notice that this is the inverse of the modular element α considered in [R1]). For
x ∈ H∗, let rx : H → H be defined by rx(b) = bx = x(b(1))b(2). Then, as follows
from [R1, Theorem 3(a)], we have

ρ(b) = α−1(b(1))S2(b(2)), i.e. ρ = S2 ◦ rα−1 .

Since α is a group-like element, S2 ◦ rα−1 = rα−1 ◦ S2 and therefore

(1.2) ρl = S2l ◦ rα−l , i.e. ρl(h) = α−l(h(1))S2l(h(2)) = αl(S(h(1)))S2l(h(2)),

for all l ∈ Z. Now, α has finite order and, by the Radford formula for S4 (see [R2]
or [S, Theorem 3.8]), the antipode S has finite order with respect to composition.
Thus, the automorphism ρ has finite order, which implies that finite dimensional
Hopf algebras are examples of the situation considered above.

Notice that by (1.2), if ρl = id, then αl = ε and then S2l = id. The converse is
obvious. So, the order of ρ is the lcm of those of α and S2. In particular, the number
of terms in the decomposition associated with S2 divides that in the one associated
with ρ. Also, from (1.2) we get that ρ = S2 if and only if H is unimodular.

The main aim of the present work is to determine conditions for decomposi-
tion (1.1) to be strongly graded. Besides the fact that the theory for algebras
which are strongly graded over a group is well developed (see for instance [M]), our
interest on this problem originally came from the homological results in [GG].

The decomposition using S2 instead of ρ was considered in [RS]. We show be-
low that if S2 6= id, then this decomposition is not strongly graded. On the other
hand, as shown in [RS], under suitable assumptions its homogeneous components
are equidimensional. It is an interesting problem to know whether a similar thing
happens with the decomposition associated with ρ. For instance, all the liftings
of Quantum Linear Spaces have equidimensional decompositions, as shown in Re-
mark 4.4.

2. The unimodular case

Let H be a finite dimensional Hopf algebra with antipode S. In this brief sec-
tion we first show that the decomposition of H associated with S2 is not strongly
graded, unless S2 = id (this applies in particular to decomposition (1.1) when H
is unimodular and ordρ > 1). We finish by giving a characterization of unimodular
Hopf algebras in terms of decomposition (1.1).

Lemma 2.1. Let H be a finite dimensional Hopf algebra. Suppose H =
⊕

g∈G Hg

is a graduation over a group. Assume there exists g ∈ G such that ε(Hg) = 0. Then
the decomposition is not strongly graded.

Proof. Suppose the decomposition is strongly graded. Then there are elements
ai ∈ Hg and bi ∈ Hg−1 such that 1 =

∑
i aibi. Then 1 = ε(1) =

∑
i ε(ai)ε(bi), a

contradiction. �

Corollary 2.2. Assume that S2 6= id and that

H =
⊕
z∈k∗

Hz, where Hz = {h ∈ H : S2(h) = zh}.

Then this decomposition is not strongly graded.

Proof. Since ε ◦ S2 = ε, then ε(Hz) = 0 for all z 6= 1. �



DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS 3

Let now ϕ ∈
∫ r

H∗ and Γ ∈
∫ l

H
, such that 〈ϕ, Γ〉 = 1, and let α : H → k be the

modular map associated with t = S(Γ). Let ρ be the Nakayama automorphism
associated with ϕ. Assume that k has a root of unity ω of order ordρ. We consider
the decomposition associated with ρ, as in (1.1)

(2.1) H = Hω0 ⊕ · · · ⊕Hωordρ −1 .

Corollary 2.3. If H is unimodular and S2 6= id, then the decomposition (2.1) is
not strongly graded. �

Proposition 2.4. If h ∈ Hωi , then α(h) = ω−iε(h).

Proof. By [R1, Proposition 1(e)], or the proof of [S, Proposition 3.6], 〈ϕ, t〉 = 1.
Then

ε(h) = ε(h)〈ϕ, t〉 = 〈ϕ, th〉 = 〈ϕ, ρ(h)t〉 = 〈ϕ, ωiht〉 = ωiα(h).

So, α(h) = ω−iε(h), as we want. �

Corollary 2.5. H is unimodular if and only if Hωi ⊆ ker(ε), for all i > 0

Proof. ⇒): For h ∈ Hωi , we have ε(h) = α(h) = ω−iε(h) and so ε(h) = 0, since
ωi 6= 1.
⇐): For h ∈ Hωi with i > 0, we have α(h) = ω−iε(h) = 0 = ε(h) and, for h ∈ Hω0 ,
we also have α(h) = ω0ε(h) = ε(h). �

3. Bosonizations of Nichols algebras of diagonal type

Let G be a finite abelian group, g = g1, . . . , gn ∈ G a sequence of elements in G
and χ = χ1, . . . , χn ∈ Ĝ a sequence of characters of G. Let V be the vector space
with basis {x1, . . . , xn} and let c be the braiding given by c(xi ⊗ xj) = qijxj ⊗ xi,
where qij = χj(gi). We consider the Nichols algebra R = B(V ) generated by (V, c).
We give here one of its possible equivalent definitions. Let Tc(V ) be the tensor
algebra generated by V , endowed with the unique braided Hopf algebra structure
such that the elements xi are primitive and whose braiding extends c. Then, R
is obtained as a colimit of algebras R = lim−→Ri, where R0 = Tc(V ) and Ri+1 is
the quotient of Ri by the ideal generated by its homogeneous primitive elements
with degree ≥ 2. See [AG, AS] for alternative definitions and main properties
of Nichols algebras. Assume that R is finite-dimensional and let t0 ∈ R be a
nonzero homogeneous element of greatest degree. Let H = H(g,χ) = R#kG be
the bosonization of R (this is an alternative presentation for the algebras considered
by Nichols in [N]). We have:

∆(gi) = gi ⊗ gi, ∆(xi) = gi ⊗ xi + xi ⊗ 1,

S(g) = g−1, S(xi) = −g−1
i xi,

S2(g) = g, S2(xi) = g−1
i xigi = q−1

ii xi.

The element t0
∑

g∈G g is a non zero right integral in H. Let α be the modular
element associated with it. Since, for all i, the degree of xit0

∑
g∈G g is bigger than

the degree of t0, we have that xit0
∑

g∈G g = 0, and so α(xi) = 0. Moreover, α|G is
determined by gt0 = α(g)t0g. Thus,

ρ(g) = α(g−1)g and ρ(xi) = α(g−1
i )q−1

ii xi.
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This implies that the nonzero monomials xi1 · · ·xi`
g are a set of eigenvectors for ρ

(which generate H as a k-vector space). In particular, ρ is diagonalizable, whence
k has a primitive ordρ-th root of unity. Consider the subgroups

L1 = 〈q11, . . . , qnn, α(G)〉 and L2 = α(G),

of k∗. Since ρ(xig
−1
i ) = q−1

ii xig
−1
i and ρ(g) = α(g), the group L1 is the set of

eigenvalues of ρ. As in the introduction, we decompose

H =
⊕

ω∈L1

Hω, where Hω = {h ∈ H : ρ(h) = ωh}.

Proposition 3.1. The following are equivalent:

(1)
⊕

ω∈L1
Hω is strongly graded,

(2) L1 = L2,
(3) Each Hω contains an element in G.
(4) H is a crossed product H1 n kL1.

Proof. It is clear that (2)⇒(3) and (4)⇒(1).
The proof of (3)⇒(4) is standard. We sketch it for the readers’ convenience. For

each ω ∈ L1, pick gω ∈ Hω ∩G. Define ρ : L1×H1 → H1 and f : L1×L1 → H1 by

ω · a = ρ(ω, a) = gωag−1
ω and f(ω, ω′) = gωgω′g

−1
ωω′ .

Let H1 nf
ρ kL1 be the algebra with underlying vector space H1 ⊗ kL1 and with

multiplication (a ⊗ ω)(b ⊗ ω′) = a(ω · b)f(ω, ω′) ⊗ ωω′. It is easy to see that the
map Ψ : H1 nf

ρ kL1 → H given by Ψ(a⊗ ω) = agω is an isomorphism of algebras.
In particular, H1 nf

ρ kL1 is associative with unit 1 ⊗ 1, and so ρ is a weak action
and f is a normal cocycle that satisfies the twisted module condition.

We now prove that (1)⇒(2). Notice that H is also N0-graded by deg(g) = 0 for
all g ∈ G, and deg(xi) = 1. Call H =

⊕
i∈N Hi this decomposition. Since each

Hω is spanned by elements which are homogeneous with respect to the previous
decomposition, we have:

H =
⊕

i≥0, ω∈L1

Hi
ω, where Hi

ω = Hω ∩Hi.

So, if
⊕

ω∈L1
Hω is strongly graded, then each Hω must contain nonzero elements

in H0. Since H0 ⊆
⊕

ω∈L2
Hω, we must have L1 = L2. �

Quantum Linear Spaces. If the sequence of characters χ satisfies

• χi(gi) 6= 1,
• χi(gj)χj(gi) = 1 for i 6= j,

then H(g,χ) is the Quantum Linear Space with generators G and x1, . . . , xn, sub-
ject to the following relations:

• gxi = χi(g)xig,
• xixj = qijxjxi,
• xmi

i = 0,

where mi = ord(qii). For these sort of algebras it is possible to give an explicit
formula for ρ. In fact, the element t = xm1−1

1 · · ·xmn−1
n

∑
g∈G g is a right integral

in H. Using this integral, it is easy to check that α(g) = χm1−1
1 (g) · · ·χmn−1

n (g).
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In particular, α(gi) = qm1−1
i1 · · · qmn−1

in . A straightforward computation, using that
ρ(g) = α(g−1)g and ρ(xi) = α(g−1

i )q−1
ii xi, shows that

ρ(xr1
1 · · ·xrn

n g) =
∏

1≤i<j≤n

q
(1−mj)ri−(1−mi)rj

ij α(g−1)xr1
1 · · ·xrn

n g.

Proposition 3.1 applies to this family of algebras.

Example 3.2. Let k be a field of characteristic 6= 2 and let G = {1, g}. Set gi = g
and χi(g) = −1 for i ∈ {1, . . . , n}. Then, qij = −1 for all i, j, and α(g) = (−1)n.
In this case, the algebra H is generated by g, x1, . . . , xn subject to relations

• g2 = 1,
• x2

i = 0,
• xixj = −xjxi,
• gxi = −xig.

By Proposition 3.1, we know that H is strongly graded if and only if n is odd.

4. Liftings of Quantum Linear Spaces

In this section we consider a generalization of Quantum Linear Spaces: that of
their liftings. As above, G is a finite abelian group, g = g1, . . . , gn ∈ G is a sequence
of elements in G and χ = χ1, . . . , χn ∈ Ĝ is a sequence of characters of G, such
that

χi(gi) 6= 1,(4.1)
χi(gj)χj(gi) = 1, for i 6= j.(4.2)

Again, let qij = χj(gi) and let mi = ord(qii). Let now λi ∈ k and λij ∈ k for i 6= j
be such that

λi(χmi
i − ε) = λij(χiχj − ε) = 0.

Suppose that λij + qijλji = 0 whenever i 6= j. The lifting of the quantum affine
space associated with this data is the algebra H = H(g,χ, λ), with generators G
and x1, . . . , xn, subject to the following relations:

gxi = χi(g)xig,(4.3)
xixj = qijxjxi + λij(1− gigj),(4.4)
xmi

i = λi(1− gmi
i ).(4.5)

It is well known that the set of monomials {xr1
1 · · ·xrn

n g : 0 ≤ ri < mi, g ∈ G} is a
basis of H. It is a Hopf algebra with comultiplication defined by

∆(g) = g ⊗ g, for all g ∈ G,(4.6)
∆(xi) = gi ⊗ xi + xi ⊗ 1.(4.7)

The counit ε satisfies ε(g) = 1, for all g ∈ G, and ε(xi) = 0. Moreover, the
antipode S is given by S(g) = g−1, for all g ∈ G, and S(xi) = −g−1

i xi. We note
that S2(g) = g and S2(xi) = q−1

ii xi.
Let Sn be the symmetric group on n elements. For σ ∈ Sn let

tσ = x
mσ1−1
σ1 · · ·xmσn−1

σn

∑
g∈G

g.

Note that tσ 6= 0.
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Lemma 4.1. The following hold:
(1) λjigigj lies in the center of H(g,χ, λ) for i 6= j.
(2) λig

mi
i lies in the center of H(g,χ, λ).

(3) tσg = tσ, for all g ∈ G.
(4) tσxσn

= 0.

Proof. For (1) it is sufficient to see that λjigigj commutes with xl. If λji = 0 the
result is clear. Assume that λji 6= 0. Then, χi = χ−1

j , and thus

λjigigjxl = λjiχl(gi)χl(gj)xlgigj

= λjiχi(gl)−1χj(gl)−1xlgigj

= λjixlgigj .

The proof of (2) is similar to that of (1) and (3) it is immediate. For (4), we have:

tσxσn
= x

mσ1−1
σ1 · · ·xmσn−1

σn

∑
g∈G

gxσn

= x
mσ1−1
σ1 · · ·xmσn−1

σn xσn

∑
g∈G

χσn(g)g

= λσn
x

mσ1−1
σ1 · · ·x

mσn−1−1
σn−1 (1− g

mσn
σn )

∑
g∈G

χσn
(g)g,

and the result follows by noticing that

(1− g
mσn
σn )

∑
g∈G

χσn
(g)g =

∑
g∈G

χσn
(g)g −

∑
g∈G

g
mσn
σn χσn

(g)g

=
∑
g∈G

χσn
(gmσn

σn g)gmσn
σn g −

∑
g∈G

χσn
(g)gmσn

σn g = 0,

since χσn
(gmσn

σn ) = q
mσn
σnσn = 1. �

Proposition 4.2. tσ is a right integral.

Proof. Let M = (m1 − 1) + · · ·+ (mn − 1). Let

A = {f : {1, . . . ,M} → {1, . . . , n} : #f−1(i) = mi − 1 for all i}.
For f ∈ A, let xf = xf(1)xf(2) · · ·xf(M). We claim that if f, h ∈ A, then
xf

∑
g∈G g = βxh

∑
g∈G g for some β ∈ k∗. To prove this claim, it is sufficient

to check it when f and h differ only in i, i + 1 for some 1 ≤ i < M , that is, when
h = f ◦ τi, where τi ∈ SM is the elementary transposition (i, i + 1). But, in this
case, we have:

xf

∑
g∈G

g = xh◦τi

∑
g∈G

g

= qh(i+1)h(i)xh

∑
g∈G

g + λh(i+1)h(i)xh,bi,̂i+1
(1− gh(i)gh(i+1))

∑
g∈G

g

= qh(i+1)h(i)xh

∑
g∈G

g

where x
h,bi,̂i+1

= xh(1) · · ·xh(i−1)xh(i+2) · · ·xh(M). The second equality follows from
relation (4.4) and item (1) in the previous Lemma. The Proposition follows now
using items (3) and (4) in the Lemma. �
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Now we see that
• α(xi) = 0,
• α(g) = χm1−1

1 (g) · · ·χmn−1
n (g).

For the first assertion, by Proposition 4.2, we can take σ such that σ1 = i. Then,

xitσ = xmi
i x

mσ2−1
σ2 · · ·xmσn−1

σn

∑
g∈G

g

= x
mσ2−1
σ2 · · ·xmσn−1

σn λi(1− gmi
i )

∑
g∈G

g = 0,

where the second equality follows from item (2) of Lemma 4.1. In particular,
α(gi) = qm1−1

i1 · · · qmn−1
in . Since ρ(h) = α(S(h(1)))S2(h(2)), we have:

• ρ(g) = α(g−1)g,
• ρ(xi) = α(g−1

i )q−1
ii xi =

∏
1≤j≤n

j 6=i

q
1−mj

ij xi.

Thus, as ρ is an algebra map,

ρ(xr1
1 · · ·xrn

n g) = q−r1
11 · · · q−rn

nn α(g−r1
1 · · · g−rn

n g−1) xr1
1 · · ·xrn

n g

=
∏

1≤i<j≤n

q
(1−mj)ri−(1−mi)rj

ij α(g−1) xr1
1 · · ·xrn

n g.

So, the basis {xj1
1 · · ·xjn

n g} is made up of eigenvectors of ρ. Consider the groups

k∗ ⊇ L1 = 〈q11, . . . , qnn, α(G)〉 ⊇ L2 = α(G).

Using that ρ(xig
−1
i ) = q−1

ii xig
−1
i and ρ(g) = α(g−1)g, it is easy to see that L1 is

the set of eigenvalues of ρ and that the order of ρ is the l.c.m. of the numbers
m1, . . . ,mn and the order of the character α|G ∈ Ĝ (in particular, k has a primitive
ordρ-th root of unity). As before, we decompose H = H(g,χ, λ) as

H =
⊕

ω∈L1

Hω, where Hω = {h ∈ H : ρ(h) = ωh}.

The following result is the version of Proposition 3.1 for the present context.

Theorem 4.3. The following are equivalent:
(1)

⊕
ω∈L1

Hω is strongly graded,
(2) L1 = L2,
(3) Each component Hω contains an element in G,
(4) H is a crossed product H1 n kL1.

Proof. Clearly (2) and (3) are equivalent and (4)⇒(1). The proof of (3)⇒(4) is
the same as for Proposition 3.1. Next we prove that (1)⇒(3). Let ω ∈ L1. By
Lemma 2.1, we know that ε(Hω) 6= 0. Since Hω has a basis consisting of monomials
xr1

1 · · ·xrn
n g and ε(xi) = 0, there must be an element g ∈ G inside Hω. �

Remark 4.4. We next show that for liftings of Quantum Linear Spaces, the com-
ponents in the decomposition H =

⊕
ω∈L1

Hω are equidimensional. In fact, in this
case we can take the basis of H given by

{(x1g
−1
1 )r1 · · · (xng−1

n )rng : 0 ≤ ri < mi, g ∈ G}.
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Since ρ(xig
−1
i ) = q−1

ii xig
−1
i , the map

θ : Zm1 × · · · × Zmn ×G → k∗,

taking (r1, . . . , rn, g) to the eigenvalue of (x1g
−1
i )r1 · · · (xng−1

n )rng with respect to
ρ, is a well defined group homomorphism. From this it follows immediately that all
the eigenspaces of ρ are equidimensional.

5. Computing H1

Assume we are in the setting of the liftings of QLS. Suppose H is a crossed
product or, equivalently, that L1 = L2. Then, there exist elements γ1, . . . , γn ∈ G,
such that α(γi) = qii. Set γ̃i = g−1

i γ−1
i and let yi = xiγ̃i. It is immediate

that yi ∈ H1. Let N = ker(α|G) ⊆ G. It is easy to see that H1 has a basis
given by {yr1

1 · · · yrn
n g : g ∈ N}. Furthermore, H1 can be presented by generators

N, y1, . . . , yn and relations
• gyi = χi(g)yig,
• yiyj = qijχj(γ̃i)χ−1

i (γ̃j)yjyi + χj(γ̃i)λij(γ̃iγ̃j − γ−1
i γ−1

j ),

• ymi
i = λiχ

mi(mi−1)/2
i (γ̃i)(γ̃mi

i − γ−mi
i ).

Notice that if λi 6= 0, then χ
mi(mi−1)/2
i (γ̃i) = ±1. We claim that

λij γ̃iγ̃j , λijγiγj , λiγ̃
mi and λiγ

mi

belong to kN . It is clear that γmi ∈ N , since α(γmi) = qmi
ii = 1. We now prove

the remaining part of the claim. Assume that λij 6= 0. Then χiχj = ε. Hence,
• If l 6= i, j, then χl(gigj) = qilqjl = q−1

li q−1
lj = χiχj(g−1

l ) = 1.
• qii = χi(gi) = χj(g−1

i ) = q−1
ij = qji = q−1

jj .
Thus, mi = ord(qii) = ord(qjj) = mj , and then

χmi−1
i (gigj)χ

mj−1
j (gigj) = (qiiqijqjiqjj)mi−1 = 1 and α(γiγj) = qiiqjj = 1.

It is now immediate that α(gigj) = χm1−1
1 (gigj) · · ·χmn−1

n (gigj) = 1, and so

α(γ̃iγ̃j) = α(g−1
i γ−1

i g−1
j γ−1

j ) = α(gjgi)−1α(γjγi)−1 = 1.

It remains to check that λiγ̃
mi ∈ kN . Assume now that λi 6= 0. Then χmi

i = ε.
Thus,

• If l 6= i, then χml−1
l (gmi

i ) = q
(ml−1)mi

il = q
(1−ml)mi

li = χmi
i (g1−ml

l ) = 1.

Since χmi−1
i (gmi

i ) = q
mi(mi−1)
ii = 1, this implies that

α(gmi
i ) = χm1−1

1 (gmi
i ) · · ·χmn−1

n (gmi
i ) = 1,

and so
α(γ̃mi

i ) = α(γigi)−1 = α(γi)−1α(gi)−1 = 1.
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