DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS
GIVEN BY THE CANONICAL NAKAYAMA AUTOMORPHISM

M. GRANA, J.A. GUCCIONE, AND J.J. GUCCIONE

ABSTRACT. Every finite dimensional Hopf algebra is a Frobenius algebra, with
Frobenius homomorphism given by an integral. The Nakayama automorphism
determined by it yields a decomposition with degrees in a cyclic group. For a
family of pointed Hopf algebras, we determine necessary and sufficient condi-
tions for this decomposition to be strongly graded.

1. INTRODUCTION

Let k be a field, A a finite dimensional k-algebra and DA the dual space
Homy (A, k), endowed with the usual A-bimodule structure. Recall that A is said
to be a Frobenius algebra if there exists a linear form ¢: A — k, such that the
map A — DA, defined by x — xyp, is a left A-module isomorphism. This linear
form ¢: A — k is called a Frobenius homomorphism. It is well known that this is
equivalent to say that the map x — ¢z, from A to DA, is an isomorphism of right
A-modules. From this it follows easily that there exists an automorphism p of A,
called the Nakayama automorphism of A with respect to ¢, such that z¢ = pp(z),
for all z € A. It is easy to check that a linear form ¢: A — k is another Frobe-
nius homomorphism if and only if there exists an invertible element = in A, such
that @ = zy. It is also easy to check that the Nakayama automorphism of A with
respect to @ is the map given by a — p(z)!p(a)p(x).

Let A be a Frobenius k-algebra, ¢: A — k a Frobenius homomorphism and
p: A — A the Nakayama automorphism of A with respect to ¢.

Definition 1.1. We say that p has order m € N and we write ord, = m, if
P =1ida and p" #£ idy, for all r < m.

Let G be a group. Recall that a G-graded algebra is a k-algebra A together with
a decomposition A = P e Ay of A as a direct sum of subvector spaces, such that
AgAy C Ayy for all g,¢' € G. When AgA, = A,y for all g,¢' € G, the grading
is called strong, and the algebra is said to be strongly graded. Assume that p has
finite order and that k has a primitive ord,-th root of unity w. For n € N, let C), be
the group of n-th roots of unity in k. Since the polynomial X°'4» — 1 has distinct
roots w® (0 <i < ord,), the algebra A becomes a Co.q,-graded algebra

(1.1) A=A,0® - & A ora, -1, where A, ={a€ A : p(a) = za}.

As it is well known, every finite dimensional Hopf algebra H is Frobenius, being a
Frobenius homomorphism any nonzero right integral ¢ € H*. Let ¢t be a nonzero
right integral of H. Let o € H* be the modular element of H, defined by at = a(a)t
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(notice that this is the inverse of the modular element « considered in [R1]). For
v € H* let r, : H — H be defined by 7,(b) = bx = x(b(1))b2). Then, as follows
from [R1, Theorem 3(a)], we have

p(b) = a1 (b1))S? (b)), ie. p=S8%or,-1.
Since « is a group-like element, S? o r,—1 = r,-1 0 S? and therefore
(1.2) pl=8"oreu, ie pl(h)=a ' (hw)S (b)) = a'(S(ha)))S* (he),

for all I € Z. Now, a has finite order and, by the Radford formula for S* (see [R2]
or [S, Theorem 3.8]), the antipode S has finite order with respect to composition.
Thus, the automorphism p has finite order, which implies that finite dimensional
Hopf algebras are examples of the situation considered above.

Notice that by (1.2), if p! = id, then ol = ¢ and then S* = id. The converse is
obvious. So, the order of p is the lem of those of & and S2. In particular, the number
of terms in the decomposition associated with S? divides that in the one associated
with p. Also, from (1.2) we get that p = S? if and only if H is unimodular.

The main aim of the present work is to determine conditions for decomposi-
tion (1.1) to be strongly graded. Besides the fact that the theory for algebras
which are strongly graded over a group is well developed (see for instance [M]), our
interest on this problem originally came from the homological results in [GG].

The decomposition using S? instead of p was considered in [RS]. We show be-
low that if S? # id, then this decomposition is not strongly graded. On the other
hand, as shown in [RS], under suitable assumptions its homogeneous components
are equidimensional. It is an interesting problem to know whether a similar thing
happens with the decomposition associated with p. For instance, all the liftings
of Quantum Linear Spaces have equidimensional decompositions, as shown in Re-
mark 4.4.

2. THE UNIMODULAR CASE

Let H be a finite dimensional Hopf algebra with antipode S. In this brief sec-
tion we first show that the decomposition of H associated with S? is not strongly
graded, unless S? = id (this applies in particular to decomposition (1.1) when H
is unimodular and ord, > 1). We finish by giving a characterization of unimodular
Hopf algebras in terms of decomposition (1.1).

Lemma 2.1. Let H be a finite dimensional Hopf algebra. Suppose H = EBgeg H,
is a graduation over a group. Assume there exists g € G such thate(Hy) = 0. Then
the decomposition is not strongly graded.

Proof. Suppose the decomposition is strongly graded. Then there are elements
a; € Hy and b; € Hy-1 such that 1 = Y a;b;. Then 1 = £(1) = >, e(as)e(bi), a
contradiction. (]

Corollary 2.2. Assume that S* #id and that

H= P H., where H.={heH : 8%(h) = zh}.
zek*

Then this decomposition is not strongly graded.

Proof. Since € 0 8% = ¢, then e(H,) = 0 for all z # 1. O
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Let now ¢ € f; and I' € fIl{, such that (o, ') = 1, and let a: H — k be the
modular map associated with ¢t = S(I"). Let p be the Nakayama automorphism
associated with ¢. Assume that k has a root of unity w of order ord,. We consider
the decomposition associated with p, as in (1.1)

(2.1) H=H,o® - ®H_oa,-1.

Corollary 2.3. If H is unimodular and 8% # id, then the decomposition (2.1) is
not strongly graded. (Il

Proposition 2.4. If h € H_:, then a(h) = w™'e(h).

Proof. By [R1, Proposition 1(e)], or the proof of [S, Proposition 3.6], {(p,t) = 1.
Then

e(h) = e(h)(p,t) = (o, th) = (@, p()t) = (p,w'ht) = w'a(h).

So, a(h) = w™ie(h), as we want. O
Corollary 2.5. H is unimodular if and only if H,: C ker(¢), for all i >0

Proof. =): For h € H,:, we have e¢(h) = a(h) = w™'e(h) and so €(h) = 0, since
wt # 1.

<): For h € H,: with i > 0, we have a(h) = w™%(h) = 0 = €(h) and, for h € H_o,
we also have a(h) = w%(h) = €(h). O

3. BOSONIZATIONS OF NICHOLS ALGEBRAS OF DIAGONAL TYPE

Let G be a finite abelian group, g = ¢1,..., 9, € G a sequence of elements in G
and X = X1,--., xn € G a sequence of characters of G. Let V be the vector space
with basis {z1,...,2,} and let ¢ be the braiding given by c(z; ® z;) = ¢;;x; ® x5,
where ¢;; = x,(g;). We consider the Nichols algebra R = B(V') generated by (V,¢).
We give here one of its possible equivalent definitions. Let T.(V') be the tensor
algebra generated by V, endowed with the unique braided Hopf algebra structure
such that the elements x; are primitive and whose braiding extends c¢. Then, R
is obtained as a colimit of algebras R = @Ri, where Ry = T.(V) and R;41 is
the quotient of R; by the ideal generated by its homogeneous primitive elements
with degree > 2. See [AG, AS] for alternative definitions and main properties
of Nichols algebras. Assume that R is finite-dimensional and let {9 € R be a
nonzero homogeneous element of greatest degree. Let H = H(g, x) = R#KG be
the bosonization of R (this is an alternative presentation for the algebras considered
by Nichols in [N]). We have:

Agi) = 9 ® gi, Alz)) =9 Qxi+a; @1,
S(g) =g, S(zi) = —g; 'xi,
S%(g) =g, S (z;) = g7 ' wigi = q;; @i

The element ¢y > gec g is a non zero right integral in H. Let a be the modular
element associated with it. Since, for all ¢, the degree of x;tg dec g is bigger than
the degree of o, we have that z;tg deG g =0, and so a(z;) = 0. Moreover, «q is
determined by gty = a(g)tog. Thus,

plg) =alg™g and p(z;) = a(g; ")g;; i
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This implies that the nonzero monomials x;, - - - x;,g are a set of eigenvectors for p
(which generate H as a k-vector space). In particular, p is diagonalizable, whence
k has a primitive ord,-th root of unity. Consider the subgroups

L1 = <Q117 e ,Qané(G» and L2 = Oé(G),

of k*. Since p(xigi_l) = qglxigi_l and p(g) = a(g), the group L; is the set of
eigenvalues of p. As in the introduction, we decompose

H= @ H,, where H,={he H : p(h)=wh}.
weLy

Proposition 3.1. The following are equivalent:

(1) @, e, Ho is strongly graded,

(2) Ly = Lo,

(3) Fach H,, contains an element in G.
(4) H is a crossed product Hy X kL.

Proof. Tt is clear that (2)=(3) and (4)=(1).

The proof of (3)=-(4) is standard. We sketch it for the readers’ convenience. For
each w € Ly, pick g, € H,NG. Define p: L1 x Hy — Hy and f: L1 x L1 — Hy by
w-a=pwa)=geag,’ and f(w,o') = guguwg
Let Hy l><i)c kL1 be the algebra with underlying vector space H; ® kL; and with
multiplication (a ® w)(b® w') = a(w - b) f(w,w') ® ww’. It is easy to see that the
map V¥ : Hy l><£ kL, — H given by ¥(a ® w) = ag,, is an isomorphism of algebras.
In particular, Hy 1><£ kL, is associative with unit 1 ® 1, and so p is a weak action

and f is a normal cocycle that satisfies the twisted module condition.
We now prove that (1)=-(2). Notice that H is also Ny-graded by deg(g) = 0 for
all g € G, and deg(z;) = 1. Call H = @, H* this decomposition. Since each

H,, is spanned by elements which are homogeneous with respect to the previous
decomposition, we have:

H= (P H,, whereH)=H,nH"
i>0, weLy

So, if P, 1, Ho is strongly graded, then each H,, must contain nonzero elements
in H. Since H° C @@ H,,, we must have L, = Lo. ]

we€Lsy

Quantum Linear Spaces. If the sequence of characters y satisfies

e Xi(g:) # 1,

* Xi(9j)x;(g:) = 1 for i # j,
then H(g,x) is the Quantum Linear Space with generators G and 1, ..., x,, sub-
ject to the following relations:

e gz; = Xi(9)7ig,

® TiTj = qijTjTi,

o ' =0,
where m; = ord(g;;). For these sort of algebras it is possible to give an explicit
formula for p. In fact, the element t = 2"~ ! ... z7n—1 >_gec 9 is a right integral

in H. Using this integral, it is easy to check that a(g) = X’f“_l(g) Cxme 1 (g).
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In particular, a(g;) = qﬁ”*l e q;fl’ﬁl. A straightforward computation, using that

p(g) = alg™)g and p(z;) = a(g; ')g;; ' wi, shows that
pttairg = [T a T T atgT el g,
1<i<j<n

Proposition 3.1 applies to this family of algebras.

Example 3.2. Let k be a field of characteristic # 2 and let G = {1,¢9}. Set g; = g
and x;(g) = —1 for i € {1,...,n}. Then, ¢;; = —1 for all 4,7, and a(g) = (—1)™.

In this case, the algebra H is generated by g, z1,...,x, subject to relations
o g2 =1,
o 22 =0,
L] Tilj = —TjT4,
® gT; = —T;g.

By Proposition 3.1, we know that H is strongly graded if and only if n is odd.

4. LIFTINGS OF QUANTUM LINEAR SPACES

In this section we consider a generalization of Quantum Linear Spaces: that of

their liftings. As above, G is a finite abcliap group, g = g1, - --,9gn € G is a sequence
of elements in G and x = x1,...,Xn € G is a sequence of characters of G, such
that

(4.1) Xi(gi) # 1,

(4.2) xi(95)x;(g:) = 1, for i # j.

Again, let ¢;; = x;(g:) and let m; = ord(g;;). Let now A\; € k and A;; € k for i # j
be such that

Ai(xi" =€) = Nij(xix; —¢) = 0.
Suppose that A;; + g;jAj; = 0 whenever ¢ # j. The lifting of the quantum affine
space associated with this data is the algebra H = H(g, x, \), with generators G

and x1, ..., %y, subject to the following relations:

(4.3) gri = xi(9)zig,

(4.4) zitj = qiT; v+ Nij (1= gig;),
(4.5) " = N(1—g").

It is well known that the set of monomials {z]*---2l"¢g:0<7r; <m;, g€ G} is a
basis of H. It is a Hopf algebra with comultiplication defined by
(4.6) Alg)=g®g, forall g € G,
(47) A(Iz) :gi®xi—|—x¢®1.
The counit ¢ satisfies e(g) 1, for all ¢ € G, and e(x;) = 0. Moreover, the
antipode S is given by S(g) = g~ ', for all g € G, and S(x;) = —g; *x;. We note
that S%(g) = g and S?(x;) = q;; ' x;-

Let S,, be the symmetric group on n elements. For o € S, let

Meq —1 Mo, —1
o = Toy Loy, E g.
geG

Note that t, # 0.
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Lemma 4.1. The following hold:

(1) Njigig; lies in the center of H(g,x,\) fori # j.

(2) Xig™ lies in the center of H(g, X, \).

3) ¢ g—tg,forallgeG

(4) toxs, =
Proof. For (1) it is sufficient to see that Aj;¢;9; commutes with x;. If A\j; = 0 the
result is clear. Assume that A;; # 0. Then, x; = Xj_l, and thus

AjigigiTe = Njixi(9i)xi(95)719:9;
= Nixi(g) " X (90) " eugig;

= \jiZ19i9;-
The proof of (2) is similar to that of (1) and (3) it is immediate. For (4), we have:
oo, = Lot g Z 9%o,
geG
o1 on—1
=25 ae ey Y Xow(9)9
geG
= Ao 2ot g (1 giten) )Y Xou (g

geG

and the result follows by noticing that

957 Xen (@9 =D Xon(9)9 = D 907" Xou (g

geG geG geG
= Xon (90779909 = D X (9)95 g =0,
geG geG
since Xo, (go,") = gons, = 1. D

Proposition 4.2. t, is a right integral.
Proof. Let M = (mq —1)+---+ (m,, — 1). Let

A={f :{1,....,M} = {1,...,n} : #f (i) = m; — 1 for all i}.
For f € A, let xy = xpq)xpe) - Trr). We claim that if f,h € A, then
x5 deGg = By, decg for some § € k*. To prove this claim, it is sufficient
to check it when f and h differ only in 4,7 + 1 for some 1 < ¢ < M, that is, when
h = f o, where 7; € S)s is the elementary transposition (i,7 + 1). But, in this
case, we have:

xfzg:xhoﬂ Zg

geG geG
= qh(i+1)h(i)Th Z g+ /\h 4+ Ty 7 Z+1( h(i)9h(i+1) Z g
geG geG
= qn(i+1)h(i)Th Z g
geG
where x, ~ GITT = Th(1) T Th(i—1)Th(i+2) " Th(M)- The second equality follows from

relation (4 4) and item (1) in the previous Lemma. The Proposition follows now
using items (3) and (4) in the Lemma. O



DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS 7

Now we see that
[ ] Oz(.IZ) = 0,
mi—1

o alg) =x7"" () )
For the first assertion, by Proposition 4.2, we can take o such that o7 = 4. Then,

m; Mgy —1 Mg, —1
Tty = 2 wa P ag Y g

where the second equality follows from item (2) of Lemma 4.1. In particular,
alg;) = qffl_l A q%”_l. Since p(h) = a(S(h(l)))SQ(h(z)), we have:

e p(g) =alg™ )y, 1
o p(zi) = a(gi_l)qizlxi = H 4q;; ;.

1<j<n
J#i
Thus, as p is an algebra map,
p(x"{l e m;"g) = ql_lrl - q’r:;:na(gl_rl - g;r'ﬂg_]‘) qu e x;"g
= [T o™ mmag eyl
1<i<j<n

So, the basis {x{l ---xng} is made up of eigenvectors of p. Consider the groups
k* 2 Ll - <(1117 oo a(Janl(G» 2 L2 = O[(G)

Using that p(z;g; ') = g;; wig; * and p(g) = a(g™)g, it is easy to see that L; is
the set of eigenvalues of p and that the order of p is the l.c.m. of the numbers
mi, ..., my and the order of the character o € G (in particular, k has a primitive
ord,-th root of unity). As before, we decompose H = H(g,x,\) as

H= @ H,, where H,={he H : p(h)=wh}.
weLy

The following result is the version of Proposition 3.1 for the present context.

Theorem 4.3. The following are equivalent:

(1) D,cr, Ho is strongly graded,

(2) Ly = Lo,

(3) Fach component H,, contains an element in G,
(4) H is a crossed product Hy x kL.

Proof. Clearly (2) and (3) are equivalent and (4)=-(1). The proof of (3)=-(4) is
the same as for Proposition 3.1. Next we prove that (1)=-(3). Let w € L;. By
Lemma 2.1, we know that e(H,,) # 0. Since H,, has a basis consisting of monomials
xyt - almg and e(x;) = 0, there must be an element g € G inside H,,,. g

Remark 4.4. We next show that for liftings of Quantum Linear Spaces, the com-
ponents in the decomposition H = . 1, Ho are equidimensional. In fact, in this
case we can take the basis of H given by

{(z1g7 )™+ (@ngn ) ™g : 0<7r; <my, g€ G}
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Since p(zig; ") = q;;'wig; ', the map
O: Zppy X+ X Ly, X G — K,

taking (r1,...,7n,g) to the eigenvalue of (xlgjl)rl o (zngy H)mg with respect to
p, is a well defined group homomorphism. From this it follows immediately that all
the eigenspaces of p are equidimensional.

5. COMPUTING H;

Assume we are in the setting of the liftings of QLS. Suppose H is a crossed
product or, equivalently, that L; = Ls. Then, there exist elements v1,...,v, € G,
such that a(vy;) = qu. Set % = g7 'y ! and let y; = x;%;. It is immediate
that y; € Hy. Let N = ker(oyg) € G. It is easy to see that H; has a basis

r’!l

given by {yi'---yimg : ¢ € N}. Furthermore, H; can be presented by generators
N,y1,...,Y, and relations

* gyi = Xi(9)yig,

o yiv; = i X; (F)xi ()i + X5 (30X (375 — '),
; i(mi=1)/2~ \xm; —m;
oy = xR (F) G - ™.

m;(m;—1)/2

Notice that if A; # 0, then x; (%) = £1. We claim that

Nij¥iVie o Aivivi, AT and Ay™

belong to kN. It is clear that 4™ € N, since a(y™) = ¢;;* = 1. We now prove
the remaining part of the claim. Assume that A;; # 0. Then x;x; = €. Hence,

o If [ #14, 7, then xi(9i95) = qugji = qﬁlqlgl =xixj(g; ") =1

o gi=xi(9:) =xi(9; ) =a;; =i = ;'
Thus, m; = ord(g;;) = ord(g;;) = m;, and then

X?Li_l(gigj)xgnj_l(gigj) = (¢:i9ij95i9;)™ =1 and «a(vivj) = qigj; = 1.
It is now immediate that a(g;g;) = X7 ' (9ig;) - - X"~ (gig;) = 1, and so
a(¥:7;) = alg; 'y ey ) = algig) ey T =1

It remains to check that A;%™ € kN. Assume now that A\; # 0. Then x;" = e.
Thus,

o If [ # i, then X;nlfl(g;ni) _ qgnz—l)mi _ ql(il—mz)mi _ X:m( llfmz) = 1.

Since ™! (g") = "™ = 1, this implies that

algl) = X7 gl o e = 1,
and so
a(3™) = a(vig) ™" = a(v) relg) T =1
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