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Abstract

In this work we introduce an energy function in order to study finite scale free graphs
generated with different models. The energy distribution has a fractal pattern and
presents log periodic oscillations for high energies. This oscillations are related to a
discrete scale invariance of certain graphs, that is, there are preferred scaling ratios
suggesting a hierarchical distribution of node degrees. On the other hand, small
energies correspond to graphs with evenly distributed degrees.
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1 Introduction

In the last few years a huge amount of research on graphs has been achieved in
physics and mathematics, mainly due to the increasing importance of complex
networks like the Internet and the World Wide Web, and the role of social
networks in the propagation of diseases, infections, rumors and news, in both
real and virtual environments such as populations or web-based communities.

Despite the different origins, methods and perspectives in those works, certain
concepts appeared and pervaded the network literature, like small worlds, clus-
tering, centrality, scale free degree distribution, and preferential attachment,
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among others, [1], [2], [3]. They suggest that simple underlying mechanisms
could describe and explain the network growth and their emerging properties.
To this end, several networks based on real data were analyzed (see [4], [5]
and the references therein), and many theoretical models of network growth
were proposed (see Table 3 in [2]).

Also, there are still many questions and problems which remain unanswered.
Perhaps the main one is the origin of the power law degree distribution of
nodes in real networks. This distribution seems to be observed in several real
networks (although some criticism appeared in the last year, [6], [7], [8]).
Roughly speaking, the power law distribution says that the number of nodes
in a graph with k links for k > k0 has a decay proportional to k−α, for certain
α > 1. Several theoretical models were proposed to explain this phenomenon.
Among them, let us mention edge redirection of Krapivsky and Redner [10],
preferential attachment of Barabasi and Albert [9] (which can be thought of
as a particular case of the previous one for certain initial conditions), and
attachment to edges of Dorogovtsev, Mendes and Samukhin [11].

Although much attention was paid in the theoretical literature in the thermo-
dynamical limit (when time and number of nodes tend to ∞) in these models,
not too much is known for graphs with a bound in their size ([11], [12] being
the main exceptions). Indeed, many of the computer-based simulations tend
to concentrate on large graphs, while small ones usually get ignored. Yet, real
networks are finite, and in many cases they are very small (like networks of
metabolic reactions, proteins interactions, digital electronic circuits, sexual in-
teractions or food webs). Our intention in this paper is to concentrate on these
small graphs. Specifically, we concentrated on graphs with a number of nodes
ranging from 50 to 100,000. On the other hand, we were able to generate large
amounts of graphs for each model, which reduced the noise and statistical
fluctuations, and helped see some otherwise hidden properties.

Another question, which motivates our research, was the discrimination among
the different graphs generated from these models and the analysis of their
properties. We may consider this question as a basic one concerning the inter-
nal topology of the network, and the quality of their connections. Let us note
that different networks with the same node distribution respond in distinct
ways to edges or nodes removal depending on the connectivity between hubs,
that is, if the nodes with high number of links are connected or not between
them. This question was considered by Newman in [13], who coined the term
assortativity in order to describe this phenomenon.

In order to study this question, we introduce the linking energy of a graph G,
defined as

E2(G) =
∑
x∼y

|d(x)− d(y)|2,
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where d(x) is the degree of the node x, i.e., its number of links, and the sum
runs over the pairs of connected nodes.

Our original intention was to compute the expected linking energy for certain
scale-free network generating models, which enabled us to classify the graphs
generated for each models as either assortative or not. One of the first observa-
tions, was that the underlying mechanism responsible of networks generation
in each model could generate both assortative and non-assortative networks.
Another interesting fact is the correlation of the assortativity and the linking
energy E2, and the fractal structure of this correlation. These results will be
published in a separated work.

However, we also obtained an unexpected result when we computed E2 for
the models mentioned above, since the distribution of energies presents log-
periodic oscillations in the tail. This oscillatory behavior is more apparent
and becomes amplified within models which tend to produce a low number of
highly connected hubs. The oscillatory behavior is not present for random or
regular graphs, even when they are small.

Surprisingly, this shed some light on the first problem, the node distribution.
The presence of log-periodic oscillations is associated to fractal complex di-
mensions, which are due to discrete scale invariance instead of a scale free
similarity ([14], [15]). Indeed, this suggests a stronger order in the networks
other than that predicted by the scale free models, since fractal complex di-
mensions are related to (mathematical) self similar fractals such as the triadic
Cantor set. Hence, we may classify the graphs generated with any of those
models as continuous or lacunary scale free. A similar dichotomy is present
for fractals generated with iterated functions systems [16].

We conjecture that the nodes distribution itself must also exhibit the oscilla-
tions. To this end we provide some evidence from simulations in the Appendix.
At a first sight, this seems to contradict the results in [12], however, this is
not the case. Although each node appears with a definite probability follow-
ing a power law for different models, a particular realization could present a
lacunary structure corresponding to a discrete set of invariant scales. Further
work is required to settle this question. However, several real networks that
appeared in the literature seem to show such oscillations. Among them, we
mention the World Trade Web [17], or web-based communities (see Fig. 1, 5
and 8 in [18]). Also, two theoretical models of networks without growth were
recently proposed in [19] and [20], where oscillations are apparent. The ex-
istence of oscillations on the degree distribution was related to the existence
of different hierarchies among the nodes of the graph, see [21], [22] where
theoretical models were proposed to study this kind of networks. Hence, our
results show that classical models based on preferential attachment or edge
redirection can be used to generate non homogeneous networks. The oscilla-
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tion of the nodes distribution of hierarchical networks was proved recently in
[23], and also cellular networks were analyzed, showing the existence of log
periodic oscillations which suggest the presence of a discrete hierarchy.

2 Main Results

2.1 The linking energy

Let G be any graph, and let us denote x ∼ y whenever there exists a link
between the nodes x and y. Let d(x) be the degree of x, that is, the number
of links attached to x.

We define the linking energy of G as

E2(G) =
∑
x∼y

|d(x)− d(y)|2.

This is a discrete version of the energy which arises for the tension of a system
of strings attached at the nodes, with heights proportional to the number of
connections. For regular networks, it coincides with the variational form of the
Dirichlet energy of a discrete Laplacian.

Let us note that the energy spectra for graphs with N nodes is finite. For a
tree on N nodes, the maximum value of the energy is attained for the central
tree where all the nodes are connected to one of them, with an energy of

(N − 1)(N − 2)2 ∼ N3.

Let us note as well that the energy is an even number:

E2(G) ≡
∑
x∼y

dx − dy ≡
∑
x∼y

dx + dy =
∑
x

d2
x ≡

∑
x

dx =
∑
x∼y

2 ≡ 0 (mod 2)

For regular lattices, such as the triangular, square or hexagonal lattice, this
energy is proportional to the number of boundary nodes, since the degree is
the same for all the internal nodes. Also, a random (Erdős-Renyi) graph has
lower energy than a scale free one due to the small number of hubs in it.

For networks with power law degree distribution, this degree sequence is not
enough to characterize several topological and dynamical properties. Graphs
with the same degree sequence behave differently, depending on whether or
not the hubs are connected among them, a problem considered by Newman
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who introduced the assortativity to measure the connectivity between hubs.
The linking energy could be used in order to study this problem.

2.2 E2 in a random (Erdős-Renyi) graph

Let G be a graph in the Erdős-Renyi model, with d nodes. Here, two nodes
connect each other with probability p. Let us fix an order for the nodes, say
x1, · · · , xd, and for 1 ≤ i < j ≤ d let Xij = #{k ∼ i, k 6= j} and let
Yij = #{k ∼ j, k 6= i}. In other words, Xij is the degree of the node i
disregarding a possible connection to node j, and similarly for Yij. Then, Xij

and Yij are binomial, with probability

p(Xij = k) = p(Yij = k) =

(
d− 2

k

)
pk(1− p)d−2−k.

Thus, the mean and the variance are given by

< Xij >= p(d− 2),

σ2
Xij

=< X2
ij > − < Xij >2= (d− 2)p(1− p).

Furthermore, the variables Xij and Yij are independent. Hence,

< (Xij − Yij)
2 > = 2 < X2

ij > −2 < Xij >2

= 2(d− 2)p(1− p).

Now, the mean value of E2 is given by

< E2 > =
∑
i<j

p < (Xij − Yij)
2 >

=

(
d

2

)
p · 2(d− 2)p(1− p)

= d(d− 1)(d− 2)p2(1− p).

For other models of graphs, the distribution of energies gives better informa-
tion than the mean value of E2.

2.3 Models of graph generation

We explain now the studied models. All of them consist of the following steps:

• One begins with a fixed seed of nodes and links.
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• At each step, a new node is added to the graph, and
• a fixed number of links emanate from the new node to the existing ones.

These models differ in the way the targets for the new nodes are chosen. We
considered the following models:

KR Edge redirection: one target node is selected at random with uniform
probability. However, with probability 1 − r, this target is changed by the
node it points to.

BA Preferential attachment (or linear P.A.): one target node is selected at
random, with a probability proportional to the degree of the nodes.

DMS Attach to edges: one link is selected at random with uniform probability
(among the links). The new node connects to both ends of the chosen link.

The labels are put after the authors of these models, see [9], [10], [11]. We
consider separately the BA model since its energy distribution is different to
the one corresponding to the KR model depending on the initial configuration.

2.4 Numerical Experiments

We computed the energy E2 for several graphs constructed according to these
models. We present in this subsection some of these computations. For the
KR model, we used r = 0.5, which gives a power law with exponent 3 for the
degree distribution, the same exponent of the other two models (see [2]).

We present the results in Figures 1 to 1: in Figure 1 we show E2 for 107 graphs
on 100 nodes produced with BA model. In Figure 1 we show E2 for 107 graphs
on 100 nodes, produced with KR model, with r = 0.5. In Figure 1 we show
E2 for 108 graphs on 100 nodes, produced with DMS model. Oscillations in
this case become more apparent using logarithmic scale, shown as an inset.

Here, the energy spectra has a maximum close to 1003, although the observed
energy levels are far from this value in the examples. Moreover, there are
no forbidden levels at least for E2 ≤ 40, 000. This fact also shows that the
oscillations are not caused by the discreteness nor the sparsity at high values
of the energy.

The oscillations persist even varying the width of the bins in the histogram.
This could be caused by the fractal pattern in the energy distribution, since
each oscillation exhibits a strong self-similarity with a sequence of sub-oscil-
lations, see Figure 2. This fractal pattern is clearly shown in the integrated
density of energies,

N2(E) =
∫ e

0
dδ(E2 − E).
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Fig. 1. Nodes degree distribution of 100-node graphs. Up: Attach to Edges, 108

realizations (inset: log scale allows oscillations to become visible). Middle: Linear
Preferential Attachment, 107 realizations. Down: Edge Redirection, 107 realizations.

As was pointed out in [5], the analysis of the cumulative distribution is better
than binning in order to avoid statistical fluctuations. In Figure 3 we show dif-
ferent amplifications of N2(E) for KR with r = 0.25. The structure resembles
a Cantor devil staircase.

It is interesting to note that the three models shown above share the same
node-degree distribution. In all of the cases, degrees decay as a power-law of
exponent 3. However, the energy distribution presents some differences. For
instance, it is clear that their modes differ: they are close to 4400 (BA), 5700
(KR), and 20000 (DMS). Their oscillations also differ both in the place where
they begin and in their amplitudes.

Let us emphasize the difference between KR and BA models. Although KR
was proposed as a model to easily simulate BA, both depend on the seed in
different ways (for instance, KR needs a seed in which each node has exactly
one outgoing edge, while BA can be defined even for undirected graphs). Fur-
thermore, the energy is highly dependent on the seed, and we show in Figure
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Fig. 2. Edge redirection, 100 nodes, r = 0.25, histogram over 108 graphs

Fig. 3. Edge redirection, 200 nodes, r = 0.1, 107 graphs

4 the energy distribution for 100-node-KR graphs with three different seeds.
Thus, the energy can also be used to discriminate between seeds within the
same model.

Moreover, for r close to zero, the KR model gives almost only high energy
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Fig. 4. Edge redirection, 100 nodes, r = 0.5, histogram over 107 graphs. Three
different seeds were used, showing that KR depends highly on the seed, and in turn
that energy depends highly on it.

graphs, together with an interesting behavior of the oscillations, which become
highly amplified. In the limit, the resulting distribution is a Dirac delta. We
show in Figure 5 the energy distribution for r = 0.25.

2.5 Discrete Scale Invariance and log-periodic oscillations

Let us consider a model in which the first node has no outgoing edge, while
the others have exactly one, as it happens in KR or BA models. Then, a graph
with d nodes has d− 1 edges, and for each edge x ∼ y, |d(x)− d(y)| ≤ d− 2.
Thus, E2(G) ≤ Emax

2 := (d − 1)(d − 2)2. This level of energy is reached with
probability 1 in KR when r = 0.

Now, consider the graph Gk depicted in Figure 6. It has 1 node at the center,
k nodes with degree 2, k nodes “in a second row”, attached to the previous k
nodes, and d− 2k − 1 nodes with degree 1 and at distance 1 from the origin.

The energy of Gk is given by

ek := E2(Gk) = (d− 2k − 1)(d− k − 2)2 + k(d− k − 3)2 + k.

If k � d,

ek ∼ (d− k)3.
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Fig. 5. Edge redirection, 200 nodes, r = 0.25, histogram over 2× 107 graphs. In the
inset, distribution of high-energy graphs.

Fig. 6. Graph with k edges in a second row

Within the KR model, if r is close to 0, this sort of graphs have non-negligible
probability, and they explain the peaks at energies close to Emax

2 , which can
be seen at the inset in Figure 5. If one pays a closer attention to one of these
peaks, one will see that each of them has sub-peaks with smaller probability;
this fact is more apparent when the number of nodes is bigger (see Figure 7,
which is made with 2000-node graphs).

The sub-peaks are due to graphs similar to Gk, but for which the k nodes
at second row do not attach to those in first row so regularly. The number
of energy levels around the peak associated to Gk is related to the number
of graphs on k nodes (more precisely, to the number of forests, i.e. disjoint
union of trees, on k leaves). This means that when k grows, these peaks get
wider, and eventually they become close enough to seem oscillations. Such a
phenomenon can be seen in Figure 7.
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Fig. 7. Sub-peaks become close. KR, 2000 nodes, r = 0.20, E2.

Since, for k � d, ln(ek) − ln(ek+1) ∼ 3
d−k

∼ 3
d
, the peaks can be considered

a log periodic structure. The log periodicity of oscillations was related to
the existence of a discrete scale invariance (as opposed to a continuous one),
which is due to the existence of preferred scaling ratios. For self similar fractals
like the triadic Cantor set or the Sierpinski gasket, the existence of complex
fractal dimensions was proposed, since the imaginary part leads to log periodic
corrections of the scaling. In our setting, the existence of preferred scaling
ratios corresponds to the existence of different hierarchies in the distribution of
node degrees in a given graph. That is, the degrees are not evenly distributed,
but lacunary.

We wish to stress that this fact was obtained independently for the degree
distribution of hierarchical scale free graphs in [22], and some models of graph
generation were proposed there. Here, the energy shows that those kind of
networks are obtained also from classical models of graphs generation like the
BA, KR, or DMS.

3 Conclusions

In this work we introduced the linking energy E2, and computed it for sev-
eral small graphs. We generated the graphs with preferential attachment, edge
redirection and attachment to edges models. These models are known as re-
sponsible of power law distribution of the nodes degree, and the graphs gen-
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erated are considered scale free. We also consider random (Erdős-Renyi) and
regular lattice graphs.

The frequency distribution of energies shows log periodic oscillations in the
tail for the graphs generated with scale free models, which are associated to
complex fractal dimensions and discrete scale invariance. They are not present
for random or regular graphs.

There are two interpretations of the terms scale free. In the first one, the
range of the nodes degree distribution crosses several scales, instead of being
concentrated around the mean number of connections. The second one suggest
that the nodes degree distribution presents details at every interval of the range
following a power law.

Our results show the presence of discrete scale invariance in high energies
graphs: they are scale free in the first sense, although the nodes degree are not
evenly distributed between the minimum and maximum values, but clustered
in hierarchies. This is a fact observed in small networks gathered from real
data. Also, for small energies, the distribution does not show the oscillations
and the graphs seems to be scale free in the second sense. Hence, the models
considered are able to generate both kind of graphs, and the energy could be
used to discriminate between them.
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A Some evidence on degree oscillation

Scale free networks may be defined by having a degree distribution d(k) ∝ kγ,
and, among others, the models studied here are shown to produce such net-
works. However, this is true in the thermodynamical limit. This is also true for
finite networks if one takes the average of d(k) along the graphs produced by
the model, as proved in [12]. However, we conjecture that the degree distribu-
tion of some finite network oscillates. To be precise, we introduce the quantity
o = o(f) below as a mean to measure oscillation. We use the variation of
degree distributions: let f : N → R≥0 be a function which eventually vanishes
(i.e., ∃n0 such that f(n) = 0 ∀n ≥ n0). For such an f , we take its variation

V (f) =
∑
n∈N

|f(n)− f(n + 1)|.
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# nodes r = 0.8 r = 0.6 r = 0.4 r = 0.2 r = 0.1

100 1.873 2.238 2.609 2.909 3.006

200 1.619 2.008 2.423 2.805 2.955

400 1.433 1.808 2.245 2.699 2.900

800 1.302 1.642 2.083 2.594 2.844

1600 1.210 1.506 1.937 2.491 2.787

3200 1.145 1.397 1.808 2.394 2.730

6400 1.099 1.310 1.695 2.300 2.674
Table A.1
Normalized variation o(d× n) for finite graphs. Averages over 106 realizations.

Thus, V (f) provides a measure as to how f oscillates. Notice that if f(n) ≥
f(n + 1) ≥ 0 for all n ∈ N, then V (f) = f(1). Therefore, the quantity

o(f) := V (f)
f(1)

∈ [1, +∞] is a normalized way to see how far f is from being

monotone decreasing (o(f) = 1 meaning f is indeed monotone decreasing).

We averaged the quantity o(f) for the functions f(n) = n × d(n), where
d(n) is the number of nodes with degree n in networks constructed by Edge
Redirection model. The results are reproduced in table A.1. Notice that since
theoretically d(n) ∝ nγ with γ < −1, then f(n) should still be monotone
decreasing. Taking f instead of d, however, makes oscillations on high degrees
more evident.

As one can see from the table, f(n) = n × d(n) approaches a monotone de-
creasing function when the number of nodes increases. However, the simulation
gives evidence that degrees do oscillate for finite networks.
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