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Abstract. Any �nite-dimensional complex pointed Hopf algebra with group
of group-likes isomorphic to a sporadic group G, where G is either the Mathieu
groups M22 or M24, the Janko groups J1, J2 or J3, the Suzuki or the Held
group, is a group algebra.
Résumé. Soit G un des groupes de Mathieu M22 ou M24, ou un des groupes
de Janko J1, J2 ou J3, ou le groupe de Suzuki ou le groupe de Held. Soit H
une algèbre de Hopf pointée de dimension �nie dont le group des grouplikes
est isomorphe a G. Alors H est isomorphe a l'algèbre de groupe de G.

1. Introduction

Let k be a �eld of characteristic 0. In this Note, we announce a new contribution
to the classi�cation of �nite-dimensional Hopf algebras over k. As is known, di�er-
ent classes of �nite-dimensional Hopf algebras have to be studied separately because
the pertaining methods are radically di�erent. There is a method for pointed Hopf
algebras (those whose coradical is a group algebra kG) that has been applied with
satisfactory results when G is abelian [8]; an exposition of the method can be found
in [7]. Recently, it appeared that many �nite simple (or almost simple) groups
G admit very few �nite-dimensional, pointed non-semisimple Hopf algebras with
coradical isomorphic to kG:

• Any �nite-dimensional complex pointed Hopf algebra with group of group-
likes isomorphic to Am, m ≥ 5, m 6= 6, is a group algebra [2].

• Same for the groups SL(2, 2n), n > 1 [10] and M20, M21 = PSL(3, 4) [11].
• Most of the pointed Hopf algebras over the symmetric groups have in�nite
dimension, with the exception of a short list of open possibilities, see [4]
and references therein (see 2.1 below).

We are presently studying �nite-dimensional pointed Hopf algebras over sporadic
simple groups. As part of our results, we have the following.

Theorem 1. Let G be any of the Mathieu groups M22, M24, the Janko groups J1,

J2, J3, the Suzuki group Suz, or the Held group He. If H is a �nite-dimensional

pointed Hopf algebra with G(H) ' G, then H ' kG.

2. Outline of the proof

A complete proof of Theorem 1 for the groups M22 and M24 is contained in [9];
the proof for the other groups will be included in [3].

We sketch now the proof in two main reductions. The �rst one has been explained
in several places, with detail in [7], but we include a brief summary for completeness.
We assume the reader familiar with the important notion of the Nichols algebra of
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a braided vector space, discussed at length in [7]. We remind that if U is a braided
vector subspace of V , then B(U) ↪→ B(V ).

2.1. A general reduction. Let G be a �nite group, H a pointed Hopf algebra with
G(H) ' G. Then there are two basic invariants of H, a Yetter-Drinfeld module V
over kG (called the in�nitesimal braiding of H) and its Nichols algebra B(V ). We
have |G|dim B(V ) ≤ dim H. Therefore, the following statements are equivalent:

(1) If H is a �nite-dimensional pointed Hopf algebra with G(H) ' G, then
H ' kG.

(2) If V 6= 0 is a Yetter-Drinfeld module over kG, then dim B(V ) = ∞.
(3) If V is an irreducible Yetter-Drinfeld module over kG, then dim B(V ) = ∞.

2.2. Looking at subracks. We focus on (3) above. The second reduction has
been the basis of our recent papers. It starts from the well-known classi�cation of
irreducible Yetter-Drinfeld modules over kG by pairs (O, ρ), where O is a conjugacy
class in G and ρ is an irreducible representation of the stabilizer Gs of a �xed point
s ∈ O. Now, the de�nition of the Nichols algebra B(O, ρ) of the corresponding
Yetter-Drinfeld module M(O, ρ) just depends on the braiding. If dim ρ = 1, then
this braiding depends only on the rack O and a 2-cocycle q : O × O → k× [5].
Namely, O is a rack with the product x . y := xyx−1, M(O, ρ) has a natural basis
(ex)x∈O and the braiding is given by c(ex ⊗ ey) = qxyex.y ⊗ ex. If there exists a
subrack X of O such that the Nichols algebra of the braided vector space de�ned
by X and the restriction of q is in�nite dimensional, then dim B(O, ρ) = ∞.

We recall some examples of racks which are relevant in this work.

(i) Abelian racks: those racks X such that x . y = y for all x, y ∈ X.
(ii) Dp: the class of involutions in the dihedral group Dp, p a prime.
(iii) O: the class of 4-cycles in S4.
(iv) Doubles of racks: if X is a rack, then X(2) denotes the disjoint union of two

copies of X each acting on the other by left multiplication.

We are interested in �nding subracks which are abelian, or isomorphic to D(2)
p

or to O(2), by the following reasons:

(A) If X is abelian, then the corresponding braided vector space is of diagonal
type. Braided vector spaces of diagonal type with �nite-dimensional Nichols algebra
where classi�ed in [13]; thus, we just need to check if the matrix (qxy) belongs or
not to the list in [13].

(B) If X is isomorphic either to D(2)
p or to O(2), then for some speci�c cocycles,

the related Nichols algebras have in�nite dimension [6, Ths. 4.7, 4.8].

Variations.

(a) If dim ρ > 1, similar arguments apply.
(b) Sometimes the rack X is not abelian, but the braided vector space produced

by X and the 2-cocycle can be realized with an abelian rack, by a suitable change
of basis.

(c) Let F < G be a subgroup, s ∈ F , OF , resp. OG the conjugacy class of s
in F , resp. in G. If dim B(OF , τ) = ∞ for any irreducible representation τ of F s,
then dim B(OG, ρ) = ∞ for any irreducible representation ρ of Gs.

(d) A conjugacy class O is real if O = O−1. It is quasireal if O = Om for
some integer m, 1 < m < N , where N is the order of the elements in O. The

search of subracks isomorphic to D(2)
p or to O(2), as well as the veri�cation that

the restriction of the cocycle q is as needed in (B), is greatly simpli�ed in a real
(quasireal) conjugacy class [1].
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2.3. Computations. We now �x a sporadic group G.

• We extracted relevant information from the ATLAS [14] by using GAP [12]
and the AtlasRep package [15].

• We checked with GAP [12] when a conjugacy class is real; the correspon-
dence between conjugacy classes in a group G and in a subgroup H. We
wrote GAP functions to �nd subracks of types (i),. . . ,(iv).

These tools allow to apply the techniques sketched above to all pairs (O, ρ) and
establish the validity of (3).

2.4. Final remarks. Some of the results presented here are part of the PhD theses
of FF and LV.
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