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ABSTRACT. Any finite-dimensional complex pointed Hopf algebra with
group of group-likes isomorphic to the alternating group A,,, m > 4, is

a group algebra.

1. INTRODUCTION

This paper contributes to the classification of finite-dimensional pointed
Hopf algebras over the field C of complex numbers. Our basic reference is
[AS]; see loc. cit. for unexplained terminology and notation. If G denotes a
finite group, we would like to know all pointed Hopf algebras H with G(H) ~
G and dim H < oo. For this, we need to solve the following problem. Let
O be a conjugacy class of G, o € O fixed, p an irreducible representation of
the centralizer Cg (o), M (0, p) the corresponding irreducible Yetter-Drinfeld
module and B(0, p) the associated Nichols algebra. If (V,c¢) is a braided
vector space, that is ¢ € GL(V ® V) is a solution of the braid equation, then
B(V') denotes its Nichols algebra; for shortness, we write B(0, p) instead of
B(M (O, p)). The problem is:

For which pairs (O, p) is the dimension of B(0, p) finite?

We denote by G the set of isomorphism classes of irreducible represen-
tations of a group G. We use the rack notation x>y = zyz™!, =, y € G.

See [AG] for information on racks. If ¢ € G and p € Cg(0), then p(o) is a
scalar denoted ¢y, -

This article is continuation of [AF1], where we began the study of finite-
dimensional pointed Hopf algebras with group of group-like elements iso-
morphic to A,.

Theorem 1.1. Let G = A,,, m > 5. If O is any conjugacy class of G,
o €0 is fivzed and p € Cg(0), then dimB(0, p) = co.
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By the Lifting Method [AS], we conclude:

Theorem 1.2. Let G = A,,, m > 5. Any finite-dimensional pointed Hopf
algebra H with G(H) ~ A,,, is isomorphic to CA,,. U

This result was known for the particular cases m = 5 and m = 7 [AF1, F].
We prove it for m > 6. Since Aj is abelian, finite dimensional Nichols
algebras over it are classified, there are 25 of them. Nichols algebras over A4
are infinite-dimensional except for four pairs corresponding to the classes of
(123) and (132) and the non-trivial characters of Z/3. Actually, these four
algebras are connected to each other either by an outer automorphism of A4
or by the Galois group of Q((3)|Q (the cyclotomic extension by third roots
of unity). Therefore, there is only one pair to study for Ay.

In a previous version of this paper, we proved Theorem 1.2 for m > 7,
but were unable to decide the dimension of the Nichols algebra attached to
the pair formed by the class of (1234)(56) and the character p = x(_1),
corresponding to Ag. It was observed that this class contains a subrack with
18 elements, a union of 2 subracks of order 9, identified as a union of two
conjugacy classes in Fg x Z/4. This pair can be discarded now too, and
consequently we also finish Ag, by means of [HS1, Th. 8.6].

The paper is organized as follows. In Section 2, we spell out some tech-
niques, based on the analysis of braided vector subspaces of diagonal type,
that are needed for our arguments but are also useful elsewhere. In Section
3 we prove Theorem 1.1.

2. SOME TECHNIQUES

2.1. An abelian subrack with 3 elements. We begin by recording a
result that is needed in Lemma 2.4 and will be also useful elsewhere.

Lemma 2.1. Let G be a finite group, O be the conjugacy class of o1 in G

and (p,V) € Cg(o1). Let o9 # 03 € O —{o1}; let g1 = e, g2, g3 € G such
that o; = gmlgi—l, for all i. Assume that

° 0? = o903 for an odd integer h,
e g3g2 and ga2g3 belong to Cg(o1), and
® 0,05 =050, 1 <14,5 <3.

Then dim B(0, p) = oo, for any p € Cg(o1).

Proof. Since 0;0; = 0j0;, there exists w € V' — 0 and A\; € C such that
p(oi)(w) = Nw for i = 1,2,3. For any 1 < i,5 < 3, we call y;; = gj*laigj.

It is easy to see that v;; € Cg(01) and that
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Then, W = span{gjw, gow, gsw} is a braided vector subspace of M (0O, p)
of abelian type with Dynkin diagram given by Figure 1. Assume that
dimB(0, p) is finite. Then A\; # 1; also A! # 1, for otherwise gow, gzw
span a braided vector subspace of Cartan type with Dynkin diagram Agl).

Thus, we should have \; = —1 and h even, by [H2, Table 3|, but this is a

contradiction to the hypothesis on h. O
A1
h h2-2
Al Al
)\1 >\1
A
FIGURE 1

2.2. The technique of a suitable subgroup. Notice that if (V,c) is a
braided vector space and W C V' is a subspace such that c(W@W) = WeW,
then B(W) C B(V). In particular, if B(W) is infinite dimensional, also is
B(V).

Let G be a finite group, o € G, OF = O its conjugacy class, Cg(0) its
centralizer and p € C@. If H is a subgroup of G and o € H, then
O = O denotes the conjugacy class of o in H.

Lemma 2.2. Ifdim B (0", 7) = oo for all T € C/H(\a), then dim B(0%, p) =
oo for all p € Ci(o).

Proof. Since M = IndgG(a)p = Bycoc Vs, where Vs = {v e V | §(v) = s@u},
we have that M := @, ou Vi C M is a Yetter-Drinfeld module over H. [

Now assume that 01,09 € H. Let O; be the conjugacy class in H of o;.
Assume that 01 # .

Lemma 2.3. If B(M(01,71) & M(02,72)) has infinite dimension for all

o —

pairs 11 € Cg(o1), 72 € Cp(o2), then %(OG,p) is infinite dimensional.

Proof. As before, M = @,c09cVs and then @sco,u0,Vs C M is a Yetter-
Drinfeld module over H. O
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2.3. The group Ay x Z/r for r odd. Let r be an odd integer and let
G = Ay X Z/r. Assume that Z/r is generated by 7.

Lemma 2.4. Let O be the conjugacy class of o = ((12)(34),7) in G. Then,
dimB(0, p) = oo for every p € Ca(o).

Proof. Apply Lemma 2.1 with o1 = ((12)(34),7), 02 = ((13)(24),7), 03 =
((14)(23),7), g1 =€, g2 = (132) x 1, g3 =g, and h = r +2. O

Remark 2.5. The case r = 1 of this Lemma is known (see for example [AF1,
Prop. 2.4]) and it is used to kill the conjugacy class of involutions in Ay.
2.4. The group SL(2,3). Let G = SL(2,3); recall |G| = 24. Here is one
presentation of G by generators and relations:

SL(2,3) = (z,y,z|a' =y' =2° = 1,2” =¢?,y lay =27,

ez =y 2Ty = ya b,

This presentation can be realized by choosing

) =(14) v=(13) =0 1)

Let us consider the conjugacy class of 0 = x € G, explicitly

o~{(0 -G 06N NE

We numerate these elements as o1, ..., gg, in this order. The centralizer
Ca(0o) is the cyclic group of order 4 generated by o.

Definition 2.6. The rack underlying the orbit of ¢ in SL(2,3) will be
denoted D3.

Lemma 2.7. [FGV, Subs. 3.2] If (p,V) € C@, then dim B(0,, p) = co.

For completeness, we include a proof of this result.

Proof. The class O, is real because it contains all elements of order 4 in G;
hence, we only need to consider p = x € Cg(o) such that x(o) = —1, cf.
[AZ, 2.2]. Let

10

2 :1d7 :O" =
(2) a1 g2 =03, g3 (1 )

>, g4a =093, gs = 096, 962951-
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Then g;>01 = 0. For any 4, j, there is an index denoted i>j and 7;; € C(0)
such that o;9; = givjvij. A straightforward computation shows that

o ol 1 o2 o2 1
ol o o2 1 1 o?
2 -1
G =G| T T
ot o7l o o o ot
o o ot ot o7l o
Let v € V — 0. We define
) Ul = g1V + gov, U3 1= g3U + g4v, U5 = g5V + g6V,
Ug 1= g1V — gav, Ug = g3V — g4U, Ug = g5V — geU-

By straightforward computations, we can see that, in this basis, M (0O, p) is
a braided vector space of diagonal type with matrix given by

-1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1
1 -1 -1 -1 -1 1
1 -1 -1 -1 -1 1
-1 1 -1 1 -1 -1
-1 1 -1 1 -1 -1
Hence M (0O, p) is of Cartan type with Dynkin diagram given by Figure 2
this is not of finite type, and dim*B(0, p) = oo, by [H1]. O

FIGURE 2

2.5. The group SL(2,3) xZ/r for r a prime number. In this subsection,
we present a useful variant of the criterium given in 2.4 that will be used in
[AFGV]. Let G = SL(2,3) x Z/r. Let us consider the conjugacy class O of
o = (z,7), where x = ( (1] g and 7 has order r. The centralizer of o is

Ca(o) = (x) x (1) ~Z/4 x Z/r. We consider Nichols algebras associated to
pairs (O, p), where p = p; ® p2 € Cg(0o), p1 € Z/4 and p2 € Z/r
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—

Lemma 2.8. If (p,V) € Cg(0), then dim*B(0, p) = oco.

Proof. The braided vector space M(0O, p) is (V @ W, cygw ), where (V,cy)
is the braided vector space associated to (O, p1), (W, cw) is the braided
vector space associated to (O, p2), and

cvew = (Id @ flip ® id)(cy ® ew)(id @ flip ® id).

First notice that if » > 3 the conjugacy class O is quasi-real of type j, with j
an odd number, and g = ng. Then, by [FGV, Corollary 2.2] we only need to
consider p(g) = ¢, where ( = —1 or ( is a cubic root of 1. Moreover, if r > 3,
since r is a prime number, we only need to consider the case p(g) = —1. Also,
if r = 2, then O is a real conjugacy class and by [AZ, Lemma 2.2] we need
to consider p(g) = —1. Therefore, we only need to consider p = x(_1) ® € or
p = €® x, where x(g) = ¢ is a primitive r-root of 1. If p = x(_1) ® ¢, the
result follows in a analogous way to the proof of Lemma 2.7. Assume then
that p = e ® x for r = 2 or 3. We call v; = (04, 7) and h; = (g;,1d), where
o; and g; are as in the proof of Lemma 2.7. Then h; >y =v;, 1 < i <6,
and v;h; = hiy;0;5, where §;; = (745, 7), with v;; given by (3), 1 <14,j < 6.
Let v € V — 0. We define W as the C-span of {u; |1 <1 < 6}, where
u1 := h1v + hov, ug := h3v + hqv, us:= hsv + hgv,

5

5) uy := hi1v — hov, uyg = hgv — hyv, wug := hsv — hgv.
By straightforward computations, we can see that, in this basis, M (0O, p) is
a braided vector space of diagonal type with matrix given by

¢ ¢ ¢ ¢ ¢ —¢
¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ —¢
¢ ¢ ¢ ¢ ¢ —¢
¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ —¢C ¢ ¢
Hence, M(0O, p) is of Cartan type with Dynkin diagram of infinite type (if
r = 2 the Dynkin diagram is Aél)). Thus dim B(0, p) = cc. O

3. NICHOLS ALGEBRAS OVER A,,

3.1. Notations on symmetric groups. Let 0 € S,,. We say that o is
of type (1™ ,2"2 ... m™) if the decomposition of ¢ as product of disjoint
cycles contains n; cycles of length j, for every 7, 1 < j < m. Let A; =
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Ay j-++ Ap;; be the product of the n; > 0 disjoint j-cycles Ay j, ..., Ap;
of 0. Then

we shall omit A; when n; = 0. The even and the odd parts of o are
(7) Oc 1= H Aj, 0o = H A;.
j even 1<j odd

Thus, 0 = A10.0, = 0.0,; we need to define o, in this way for simplicity of
some statements and proofs. We say also that o has type (1™,2"2 ... 0,),
for brevity.

The centralizer S¢, = T} X - - - x T, where

(8) Ty =(AugeesAnyg) % (Bujs-.., Buyo1j) = (/)" % Su,
1 < 7 < 'm. We describe the irreducible representations of the centralizers.
If p=(p,V)€Cs,(0), then p=p1 ®---® pp, where p; € T; has the form

(Z/5)"3 %S
(9) pi=Tnd o 5 (X0 ©p5),
J

with x; € (W? and p; € S%j — see [S, Section 8.2].

Remark 3.1. Let o € A,,. Then 0 = Aj0.0,, see (7); clearly, o¢,0, € Apy,.
Since o¢, 0, € Z(Ch,,(0)), the center of Cy, (), p acts by a scalar on o,
and o,, i. e. p(oe) = A1Id and p(o,) = AId. Hence, ¢, = A\. Notice that

if the orders of o, and o, are relatively prime and ¢,, = —1, then A = —1
and A = 1.
We introduce some elements of S,, attached to a cycle o that will be used
later. Let o = (i1 i2 i3 -+ i4y) be a 4n-cycle in A,,. We define
2n

(10) go =] 4n—1+1)
=1

Thus, go € A,, is an involution and g, >a = o~ .

3.2. Scheme of the proof of Theorem 1.1. We proceed to the strategy
of the proof of Theorem 1.1, postponing to later subsections the consider-
ation of some particular cases. Let G = A,,, with m /2\6, o € G of type
(1m2m2 oo m™m), O its conjugacy class and p € Cg(o). Assume that
dimB(0, p) < oo. Then o is real with even order and ¢,, = —1 by [AF1,
2.3]; O4n = 9Sm and [Cs,, (o) : Ca,, (0)] = 2 (see for instance [JL, Proposi-
tion 12.17]). Hence, any subrack of O5» is obviously a subrack of 947 and
we may apply the techniques from [AF2].

(a) If 7 > 6 is even and has an odd divisor, then n; = 0. Otherwise,

OAm contains a subrack of type 91(92), with p odd prime, by [AF2,
2.11] and dimB(0, p) = oo by [AF2, 2.9].
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(b) ngr < 2, for all k > 2. Otherwise, O™ contains a subrack of type
D3 by the proof of [AF2, 3.10] and dim B(0, p) = co by [AF2, 3.8].

(c¢) The type of o, is (2"2,4™), by Proposition 3.5.
So far, we have that
o= Ai0.0,

where A; is of type (1™), o is of type (2"2,4™4), with ng + ny4 even and
ng < 2, and o, is of type (3"3,5"5,...).

(d) ng > 0. Otherwise, o is of type (11,272 g,); here na is even, because
(1™,2"2 g,) ¢ Ay, if ng is odd. Then we conclude by Prop. 3.6.

(e) ng < 2. Otherwise, O%™ contains a subrack of type D3 by the
proof of [AF2, 3.12] and dim*B(0, p) = co by [AF2, 3.8] — note that
o # o1 because ny > 0.

(f) If ng > 0, then ny = 0. Otherwise, 9% contains a subrack of type
D3 by the proof of [AF2, 3.9] and dim B(0, p) = oo by [AF2, 3.8] —
note that o # 0! because nyg > 0.

(g) o0, is trivial by Prop. 3.7.

(h) The remaining types are: (2,4), excluded by Prop. 3.9; (1,42),
excluded by Prop. 3.2; and (22, 42), excluded by Prop. 3.3.

3.3. The classes (1™, 42) and (22,42). We now apply the technique of the
subgroup with H = SL(2, 3).

Proposition 3.2. Let G = A, or S,,, 0 € G, O the conjugacy class of o

and p € C'/G(?). If the type of o is (1™,42%), then dim B(0, p) = oco.

Proof. The group SL(2,3) acts faithfully on Fs x F3, and also on F3 x
F3\ {(0,0)}, which consists of 8 elements. Therefore, we get an injective
morphism 1 : SL(2,3) — Sg C S,,,. Using a particular labelling of the ele-
ments, this map is given by z +— (1326)(4587),y— (1428)(3765),
z+— (147)(2805), whence the image lies in Ag C A,,. By Lemma 2.7, the
claims follows. O

Proposition 3.3. Let 0 € Ao, O the conjugacy class of o and p € Ca,,(0).
If the type of o is (22,42), then dim B(0, p) = co.

Proof. As before, we have a faithful permutation action of SL(2, 3), which is
the product ¥ X ¢, where v is the morphism in the proof of Proposition 3.2,
and ¢ : SL(2,3) — A4 is given by

x> (910)(1112), y— (9 11)(10 12), =z (9 11 12)
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(notice that the group generated by (9 10)(11 12), (9 11)(10 12), (9 11 12)
is isomorphic to A4). The image of 1) x ¢ lies in Ag x Ay C Ajo and the type
of (1 x ¢)(x) is (22,42). By Lemma 2.7, the claims follows. O

Remark 3.4. This argument applies also to the class of ¢ € S,, with type
(22,42). This was dealt with transversal subracks in [AF2].

3.4. Remaining cases.

Proposition 3.5. Let 0 € A, be of type (1™1,272,4™ ... (2K)"2F 0,), with
k > 3 and nox > 0, O the conjugacy class of o in A, and p = (p,V) €
Cy,, (o). Then dim*B(0, p) = 0o

Proof. As explained in Subsection 3.2 (b), we may assume ngx = 1 or 2.
(I) Assume that nqr = 1. Let a = (i1 i3 - - - 19 ) be the 2F-cycle appearing
in the decomposition of o as product of disjoint cycles, and we call

L:= (irigis -~ ige_y) and  Pi= (igigle - - igr).

In the proof of [AF2, Lemma 2.11], it was shown that
( ) 2]{*1
(b) a? = IP
(c) a P, (hence clo~! = P),
(d) PtaPt = a2t+1 for all integer t.

For notational convenience, we set

I and P are disjoint -cycles,

g =P 1<i<4

Notice that
(i) if k > 4, then §; = (P2 '1)2 € A,
(ii) if £ = 3, then g4 = id and gy = P2 are in A,,, whereas g1 = P and
g3 = P? are not in A,
For every 1 <1 < 4, we define g; = g; in the case (i) or in the case (ii) with
[l =2or4, and g = gia in the case (ii) with { = 1 or 3. Then, g, € A,
1 <[ <4. We define a; := g; >« and

(11) oy =g >o.

Notice that o; = (g; > 0¢) 00, for all I. Then (07)1<;<4 is a subrack of O of

type D4 in the sense of [AF2, Def. 2. 2} Notice that oy = o, ap = aik 1
2k 11 k=141 ok—1 _ 2k

o, because o = . If we

and a3 = of . Thus, o9 = o3 z
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define 7, := (g;>0¢) "L 0,, for all [, then (07)1<j<4 U (77)1<1<4 is a subrack of
O of type Df). Let

see (10). Then g is an involution in A,, such that g>o = o, lo,. Let

hi == qi9, 1<i<4

clearly, hy>o = 7, 1 <[ < 4. By straightforward computations, we have
the following relations:

94 g1 P g3
o4 g10 gz 0" g2 02 groa™r
o1|  geoa gio gaoa®” 93 02
o2 ga02 gzoa " g0 g1oa®"
o3|  gaoa® 9109 gaoa " g30
| g0 o, g3olo.a® g0 Tlo, grosto,a
T | gpostopa™? gro;to, gro;to,a® g3 ae_2k_l_lao
Ty | g4 0,6—2k_1—10_0 gso; to,a”?r g oo, g1o; to,a®
3| goslona®  gro; o, grosloa? gzt
hy hi ho hs
o4 hyo,to, hsolo,a™?"  hy 06_21%1_100 hio; lo,a®
o1 | hao lo,a?" hyo 1o, hyo to,a™®  hg 0;21971_100
o9 | ha 0'6_2]%1_100 hs o, to,a® he oo, hio.to,a™?"
o3 | hoo lopa™" Ry 0;21671_100 hio,to,a" hzo to,
T4 hgo hso a~?%r ho o9 hio a2
1 ho oo hio h4UOzi2T hs o9
T hy o9 hs o o®" hy o hioa %"
T3 hooa™2" hi o9 hy o a® hs o

Notice that a € Z(Cs,, (o)) and a® € A,,; thus, o®" € Z(Cy,, (o)), and

p(a®") acts by a scalar , with x* = 1 because

Id = p(id) = p(a®") = p((a®)) = k1 1d.

2r
e

~2r . 2r

We show that K = +1. If we call ¢ = ge.a™ !, then 02" = 7% a® and

2" € Z(Cy,,(0)); thus, p(2") acts by a scalar

Id = p(07") = p(a™")p(a®")

k. Now

=rrld.
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That is, 1 = &x. Now, & is product of 2/-cycles with ¢ < k — 1. Then,
52 =527 and (6%)2 = 52" =id. Hence, 2 =1, and k = +1.
Let v € V — 0. We define W := C-span of {u;,w; |1 <1 <4}, where

Uy = gav + gov, wy := hqw + haw,

U2 = g4V — G2V, wo := hgw — how,
(12)

ug == g1v + g3v, w3 = hjw + haw,

Uq4 = g1V — g3, Wy ‘= hlw — hg’u).

By straightforward computations, we can see that W is a braided vector
subspace of M (0O, p) of Cartan type with matrix of coefficients given by

-1 -1 —k &k
(Q Q) , where Q= Lol ees ,
Q Q -k kK -1 -1

-k Kk -1 -1
and Dynkin diagram given by Figure 3 which is not of finite type. Therefore,
dim B(0, p) = oo, by [H1].

<O

FIGURE 3

(IT) Assume that nor = 2. Let Ajor = (ipiz -+ igr) and Agor =
(igky1 Gk - Gort1) the two 2F-cycles appearing in o, and let I = I;I,
and P = PPy, with

I := (i1 i35 -« dgk_q), I, := (i2k+1 lok13lok s * " Gokt1_1),

Py = (inigig - igk), Py = (igk yo ioh g iohig - ighi1).
For every 1 <[ < 4, we define g; = ¢; in the case k > 4 or in the case k = 3
with [ = 0 or 2, and we define g; = g1 A o+ in the case (ii) with [ =1 or 3.
Then, g; € Ay, 1 <1< 4. Now, we take oy as in (11), 77, by, 1 <1< 4, as

in the case (I) above and we proceed in an analogous way. (]

Proposition 3.6. Let o € A, be of type (1,22 0,), O the conjugacy
class of o in Ay, and p = (p,V) € Ca,,(0). Then dim*B(0, p) = cc.



12 ANDRUSKIEWITSCH, FANTINO, GRANA, VENDRAMIN

Proof. Notice that no = 2k is even. Assume first that o, = e. For every I,
1 <1 <k, we define

Cr=04l-3 4—-2)(4l—1 4l),

Dy=4l—-3 4 —1)(4l -2 4l),

=Al-2 4-1)4-3 4-2)=4l—-1 4—-2 4-3).
It is easy to see that the group generated by Cj, D; and ¢4 is isomorphic to
A4. Moreover, the group generated by
C=C--Cy, D=Dy---Dj and a = a1 - - o,

is also isomorphic to A4 and C' is an involution, conjugate to o in A,,. Then,
the Nichols algebra 8(0, p) is infinite dimensional. Now, if o, # e, as before,
we have that o belongs to a subgroup isomorphic to A4 X (0,). Then, the
result follows from Lemma 2.4. O

In our next Proposition, we apply the technique of the octahedral subrack
9 introduced in [AF2, Sec. 4], and based in results of [AHS].

Proposition 3.7. Let o0 € A, be of type (1™,2"2,4™ ¢g,), with ng > 0 and
oo, # id, O the conjugacy class of o and p € Cy,, (o). Then dimB(0, p) =
00.

Proof. We can assume 0 < n4 < 2 by Subsection 3.2 (b). We have two
possibilities.

(i) Case ngy = 1. We assume 0 = A3(1234)0,; so g, = A3(1234). The
condition ¢,, = —1, implies that p acts by A = —1 on o, and by A =1 on
o, —see Remark 3.1. We define

= (1234), ay = (1243), as = (1324),

as = (1342), as = (1423), ag = (1432),
oy = Asayo, and 7 = Asayo,t, 1 < 1 < 6. It is easy to see that the
family (o7, 7)1<i<6 is a subrack of O of type O®@. Let g € A,, such that

g>o, =0, and g o, = 0.; thus goo = 7. Also g '>o, = 0, 1. We
check the conditions (H4)-(H7) of [AF2, Th. 4.11]:

p(06) = p(Ar060,) = p(o,'o,) = A" A = -1,
p(11) = p(Agano;b) = ploeo, ) = ANH = —1,
plg~lo1g) = p(Asano, ') = —1,
(g~ o6g) = p(Az2a600) = p(o. 10, 1) = 4oo = —1.

Now the result follows from [AF2, Th. 4.11].
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(ii) Case ng = 2. We take 0 = A2(1234)(5678)0, and we define

a1 =(1234)(5678), o =(1243)(5687), a3=1(1324)(5768),

ay =(1342)(5786), a5=(1423)(5867), as=(1432)(5876).
Now we proceed in an analogous way to the previous case. ([

To deal with de conjugacy class of type (2,4) of Ag we need to recall a
very useful theorem.

Theorem 3.8. [HS1, Theorem 8.6] Let g,h € G and V = @seog Vs,
W = @,co, Wt be irreducible objects in GYD. If dimB(V @ W) is finite-
dimensional, then for all s € Oy and t € Oy, (st)* = (ts)%.

Proposition 3.9. Let 0 € Ag be of type (2,4), O the conjugacy class of o
in Ag and p = (p, V) € Cpy(0). Then dim*B(0, p) = oco.

Proof. Let H be the subgroup of Ag generated by o1 = (12)(3546), 09 =
(1253)(46) and 03 = (234). Notice that H ~ (Z/3 x Z/3) x Z/4 has order
36. Also, it is easy to see that o; and o9 are not conjugate in H. If O;
is the conjugacy class of o; in H, then O; has 9 elements. Let V; be an
irreducible object in g%@ of the form M(O;, p;), for p; € Cg@) Since
(0109)? # (0201)? then, by Theorem 3.8, dimB(V; @ V2) = co. Now, the
result follows from Lemma 2.3. O
Acknowledgements. We have used [GAP] to perform some computations.
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