kafka

Leandro Vendramin

IMAS-Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
(1428) Pabellón I, Ciudad Universitaria
Buenos Aires, Argentina

(+5411) 5285-7616
(+5411) 5285-7400 #57616

lvendramin@dm.uba.ar

CV, MathSciNet, Google Scholar

Publications

Preprints

  1. Reflection equation as a tool for studying solutions to the Yang-Baxter equation (with V. Lebed)
  2. Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation (with E. Jespers, L. Kubat, A. Van Antwerpen)

Accepted for publication

  1. On skew braces and their ideals (with A. Konovalov, A. Smoktunowicz). Accepted for publication in Exp. Math.

Published

  1. Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces (with E. Acri, R. Lutowski). Internat. J. Algebra Comput. 30 (2020), no. 1, 91–115.
  2. Combinatorial solutions to the reflection equation (with A. Smoktunowicz, R. Weston) J. Algebra 549 (2020) 268-290
  3. Factorization of skew braces (with E. Jespers, L. Kubat, A. Van Antwerpen). Math. Ann. 375 (2019), no. 3-4, 1649–1663
  4. PBW deformations of a Fomin-Kirillov algebra and other examples (with I. Heckenberger). Algebr. Represent. Theory 22 (2019), no. 6, 1513–1532
  5. Skew left braces of nilpotent type (with F. Cedó, A. Smoktunowicz). Proc. Lond. Math. Soc. (3) 118 (2019), no. 6, 1367-1392
  6. On structure groups of set-theoretic solutions to the Yang-Baxter equation (with V. Lebed). Proc. Edinb. Math. Soc. (2) 62 (2019), no. 3, 683-717
  7. Problems on skew left braces. Adv. Group Theory Appl. 7 (2019), 15-37
  8. A characterization of multipermutation solutions of the Yang-Baxter equation (with D. Bachiller and F. Cedó). Publ. Mat. 62 (2018), no. 2, 641-649
  9. Yang-Baxter operators in symmetric categories (with J. Guccione and J. Guccione). Comm. Algebra 46 (2018), no. 7, 2811--2845
  10. On skew braces (with an appendix by N. Byott) (with A. Smoktunowicz). J. Comb. Algebra 2 (2018), no. 1, 47–86
  11. Doubly transitive groups and cyclic quandles. J. Math. Soc. Japan 69 (2017), no. 3, 1051–1057
  12. An explicit description of the second cohomology group of a quandle (with A. García Iglesias). Math. Z. 286 (2017), no. 3-4, 1041-1063
  13. The classification of Nichols algebras with finite root system of rank two (with I. Heckenberger). J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 1977–2017.
  14. Skew braces and the Yang-Baxter equation (with L. Guarnieri). Math. Comp. 86 (2017), no. 307, 2519–2534
  15. Hopf braces and Yang-Baxter operators (with I. Angiono, C. Galindo). Proc. Amer. Math. Soc. 145 (2017), no. 5, 1981-1995
  16. A classification of Nichols algebras of semi-simple Yetter-Drinfeld modules over non-abelian groups (with I. Heckenberger). J. Eur. Math. Soc. (JEMS) 19 (2017), no. 2, 299-356
  17. Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation (with V. Lebed). Adv. Math. 304 (2017), 1219-1261
  18. Cohomology and extensions of braces (with V. Lebed). Pacific J. Math. 284 (2016), no. 1, 191-212
  19. Quandle coloring and cocycle invariants of composite knots and abelian extensions (with W. E. Clark, M. Saito). J. Knot Theory Ramifications 25 (2016), no. 5, 1650024, 34 pp.
  20. Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova. J. Pure Appl. Alg. 220 (2016), no. 5, 2064-2076
  21. Nichols algebras with many cubic relations (with I. Heckenberger, A. Lochmann). Trans. Amer. Math. Soc. 367 (2015), no. 9, 6315-6356
  22. Nichols algebras over groups with finite root system of rank two III (with. I. Heckenberger). J. Algebra 422 (2015), 223–256
  23. Frobenius property for fusion categories of small integral dimension (with J. Dong, S. Natale). J. Algebra Appl. 14 (2015), no. 2, 1550011 (17 pages)
  24. Nichols algebras over groups with finite root system of rank two II (with I. Heckenberger). J. Group Theory 17 (2014), no. 6, 1009-1034
  25. Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent. Proc. Amer. Math. Soc. 140 (2012), no. 11, 3715-3723
  26. On the classification of quandles of low order. J. Knot Theory Ramifications 21 (2012), no. 9, 1250088
  27. Braided racks, Hurwitz actions and Nichols algebras with many cubic relations (with I. Heckenberger, A. Lochmann). Transform. Groups 17 (2012), no. 1, 157-194
  28. Nichols algebras of group type with many quadratic relations (with M. Graña, I. Heckenberger). Adv. Math. 227 (2011), no. 5, 1956-1989
  29. Pointed Hopf algebras over the sporadic simple groups (with N. Andruskiewitsch, F. Fantino, M. Graña). J. Algebra 325 (2011) 305-320, logs
  30. The logbook of Pointed Hopf algebras over the sporadic simple groups (with N. Andruskiewitsch, F. Fantino, M. Graña). J. Algebra 325 (2011) 282-304
  31. Finite-dimensional pointed Hopf algebras with alternating groups are trivial (with N. Andruskiewitsch, F. Fantino, M. Graña). Ann. Mat. Pura Appl. (4) 190 (2011), no. 2, 225-245
  32. Pointed Hopf algebras over some sporadic simple groups (with N. Andruskiewitsch, F. Fantino, M. Graña). C. R. Math. Acad. Sci. Paris 348 (2010) 605-608
  33. On Nichols algebras over PGL(2,q) and PSL(2,q) (with S. Freyre, M. Graña). J. Algebra Appl., Vol. 9, No. 2 (2010) 195-208, logs
  34. On Nichols algebras over SL(2,q) and GL(2,q) (with S. Freyre, M. Graña). J. Math. Phys. 48, 123513 (2007)

Proceedings and others

  1. Quantum invariants via Hopf algebras and solutions to the Yang-Baxter equation. A Concise Encyclopedia of Knot Theory, to appear
  2. Some problems on skew braces and the Yang-Baxter equation. Algebraic Tools for Solving the YangBaxter Equation, Oberwolfach Rep. 51 (2019), no. ?, ?–?
  3. Fomin-Kirillov algebras. Nichols algebras and Weyl groupoids, Oberwolfach Rep. 9 (2013), no. 4, 2889–2891
  4. On twisted conjugacy classes of type D in sporadic simple groups (with F. Fantino). Hopf Algebras and Tensor Categories, Contemp. Math. 585 (2013) 247-259, logs
  5. On Nichols algebras associated to simple racks (with N. Andruskiewitsch, F. Fantino, G. García). Groups, Algebras and Applications, Contemp. Math. 537 (2011) 31-56
  6. On twisted homogeneous racks of type D (with N. Andruskiewitsch, F. Fantino, G. García). The Humboldt Kolleg Colloquium on Hopf Algebras, Quantum Groups and Tensor Categories, Rev. Un. Mat. Argentina 51 2(2010) 1-16

Lecture notes


My software

Mathematics

Just for fun


Links

Mathematics

Software

I use Slackware. To build packages I use slackbuilds.org; the sources are available here. Other sources for precompiled packages: Eric Hameleers (Alien BOB) and www.slackware.uk,

PhD Students

Postdocs

Personal homepages and coauthors

Emiliano Acri, Nicolás Andruskiewitsch, Iván Angiono, David Bachiler, Nigel Byott, Ferran Cedó, Edwin Clark, Jingcheng Dong, Fernando Fantino, César Galindo, Agustín García Iglesias, Gastón García, Matías Graña, István Heckenberger, Eric Jespers, Alexander Konovalov, Lucasz Kubat, Victoria Lebed, Simon Lentner, Andreas Lochmann, Rafał Lutowski, Martín Mombelli, Sonia Natale, Masahico Saito, Agata Smoktunowicz, Arne Van Antwerpen, Cristian Vay, Robert Weston

Updated: 8/2020 Valid HTML 4.01 Transitional