
PLU Factorization

Leonardo T. Rolla

April 5, 2020

LU Factorization is like performing row reduction on an invertible matrix A until it
becomes an upper triangular echelon form U . The difference is that we keep track of
the operations in a smart way. The operations are encoded in a lower triangular matrix
L, so that A = LU . With this factorization, the system Ax = b can later on be solved
for any vector b.
During the pure row reduction procedure, sometimes row exchange is needed if we have
a zero entry on the diagonal. Even when the entry is not zero but small, this is still very
bad as it will imply adding a very large multiple of this row to the ones below it. To
minimize the impact of rounding off error, a simple technique is that of partial pivoting.
It consists in always performing a row exchange, taking as pivot the largest candidate
in the current column. A permutation matrix P will keep track of these row exchanges,
resulting in the factorization PA = LU . To solve Ax = b, we permute b, solve Lz = Pb
for z using forward substitution, then solve Ux = z for x using backward substitution.
To explain the factorization we proceed as follows. Start with P0 = I, L0 = I, U0 = A.
At all steps, we have

PkA = LkUk.

Here Pk is always a permutation matrix, Lk is always lower triangular, and Uk will
be upper triangular after the last step. The next step always consists in applying row
replacement E or row exchange Q to Uk towards its row reduction, and compensate
accordingly to keep the above equality. At each step, we have an elementary matrix E
or Q, and apply either

Pk+1 = Pk

Lk+1 = LkE−1

Uk+1 = EUk

or


Pk+1 = QPk

Lk+1 = QLkQ

Uk+1 = QUk

.

Note that Q−1 = Q. Moreover, when the procedure is done in the right order, QLkQ
swaps two lower rows of Lk without moving the diagonal terms. The reader can check
this in the example below.

c©2019-2020 Leonardo T. Rolla

1

http://creativecommons.org/licenses/by-sa/3.0/

Worked example

Start with

A =


1 −1 1 2

−2 1 1 1
2 −1 2 3

−4 1 0 2

 ,

so we have the trivial equality
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 −1 1 2
−2 1 1 1
2 −1 2 3

−4 1 0 2

 .

To have −4 as the pivot, we apply the permutation

Q =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .

So we take P ′ = QI, L′ = QIQ = I, U ′ = QU . The equality then becomes
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




−4 1 0 2
−2 1 1 1
2 −1 2 3
1 −1 1 2

 .

Now apply three row replacements (which we do at once to save space), using

E =


1 0 0 0

−1/2 1 0 0
1/2 0 1 0
1/4 0 0 1

 .

By taking L′ = LE−1 and U ′ = EU , the previous equality becomes
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 A =


1 0 0 0

1/2 1 0 0
−1/2 0 1 0
−1/4 0 0 1




−4 1 0 2
0 1/2 1 0
0 −1/2 2 4
0 −3/4 1 5/2

 .

We now want −3/4 as the pivot, so we apply

Q =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

As before, taking P ′ = QP , L′ = QLQ and U ′ = QU , the equality becomes
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 A =


1 0 0 0

−1/4 1 0 0
−1/2 0 1 0
1/2 0 0 1




−4 1 0 2
0 −3/4 1 5/2
0 −1/2 2 4
0 1/2 1 0

 .

We now do two row replacements at once, using

E =


1 0 0 0
0 1 0 0
0 −2/3 1 0
0 2/3 0 1

 .

After this operation, taking L′ = LE−1 and U ′ = EU the equality becomes:
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 A =


1 0 0 0

−1/4 1 0 0
−1/2 2/3 1 0
1/2 −2/3 0 1




−4 1 0 2
0 −3/4 1 5/2
0 0 4/3 7/3
0 0 5/3 5/3

 .

We now want 5/3 as the pivot, so we apply

Q =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Again, taking P ′ = QP , L′ = QLQ and U ′ = QU , the equality becomes
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 A =


1 0 0 0

−1/4 1 0 0
1/2 −2/3 1 0

−1/2 2/3 0 1




−4 1 0 2
0 −3/4 1 5/2
0 0 5/3 5/3
0 0 4/3 7/3

 .

The last step is the row replacement given by

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −4/5 1

 .

This finally yields the factorization
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 A =


1 0 0 0

−1/4 1 0 0
1/2 −2/3 1 0

−1/2 2/3 4/5 1




−4 1 0 2
0 −3/4 1 5/2
0 0 5/3 5/3
0 0 0 1

 .

Compact representation

Since the diagonal of L only has 1, the factorization can be encoded in an n × n matrix
plus a permutation vector:

1 1.000 −1.000 1.000 2.000
2 −2.000 1.000 1.000 1.000
3 2.000 −1.000 2.000 3.000
4 −4.000 1.000 0.000 2.000

4 −4.000 1.000 0.000 2.000
2 −2.000 1.000 1.000 1.000
3 2.000 −1.000 2.000 3.000
1 1.000 −1.000 1.000 2.000

4 −4.000 1.000 0.000 2.000
2 0.500 0.500 1.000 1.000
3 −0.500 −0.500 2.000 3.000
1 −0.250 −0.750 1.000 2.500

4 −4.000 1.000 0.000 2.000
1 −0.250 −0.750 1.000 2.500
3 −0.500 −0.500 2.000 3.000
2 0.500 0.500 1.000 1.000

4 −4.000 1.000 0.000 2.000
1 −0.250 −0.750 1.000 2.500
3 −0.500 0.667 1.333 2.333
2 0.500 −0.667 1.667 1.667

4 −4.000 1.000 0.000 2.000
1 −0.250 −0.750 1.000 2.500
2 0.500 −0.667 1.667 1.667
3 −0.500 0.667 1.333 2.333

4 −4.000 1.000 0.000 2.000
1 −0.250 −0.750 1.000 2.500
2 0.500 −0.667 1.667 1.667
3 −0.500 0.667 0.800 1.000

Matrix manipulation software

Below is the output of Octave when we ask it for the PLU factorization of A:

octave:1> A = [1 -1 1 2 ; -2 1 1 1 ; 2 -1 2 3 ; -4 1 0 2]
A =

1 -1 1 2
-2 1 1 1
2 -1 2 3

-4 1 0 2

octave:2> [L, U, P] = lu(A)
L =

1.00000 0.00000 0.00000 0.00000
-0.25000 1.00000 0.00000 0.00000
0.50000 -0.66667 1.00000 0.00000

-0.50000 0.66667 0.80000 1.00000

U =

-4.00000 1.00000 0.00000 2.00000
0.00000 -0.75000 1.00000 2.50000
0.00000 0.00000 1.66667 1.66667
0.00000 0.00000 0.00000 1.00000

P =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

octave:3> _

The computations in the previous pages show that Octave got it right indeed ;-)

Efficiency of LU factorization

Finding the LU factorization is as fast as finding Ae by row reduction, and at least 3
times faster than finding A−1. Suppose you have found L, U and A−1, and you want to
solve Ax = b for many different vectors b. Solving Ax = b by Lz = b and Ux = z is at
least as fast as computing the product A−1b, and the result is more accurate.
If the matrix has many zeros, using LU is much better and faster than using A−1.

octave:23> A
A =

2.00000 1.00000 0.00000 0.00000 0.00000 0.00000
1.00000 3.00000 1.00000 0.00000 0.00000 0.00000
0.00000 1.00000 3.00000 1.00000 0.00000 0.00000
0.00000 0.00000 1.00000 3.00000 1.00000 0.00000
0.00000 0.00000 0.00000 1.00000 3.00000 1.00000
0.00000 0.00000 0.00000 0.00000 1.00000 2.00000

octave:24> [L,U] = lu(A)
L =

1.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.50000 1.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.40000 1.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.38462 1.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.38235 1.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.38202 1.00000

U =

2.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.00000 2.50000 1.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.60000 1.00000 0.00000 0.00000
0.00000 0.00000 0.00000 2.61538 1.00000 0.00000
0.00000 0.00000 0.00000 0.00000 2.61765 1.00000
0.00000 0.00000 0.00000 0.00000 0.00000 1.61798

octave:25> inv(A)
ans =

0.61806 -0.23611 0.09028 -0.03472 0.01389 -0.00694
-0.23611 0.47222 -0.18056 0.06944 -0.02778 0.01389
0.09028 -0.18056 0.45139 -0.17361 0.06944 -0.03472

-0.03472 0.06944 -0.17361 0.45139 -0.18056 0.09028
0.01389 -0.02778 0.06944 -0.18056 0.47222 -0.23611

-0.00694 0.01389 -0.03472 0.09028 -0.23611 0.61806

octave:26> _

