PLU Factorization

Leonardo T. Rolla

April 5, 2020

LU Factorization is like performing row reduction on an invertible matrix A until it becomes an upper triangular echelon form U. The difference is that we keep track of the operations in a smart way. The operations are encoded in a lower triangular matrix L, so that $A=L U$. With this factorization, the system $A x=b$ can later on be solved for any vector b.
During the pure row reduction procedure, sometimes row exchange is needed if we have a zero entry on the diagonal. Even when the entry is not zero but small, this is still very bad as it will imply adding a very large multiple of this row to the ones below it. To minimize the impact of rounding off error, a simple technique is that of partial pivoting. It consists in always performing a row exchange, taking as pivot the largest candidate in the current column. A permutation matrix P will keep track of these row exchanges, resulting in the factorization $P A=L U$. To solve $A x=b$, we permute b, solve $L z=P b$ for z using forward substitution, then solve $U x=z$ for x using backward substitution.

To explain the factorization we proceed as follows. Start with $P_{0}=I, L_{0}=I, U_{0}=A$. At all steps, we have

$$
P_{k} A=L_{k} U_{k} .
$$

Here P_{k} is always a permutation matrix, L_{k} is always lower triangular, and U_{k} will be upper triangular after the last step. The next step always consists in applying row replacement E or row exchange Q to U_{k} towards its row reduction, and compensate accordingly to keep the above equality. At each step, we have an elementary matrix E or Q, and apply either

$$
\left\{\begin{array} { l }
{ P _ { k + 1 } = P _ { k } } \\
{ L _ { k + 1 } = L _ { k } E ^ { - 1 } } \\
{ U _ { k + 1 } = E U _ { k } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
P_{k+1}=Q P_{k} \\
L_{k+1}=Q L_{k} Q . \\
U_{k+1}=Q U_{k}
\end{array} .\right.\right.
$$

Note that $Q^{-1}=Q$. Moreover, when the procedure is done in the right order, $Q L_{k} Q$ swaps two lower rows of L_{k} without moving the diagonal terms. The reader can check this in the example below.
© 2019-2020 Leonardo T. Rolla @ ©®

Worked example

Start with

$$
A=\left[\begin{array}{cccc}
1 & -1 & 1 & 2 \\
-2 & 1 & 1 & 1 \\
2 & -1 & 2 & 3 \\
-4 & 1 & 0 & 2
\end{array}\right],
$$

so we have the trivial equality

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & 1 & 2 \\
-2 & 1 & 1 & 1 \\
2 & -1 & 2 & 3 \\
-4 & 1 & 0 & 2
\end{array}\right] .
$$

To have -4 as the pivot, we apply the permutation

$$
Q=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

So we take $P^{\prime}=Q I, L^{\prime}=Q I Q=I, U^{\prime}=Q U$. The equality then becomes

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
-2 & 1 & 1 & 1 \\
2 & -1 & 2 & 3 \\
1 & -1 & 1 & 2
\end{array}\right] .
$$

Now apply three row replacements (which we do at once to save space), using

$$
E=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
1 / 2 & 0 & 1 & 0 \\
1 / 4 & 0 & 0 & 1
\end{array}\right]
$$

By taking $L^{\prime}=L E^{-1}$ and $U^{\prime}=E U$, the previous equality becomes

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
-1 / 2 & 0 & 1 & 0 \\
-1 / 4 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
0 & 1 / 2 & 1 & 0 \\
0 & -1 / 2 & 2 & 4 \\
0 & -3 / 4 & 1 & 5 / 2
\end{array}\right] .
$$

We now want $-3 / 4$ as the pivot, so we apply

$$
Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

As before, taking $P^{\prime}=Q P, L^{\prime}=Q L Q$ and $U^{\prime}=Q U$, the equality becomes

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
-1 / 2 & 0 & 1 & 0 \\
1 / 2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
0 & -3 / 4 & 1 & 5 / 2 \\
0 & -1 / 2 & 2 & 4 \\
0 & 1 / 2 & 1 & 0
\end{array}\right] .
$$

We now do two row replacements at once, using

$$
E=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 2 / 3 & 0 & 1
\end{array}\right]
$$

After this operation, taking $L^{\prime}=L E^{-1}$ and $U^{\prime}=E U$ the equality becomes:

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
-1 / 2 & 2 / 3 & 1 & 0 \\
1 / 2 & -2 / 3 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
0 & -3 / 4 & 1 & 5 / 2 \\
0 & 0 & 4 / 3 & 7 / 3 \\
0 & 0 & 5 / 3 & 5 / 3
\end{array}\right]
$$

We now want $5 / 3$ as the pivot, so we apply

$$
Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Again, taking $P^{\prime}=Q P, L^{\prime}=Q L Q$ and $U^{\prime}=Q U$, the equality becomes

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
1 / 2 & -2 / 3 & 1 & 0 \\
-1 / 2 & 2 / 3 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
0 & -3 / 4 & 1 & 5 / 2 \\
0 & 0 & 5 / 3 & 5 / 3 \\
0 & 0 & 4 / 3 & 7 / 3
\end{array}\right]
$$

The last step is the row replacement given by

$$
E=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -4 / 5 & 1
\end{array}\right]
$$

This finally yields the factorization

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
1 / 2 & -2 / 3 & 1 & 0 \\
-1 / 2 & 2 / 3 & 4 / 5 & 1
\end{array}\right]\left[\begin{array}{cccc}
-4 & 1 & 0 & 2 \\
0 & -3 / 4 & 1 & 5 / 2 \\
0 & 0 & 5 / 3 & 5 / 3 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Compact representation

Since the diagonal of L only has 1 , the factorization can be encoded in an $n \times n$ matrix plus a permutation vector:

4		-4.000	1.000	0.000	2.000
1	-0.250		-0.750	1.000	2.500
3	-0.500		-0.500	2.000	3.000
2	0.500		0.500	1.000	1.000

4			-4.000	1.000	0.000	2.000
1	-0.250				-0.750	1.000
3.500						
3	-0.500	0.667			1.333	2.333
2	0.500	-0.667				1.667

4			-4.000	1.000	0.000	2.000
1	-0.250			-0.750	1.000	2.500
2	0.500	-0.667				1.667
3	-0.500	0.667				1.333

4				-4.000	1.000	0.000	2.000
1	-0.250				-0.750	1.000	2.500
2	0.500	-0.667				1.667	1.667
3	-0.500	0.667	0.800				1.000

Matrix manipulation software

Below is the output of Octave when we ask it for the PLU factorization of A :

```
octave:1> A = [lllllllllllllllllllllllllll
A =
\begin{tabular}{rrrr}
1 & -1 & 1 & 2 \\
-2 & 1 & 1 & 1
\end{tabular}
    2 -1 2 3
    -4 1 0
octave:2> [L, U, P] = lu(A)
L =
\begin{tabular}{rrrr}
1.00000 & 0.00000 & 0.00000 & 0.00000 \\
-0.25000 & 1.00000 & 0.00000 & 0.00000 \\
0.50000 & -0.66667 & 1.00000 & 0.00000 \\
-0.50000 & 0.66667 & 0.80000 & 1.00000
\end{tabular}
U =
\begin{tabular}{rrrr}
-4.00000 & 1.00000 & 0.00000 & 2.00000 \\
0.00000 & -0.75000 & 1.00000 & 2.50000 \\
0.00000 & 0.00000 & 1.66667 & 1.66667 \\
0.00000 & 0.00000 & 0.00000 & 1.00000
\end{tabular}
P =
    0}0000
    1 0}00
    0}110
octave:3> _
```

The computations in the previous pages show that Octave got it right indeed ;-)

Efficiency of LU factorization

Finding the LU factorization is as fast as finding A_{e} by row reduction, and at least 3 times faster than finding A^{-1}. Suppose you have found L, U and A^{-1}, and you want to solve $A x=b$ for many different vectors b. Solving $A x=b$ by $L z=b$ and $U x=z$ is at least as fast as computing the product $A^{-1} b$, and the result is more accurate.
If the matrix has many zeros, using LU is much better and faster than using A^{-1}.

```
octave:23> A
A =
\begin{tabular}{llllll}
2.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
1.00000 & 3.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00000 & 1.00000 & 3.00000 & 1.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 1.00000 & 3.00000 & 1.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.00000 & 1.00000 & 3.00000 & 1.00000 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.00000 & 2.00000
\end{tabular}
octave:24> [L,U] = lu(A)
L =
\begin{tabular}{llllll}
1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.50000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.40000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.38462 & 1.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.00000 & 0.38235 & 1.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.38202 & 1.00000
\end{tabular}
U =
\begin{tabular}{llllll}
2.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00000 & 2.50000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 2.60000 & 1.00000 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.00000 & 2.61538 & 1.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 2.61765 & 1.00000 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.61798
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0.61806 & -0.23611 & 0.09028 & -0.03472 & 0.01389 & -0.00694 \\
\hline -0.23611 & 0.47222 & -0.18056 & 0.06944 & -0.02778 & 0.01389 \\
\hline 0.09028 & -0.18056 & 0.45139 & -0.17361 & 0.06944 & -0.03472 \\
\hline -0.03472 & 0.06944 & -0.17361 & 0.45139 & -0.18056 & 0.09028 \\
\hline 0.01389 & -0.02778 & 0.06944 & -0.18056 & 0.47222 & -0.23611 \\
\hline -0.00694 & 0.01389 & -0.03472 & 0.09028 & -0.23611 & 0.61806 \\
\hline
\end{tabular}
octave:26>
```

