
Finding a Jordan basis for a nilpotent operator

Leonardo T. Rolla

April 15, 2020

1 The algorithm

We prove the following proposition:

For finite-dimensional G and nilpotent N ∈ L(G) there is a Jordan basis.

The proof is explicit and provides an algorithm to actually find a Jordan
basis. We define the notion of thread as a chain of vectors like this:

u 7→ v 7→ w 7→ · · · 7→ z 7→ ?.

Here “7→” means the image under N . The above example is an open thread.
If we know that Nz = 0, we can have a closed thread

u 7→ v 7→ w 7→ · · · 7→ z 7→ 0.

In both cases, the tip of the thread is z and the base is u. The length of a
thread is the number of non-zero vectors.
The object we will be dealing with all the time is a collection of threads. The
size of a collection is the sum of the lengths of the threads.
We introduce two operations on collections of threads: stretch and reduce.
We can stretch a collection of threads if at least one of the threads is still
open. The operation consists in applying N to the tip of open threads and

c©2020 Leonardo T. Rolla

1

http://creativecommons.org/licenses/by-sa/3.0/


appending the result at the end. This causes the open threads to either
increase in length or become closed.
We can reduce a collection of threads if the tips are linearly dependent. To
do that, we sort the collection from longest to shortest, find which ones are
linear combinations of previous ones, and subtract the corresponding linear
combination at their base. The vectors to be used in this linear combination
are those with the same distance form the tip as the base of the concerned
thread. The result of this subtraction will propagate throughout the thread,
and at some point the thread will become zero, either at the tip or maybe
before. This causes the size of the collection to decrease.
This process must stop. Indeed, each time we stretch, we enlarge the longest
thread or we close a thread, and the longest thread cannot be longer than
dimG; moreover, between two stretches we can only perform finitely many
reductions. When the process stops, we have a collection of closed threads
whose tips are linearly independent. We claim that, in this case, the whole
collection of vectors is linearly independent.
We now prove the above claim. Consider an arbitrary finite collection of
closed threads whose tips are linearly independent. Denote such a collection
by

v1
d1 7→ v1

d1−1 7→ · · · 7→ v1
2 7→ v1

1 7→ v1
0 7→ 0

v2
d2 7→ v2

d2−1 7→ · · · 7→ v2
2 7→ v2

1 7→ v2
0 7→ 0

...
vm

dm
7→ vm

dm−1 7→ · · · 7→ vm
2 7→ vm

1 7→ vm
0 7→ 0

with d = d1 > d2 > . . . > dm > 1. Suppose there is a linear combination
m∑

j=1

dm∑
k=0

αj,kv
j
k = 0.

Applying Nd to this identity gives

0 =
∑

j

αj,dN
dvj

k =
∑

j

αj,dv
j
0.

Since v1
0, . . . , v

m
0 are linearly independent, we have αj,d = 0 for all relevant j.

Now we apply Nd−1 to the same identity and use that αj,d = 0 to get

0 =
∑

j

αj,d−1N
d−1vj

k =
∑

j

αj,d−1v
j
0.



Again, by linear independence of v1
0, . . . , v

m
0 , we have αj,d−1 = 0 for all

relevant j. Proceeding this way, we end up concluding that all the coefficients
are zero. This concludes the proof of the claim.
We now finish the proof of the proposition. Start with a collection of threads
whose vectors span G. For instance, let v1, . . . , vn be a basis for G and
consider the collection

v1 7→ ?, v2 7→ ?, . . . , vn 7→ ?,

of very short open threads. This collection spans G.
Now notice that the operation of reduction only adds multiples of some
vectors in the collection to some other vectors, so it does not change the
space spanned by the collection as a whole. Moreover, the operation of
stretching only incorporates more vectors into the collection.
Therefore, the collection we get in the end is a basis which forms closed
threads, which is just the definition of Jordan basis rephrased.
This concludes the proof.
As a remark, if for some reason we start with a collection which is not
spanning, but get dimG vectors in the end, then it is anyway a Jordan basis.

2 Example

Let G = F4. Define N ∈ L(G) with respect to the canonical basis by

[N ] =


1 2 0 5
6 −5 17 −38
−3 0 −6 9
−2 1 −5 10

 .

Note that N3 = 0.
Start with short threads A1,A2,A3,A4:

1
1
0
0

 7→ ?,


0
1
1
0

 7→ ?,


0
0
1
1

 7→ ?,


0
1
0
1

 7→ ?.



Note that these four vectors span G.
The tips of the threads are linearly independent, so we cannot apply
reduction. We stretch the collection, getting new threads A1,A2,A3,A4:

1
1
0
0

 7→


3
1
−3
−1

 7→ ?,


0
1
1
0

 7→


2
12
−6
−4

 7→ ?


0
0
1
1

 7→


5
−21

3
5

 7→ ?,


0
1
0
1

 7→


7
−43

9
11

 7→ ?

We could stretch again, but in order to keep the collection small and avoid
unnecessary work, let us try to reduce it instead.
Looking at the tips only, by row reduction:

[v1, v2, v3, v4] =


3 2 5 7
1 12 −21 −43
−3 −6 3 9
−1 −4 5 11

 ∼

1 0 3 5
0 1 −2 −4
0 0 0 0
0 0 0 0

 ,
so v1 and v2 are LI, whereas v3 = 3v1 − 2v2 and v4 = 5v1 − 4v2.
Now we subtract the corresponding multiples from the whole threads, getting:

1
1
0
0

 7→


3
1
−3
−1

 7→ ?,


0
1
1
0

 7→


2
12
−6
−4

 7→ ?,


−3
−1
3
1

 7→ 0,


−5
0
4
1

 7→ 0.

Let us try to reduce again. Looking at the tips only, by row reduction:

[v1, v2, v3, v4] =


3 2 −3 −5
1 12 −1 0
−3 −6 3 4
−1 −4 1 1

 ∼

1 0 −1 0
0 1 0 0
0 0 0 1
0 0 0 0

 ,
so v1, v2, v4 are LI, whereas v3 = −v1. We want to subtract (−1)A1 from A3.
Since A3 only has one vector, we only use the last vector of A1.



After sorting by size, we get:
1
1
0
0

 7→


3
1
−3
−1

 7→ ?,


0
1
1
0

 7→


2
12
−6
−4

 7→ ?,


−5
0
4
1

 7→ 0, 0 7→ 0.

The tips of the threads are LI, so we can no longer reduce.
So we stretch the collection and sort by size:

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ ?,


1
1
0
0

 7→


3
1
−3
−1

 7→ 0,


−5
0
4
1

 7→ 0.

Let us try to reduce again. Looking at the tips only, by row reduction:

[v1, v2, v3] =


6 3 −5
2 1 0
−6 −3 4
−2 −1 1

 ∼

1 1

2 0
0 0 1
0 0 0
0 0 0


so v1, v3 are LI and v2 = 1

2v1.
As A2 has 2 vectors, we subtract 1

2 times the 2 last vectors of A1 from the
two last vectors A2.
This gives

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


0
−5
3
2

 7→ 0,


−5
0
4
1

 7→ 0.

Let us try to reduce again. Looking at the tips only, by row reduction:

[v1, v2, v3] =


6 0 −5
2 −5 0
−6 3 4
−2 2 1

 ∼

1 0 −5

6
0 1 −1

3
0 0 0
0 0 0

 .



Subtracting the corresponding linear combination from the third thread will
make it vanish, giving:

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


0
−5
3
2

 7→ 0.

As we saw in the previous proof, since we started with a spanning collection,
the above threads also span G.
So we can tell that the above 4 vectors are spanning, hence a basis. Since
they form closed threads, they form a Jordan basis.
So we did find a Jordan basis!
We already know the basis B and Jordan form [N ]B. Let’s double-check:

Q =


6 2 0 0
2 12 1 −5
−6 −6 1 3
−2 −4 0 2

 =⇒ Q−1[N ]Q =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

3 Stretching first

In the previous example we reduced the threads whenever possible.
Maybe stretching first results in fewer computations, especially row
reductions.
Stretching all the way until the end, and sorting by size:

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


0
0
1
1

 7→


5
−21

3
5

 7→

−12
−4
12
4

 7→ 0,


0
1
0
1

 7→


7
−43

9
11

 7→

−24
−8
24
8

 7→ 0,


1
1
0
0

 7→


3
1
−3
−1

 7→ 0.



Looking at the tips only, by row reduction:

[v1, v2, v3, v4] =


6 −12 −24 3
2 −4 −8 1
−6 12 24 −3
−2 4 8 −1

 ∼

1 −2 −4 1

2
0 0 0 0
0 0 0 0
0 0 0 0


so v2 = −2v1, v3 = −4v1, and v4 = 1

2v1.
Now we subtract the corresponding multiples from the threads, getting:

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


0
2
3
1

 7→


9
3
−9
−3

 7→ 0,


0
5
4
1




15
5
−15
−5

 7→ 0,


0
−5
3
2

 7→ 0.

Looking at the tips only, by row reduction:

[v1, v2, v3, v4] =


6 9 15 0
2 3 5 −5
−6 −9 −15 3
−2 −3 −5 2

 ∼

1 3

2
5
2 0

0 0 0 1
0 0 0 0
0 0 0 0

 ,
so v1 and v4 are LI, whereas v2 = 3

2v1 and v3
5
2v1.

Now we subtract the corresponding multiples from the threads, getting:
0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


−3
−16
12
7

 7→ 0,


−5
−25
19
11

 7→ 0,


0
−5
3
2

 7→ 0.

Looking at the tips only, by row reduction:

[v1, v2, v3, v4] =


6 −3 −5 0
2 −16 −25 −5
−6 12 19 3
−2 7 11 2

 ∼

1 0 − 1

18
1
6

0 1 14
9

1
3

0 0 0 0
0 0 0 0

 ,



so v1 and v2 are LI, whereas v3 = − 1
18v1 + 14

9 v2 and v4 = 1
6v1 + 1

3v2.
Now we subtract the corresponding multiples from the threads, getting:

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


−3
−16
12
7

 7→ 0, 0 7→ 0, 0 7→ 0.

We found a Jordan basis!
We already know the basis B and Jordan form [N ]B. Let’s double-check:

Q =


6 2 0 −3
2 12 1 −16
−6 −6 1 12
−2 −4 0 7

 =⇒ Q−1[N ]Q =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

4 Using fewer threads

Pick only one vector from the basis, say (1, 1, 0, 0). Stretch its thread:
1
1
0
0

 7→


3
1
−3
−1

 7→ 0.

This is too short. Let’s incorporate another vector, say (0, 1, 1, 0), and
stretch: 

0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


1
1
0
0

 7→


3
1
−3
−1

 7→ 0.

Doing row reduction (yes, that’s overkilling) with the tips only:
6 3
2 1
−6 −3
−2 −1

 ∼

1 1

2
0 0
0 0
0 0

 .



Subtracting 1
2 of the first thread from the second:


0
1
1
0

 7→


2
12
−6
−4

 7→


6
2
−6
−2

 7→ 0,


0
−5
3
2

 7→ 0.

The tips are LI, the threads are closed, and there are four vectors. So the
procedure is finished.
We already know the basis B and Jordan form [N ]B. Let’s double-check:

Q =


6 2 0 0
2 12 1 −5
−6 −6 1 3
−2 −4 0 2

 =⇒ Q−1[N ]Q =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .


	The algorithm
	Example
	Stretching first
	Using fewer threads

