ARCHIVOS TEÓRICOS DEL MUSEO MATEMÁTICO.

ÁREA- ANÁLISIS-

TEMA-SUPERFICIES MÍNIMAS Y CON CURVATURA PRESCRIPTA.

[Maple Bitmap]

//////Superficies minimales- tratamiento por

Representaciones de Weierstrass ////////-

Autor- Leonard Echagüe-Mate UBA Museum- lechague@dm.uba.ar

Superficie de Schwarz.

Breve análisis de polos de la representación de la Superficie de Schwarz.

> Digits:=5;

> R:=(1-14*w^4+w^8)^(-1/2);

[Maple Math]

[Maple Math]

> factor((1-14*w^4+w^8));

[Maple Math]

> evalf(solve(w^4-4*w^2+1));

[Maple Math]

> evalf(solve(w^4+4*w^2+1));

[Maple Math]

[Maple Bitmap]

Funciones de la representación.

> restart;

> gama:=-0.5-I*0.5+u*t+I*v*t;

[Maple Math]

> dgama:=diff(gama,t);

[Maple Math]

> f1:=w->(1-w^2)*(1-14*w^4+w^8)^(-1/2);

[Maple Math]

> f2:=w->I*(1+w^2)*(1-14*w^4+w^8)^(-1/2);

[Maple Math]

> f3:=w->2*w*(1-14*w^4+w^8)^(-1/2);

[Maple Math]

Representaciones de Weierstrass de la Superficie Minimal de Schwarz.

> x:=Re(Int(f1(gama)*dgama,t=0..1));

[Maple Math]

> y:=Re(Int(f2(gama)*dgama,t=0..1));

[Maple Math]

> z:=Re(Int(f3(gama)*dgama,t=0..1));

[Maple Math]

> Digits:=4;

[Maple Math]

Integración Compleja por camino lineal desde vértice inferior izquierdo,

cálculo de valores de la Superficie de Schwarz parametrizada:

> sch:=array(1..11,1..11,[]);

[Maple Math]

> for i from 1 to 11 do

> for j from 1 to 11 do

> u:=((i-1)/10)*1.02:v:=((j-1)/10)*1.02:

> sch[i,j]:=[evalf(x),evalf(y),evalf(z)]:

> print(sch[i,j]):

> od:od:

> u:='u';v:='v';

[Maple Math]

[Maple Math]

> INTERFACE_PLOT3D(MESH(hfarray(1..11,1..11,1..3,[seq([seq(sch[i,j],i=1..11)],j=1..11)])));

[Maple Plot]

> plot3d([evalf(x),evalf(y),evalf(z)],u=0..1.02,v=0..1.02,grid=[10,10]);

Error, (in evalf/int) function does not evaluate to numeric

Curvatura gaussiana de la Superficie de Schwarz.

> R:=(1-14*w^4+w^8)^(-1/2);

[Maple Math]

> f:=2*R;g:=w;

[Maple Math]

[Maple Math]

> Kgauss:=(-16*(abs(diff(g,w)))^2)/((abs(f)^2)*(1+abs(g)^2)^4);

[Maple Math]

>

Familia isométrica minimal asociada a Schwarz.

>

> Digits:=4;

[Maple Math]

> u:='u';v:='v';

[Maple Math]

[Maple Math]

> R:=(1-14*w^4+w^8)^(-1/2);

[Maple Math]

> x:=Re(exp(-I*t)*(int((1-w^2)*R,w=-0.517-0.517*I..-0.517+u+I*(-0.517+v))));

[Maple Math]

> y:=Re(exp(-I*t)*(int(I*(1+w^2)*R,w=-0.517-0.517*I..-0.517+u+I*(-0.517+v))));

[Maple Math]

>

> z:=Re(exp(-I*t)*(int(2*w*R,w=-0.517-0.517*I..-0.517+u+I*(-0.517+v))));

[Maple Math]

> 0.517*2;

[Maple Math]

Intente su graficación-

> with(plots):

> animate3d([evalf(x),evalf(y),evalf(z)],u=0..1.034,v=0..1.034,t=0..1,grid=[5,5]);

Familia asociada a Catenoide y Helicoide-

Cálculos y animaciones de isometrías.-

> Digits:=4;

[Maple Math]

> u:='u';v:='v';

[Maple Math]

[Maple Math]

>

> x:=Re(exp(-I*t)*(int(-(exp(-w))*(1-exp(w)^2)/2,w=0..u+I*v)));

[Maple Math]

> y:=Re(exp(-I*t)*(int(I*(-(exp(-w)))*(1+exp(w)^2)/2,w=0..u+I*v)));

[Maple Math]

>

> z:=Re(exp(-I*t)*(int(exp(-w)*exp(w),w=0..u+I*v)));

[Maple Math]

> with(plots):

> animate3d([evalf(x),evalf(y),evalf(z)],u=0..3,v=0..3,t=0..1.56,grid=[15,15]);

[Maple Plot]

> assume(u,real);assume(v,real);assume(t,real);

> x:=simplify(Re(evalc((int(-(exp(-w))*(1-exp(w)^2)/2,w=0..u+I*v)))));

[Maple Math]

> Re(exp(-I*t));

[Maple Math]

> x:=simplify(Re(evalc(exp(-I*t)*(int(-(exp(-w))*(1-exp(w)^2)/2,w=0..u+I*v)))));

[Maple Math]
[Maple Math]

> combine(%);

[Maple Math]

> expand(%);

[Maple Math]
[Maple Math]

> x:=simplify(evalc((int(-(exp(-w))*(1-exp(w)^2)/2,w))));

[Maple Math]

> combine(%);

[Maple Math]

>

>

>

> x:=Re(evalc(exp(-I*t)*(int(-(exp(-w))*(1-exp(w)^2)/2,w=0..u+I*v))));

[Maple Math]
[Maple Math]
[Maple Math]
[Maple Math]
[Maple Math]
[Maple Math]

> y:=Re(evalc(exp(-I*t)*(int(I*(-(exp(-w)))*(1+exp(w)^2)/2,w=0..u+I*v))));

[Maple Math]
[Maple Math]
[Maple Math]
[Maple Math]
[Maple Math]

>

>

> z:=Re(evalc(exp(-I*t)*(int(exp(-w)*exp(w),w=0..u+I*v))));

[Maple Math]

>

> with(plots):

>

> animate3d([evalf(x),evalf(y),evalf(z)],u=0..6,v=0..6,t=0..1.56,grid=[15,15]);

[Maple Plot]

>

Problemas