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Introduction

There are several geometric questions that naturally arise when we are faced to a system of poly-
nomial multivariate equations: do the given equations have at least a common root in an algebraic
closure of the base field? If this is so, is there a finite or infinite number of them? What is the
dimension of the solution variety? How to describe it in a more tractable manner?
Two major lines have been proposed to answer this kind of questions: numerical analysis which
responds with approximate solutions, and computational algebra with its symbolic procedures giving
exact solutions. In this paper we deal with this second aspect, although the evaluation methods we
describe tend a natural bridge to the numerical point of view.
Nowadays most usually applied symbolic algorithms rely on rewriting techniques where the input
is given by the number of variables, degree bounds and the list of polynomials with (implicitly) all
their possible coefficients: this is the case for Gröbner bases computations and for characteristic set
descriptions (and also with some minor changes for the more recently considered sparse systems).
Unfortunately for the usual case when the degree d of the polynomials is greater than the number
n of variables, the size of the input system is typically large, essentially of order dn, and the degree
of the polynomials describing the output can reach dn as well, which means that writing the output
requires at least (dn)n symbols, a quantity that is exponential in the size of the input. Moreover,
it is a well-known fact that the worst-case complexity of Gröbner bases computations is doubly
exponential in n. This behavior prevents us from considering large polynomial equation systems
with rewriting techniques.

Evaluation representations began to be strongly considered as an alternative a decade ago. A first
and quite näıve motivation of this point of view is that there are polynomials that nobody writes (in
dense representation) but everybody computes for specific values, like for example the determinant
of a matrix of indeterminates. As another motivation, for the first question raised above —the
effective Nullstellensatz— there is a classic example (which gives the well-known lower bound for
the degrees of the polynomials arising in a Bézout identity, see Section 2 below) that suggested that
there are always for this question Bézout identities composed by polynomials that behave better
than expected with respect to evaluation, in the sense that they can be evaluated faster than they
should. A careful development of new techniques, that I partially describe here, proved that this
intuition was right.
The consideration through evaluation methods (straight-line programs) of the stated geometric ques-
tions allows to classify their complexity with respect not only to the usual parameters given by the
number n of variables and the number s and degree d of the input polynomials, but also to less usual
parameters like the length L of the straight-line program representation of the input and the size
δ of the underlying linear algebra structure (this parameter, more precisely defined in Sections 1.3
and 1.5 below, is nowadays called the geometric degree of the input polynomial system). It is shown
that all considered geometric questions behave polynomially with respect to these parameters, more
precisely there are probabilistic algorithms and straight-line program representations for the output
polynomials whose complexity and lengths are polynomial in s, n, d, δ and L.
Here is an example of such a statement, for the case of a zero-dimensional variety, which represents
a core result in this philosophy (see Section 3.1 below):

Theorem Let f1, . . . , fn ∈ Q[x1, . . . , xn] be polynomials of degree bounded by d and encoded by
straight-line programs of length L, which define a zero-dimensional variety Z ⊂ Cn. Set δ for the
geometric degree of the input polynomial system.
Then there is a bounded probability algorithm which computes (slp’s for) a simple and tractable
presentation of Z (a geometric resolution) within complexity (ndδL)O(1).

As the parameters L and δ are in the worst case (and also in a random case) equal to sdn (for
d ≥ n) and dn respectively, but may be in some specific cases polynomial in n, s and d, the result
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can be read as giving an exponential bound in the worst case but a polynomial bound for certain
subfamilies of input polynomials.
Also, another consequence of this result is that when the input is codified in the dense representation
and its size is measured by sdn (for d ≥ n), the length of the straight-line program representation
of the output is polynomial in this quantity instead of being exponential as it happens with its
dense representation. Since from a straight-line program one clearly (but not rapidly) recovers
a dense representation through interpolation, the result implies that the exponential behavior of
the complexity of these questions (when considering them classically) is all contained in the final
interpolation: there is no exponentiality needed before.

Another research line suggested by this classification is related to the Bézout number: it is usual to
associate to a family of s polynomials of degrees d1, . . . , ds in n variables such that d1 ≥ · · · ≥ ds, the
Bézout number D := d1 · · · dmin{n,s}. The main property of this Bézout number is that it bounds
the geometric degree of the variety defined by the input polynomials. However a precise definition of
such a Bézout number D should depend intimately on the representation of the input polynomials:
for polynomials of degree d encoded in dense representation, D := dn seems to be a natural choice,
while for sparse polynomials with support in A, D := Vol(A) seems to be the right notion of Bézout
number, as this quantity also controls the degree of the variety. This digression is motivated by the
following crucial observation: in the computation of the resultant, the length of the input L together
with the associated Bézout number D and the number of variables n controls the complexity. In the
case of dense representation of the input and d ≥ 2, the typical length L equals O(ndn) and D = dn

while for the sparse representation, we have L ≥ 1 and D = Vol(A). In both cases, the complexity
of computing the resultant is (nD)O(1)L. The optimal complexity estimate should in fact be linear
in D as well, although it is not clear what is the exact dependence on n: in the linear case, that is
for n + 1 dense linear forms, L = O(n2) and D = 1 hold and the resultant equals the determinant,
which is conjectured —but still not proved— to be computable in O(n2). In an even more general
framework, the conjecture is that the computation of (a slp representation of) any geometric object
associated to a family of polynomials in n variables represented in a given encoding, with associated
Bézout number D and associated length of the input L, should be linear in both D and L, and
(possibly) quadratic in n. Here the associated Bézout number D could be the geometric degree of
the input polynomial system.

A final comment on the contents of this paper: I only treat here results concerning upper bounds
for the sequential complexity of geometric questions. I do not consider algebraic questions like
for instance the ideal membership problem since their complexity is usually accepted to behave
essentially worse. Also, all bounds depend on the size of the underlying linear algebra structure
which is in the worst case of order dn independently from the fact d ≥ n or not. In case d = 2 and
n arbitrary, the size of the input is of order n2 instead of 2n while our algorithms are in the generic
case polynomial in 2n. A completely different analysis and novel approach are needed to deal with
this case. Finally, concerning lower bounds —a task of a different order of complexity as everybody
knows— there is a deep research actually going on: we refer to [12] and the references given there
for an outview of the most recent and striking results on the matter.

This paper is deliberately written in a non-technical style: for each subject I tried to priorize ideas
and natural developments over precise definitions, proofs or full generality of results: references
where these can be found are always given. The paper is divided in 6 chapters. Chapter 1 gives a
very quick and intuitive introduction on data structures and algorithms, priorizing properties of the
straight-line program encodings with respect to other encodings, and also with some preliminaries
needed for the sequel. Chapter 2 presents the effective Nullstellensatz as a motivation of the spirit
of the paper. It contains a presentation of classic upper and lower (degree and arithmetic) bounds
and a discussion on the utility of evaluation methods with a succint idea of an algorithm. In
particular it shows how a good evaluation method combined with a deep and non-trivial arithmetic
analysis yield optimal bounds for the arithmetic Nullstellensatz. Chapter 3 concentrates on zero-
dimensional varieties, presenting geometric resolutions (shape lemmas descriptions) and Chow forms
and comparing both characterizations of these varieties. Chapter 4 gives the generalizations of
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these notions to equidimensional varieties of arbitrary dimension, and introduces Newton’s method
to lift the information on a good zero-dimensional fibre to the corresponding positive-dimensional
component. Chapter 5 shows an outline of a general algorithm which describes each equidimensional
component of a variety from a set description. This algorithm is mainly the result of many other
algorithms performing related tasks that were developed and improved during the last 5 years and
are somewhat discussed during the whole paper. Finally Chapter 6 gives a couple of applications
that are interesting on their own, even in a more classical frame.

Many of the ideas and algorithms surveyed in this paper are implemented in a MAGMA package,
called Kronecker, developed by Grégoire Lecerf [49].

Acknowledgments. I wish to thank FoCM organizers for their invitation to give this talk at
FoCM’02 great conference, held at the IMA, Minneapolis, during August 2002, and for making my
presence possible there. Also, I would like to say that the results presented here would not have
been obtained without any of the members of TERA group (http://tera.medicis.polytechnique.fr/)
and especially without Joos Heintz. Finally, I am grateful to Juan Sabia and Mart́ın Sombra for
their help and comments, and to David Cox for his careful reading.

1 Preliminaries

1.1 Data structures

The objects we deal with are polynomials in n variables with coefficients in a field k of characteristic
zero. That is

f =
∑
α

aαxα with aα ∈ k,

where α := (α1, . . . , αn) ∈ Nn
0 and xα := xα1

1 · · ·xαn
n .

We insist on the fact that the characteristic of the base field k is zero, for some of the techniques
and results we present do not apply for positive characteristic. The notation An always refers to
An(k) , where k is an algebraic closure of k, unless otherwise specified.
The usual dense encoding for representing such a polynomial f is given by an a priori bound d for
the degree of f and an array of the

(
d+n

d

)
=

(
d+n

n

)
coefficients aα (zero coefficients as well as non-zero

ones) in a pre-established order.
In opposition the sparse encoding only represents the non-zero coefficients by means of couples
(α; aα) indicating the exponent α corresponding to a non-zero coefficient aα. (Another classic way
of defining sparsity is fixing the Newton polytope allowed, that is the convex hull of the exponents
corresponding to non-zero coefficients, we only consider it here in the applications.)
In this paper we deal with a third way of representing a polynomial f , which is called the straight-
line program encoding (slp for short). The idea of using slp as short encodings of special families of
polynomials goes back to the seventies, when it appeared in questions concerning the probabilistic
testing of polynomial identities. The first applications to computer algebra dealt with the elimination
of one variable problems ([35, 41, 42]. Later there were extended to multivariate elimination problems
by Marc Giusti, Joos Heintz and their collaborators, in works that are partly reviewed here.
There are many different slp approaches. We refer to [8] for the standard definition or to [35, 45]
for other models. We only describe here the simplest one, in a non-rigurous manner that we hope is
enough for the readability of this paper:

Definition 1.1 Given a polynomial f ∈ k[x1, . . . , xn], a slp encoding of f is an evaluation circuit
γ for f , where the only operations allowed belong to {+,−, ·} (no divisions) and the constants a ∈ k
can be used freely.
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More precisely: γ = (γ1−n, . . . , γ0, γ1, . . . , γL) where f = γL, γ1−n := x1, . . . , γ0 := xn and for k > 0,
γk is of one of the following forms:

γk = a ∗ γj or γk = γi ∗ γj where a ∈ k, ∗ ∈ {+,−, ·} and i, j < k.

For example, the dense encoding of the polynomial f = x2d

(in 1 variable) is (1, 0, . . . , 0) for the
decreasing order of monomials, its sparse encoding equals (2d; 1) and a straight-line program encoding
is for instance given by the following slp γ:

γ0 = x , γ1 = γ0 · γ0 = x2 , γ2 = γ1 · γ1 = x22
, . . . , γd = γd−1 · γd−1 = x2d

.

We specify now the lengths associated to these encodings: here we assume that each constant of the
field k has length 1. (In many concrete situations the input polynomials have integer or rational
coefficients and thus a more realistic measure of the input is given by taking also into account a
bound for the maximum bit length of every integer allowed to appear.) Thus the dense encoding of
a polynomial f of degree bounded by d like above has length

(
d+n

d

)
= O(dn) (at least if d ≥ n as

it is usually the case), while the sparse encoding has length (n + 1) N where N is a bound for the
number of non-zero coefficients of f . Finally the length of a slp γ like above is defined as L(γ) = L
(note that γ1−n, . . . , γ0 are added to the list only to handle with the variables and therefore have no
cost), and the length L(f) of f is the minimum of the lengths of γ for γ a slp encoding f .

Coming back to the example, the length of the dense encoding of x2d

is 2d+1, the length of its sparse
encoding is 2 while the length of its slp encoding is bounded by d since we exhibited a slp γ for f

such that L(γ) = d. However, note that for (x+y)2
d

(in 2 variables) one can produce immediately a
slp γ′ of length d + 1 defining γ′1 := x + y and then squaring like in γ, while both the dense and the
sparse encodings have length

(
2d

2

)
= O(22d). This observation is an example of the following crucial

fact:

Remark 1.2 Straight-line programs behave well under linear changes of variables (while sparsity
does not).

Now let us compare dense encoding and slp encoding lengths. Every polynomial has a standard slp
encoding given essentially by its dense encoding:

Remark 1.3 Let f ∈ k[x1, . . . , xn] be a polynomial of degree d, then

L(f) ≤ 3
(

d + n

d

)
.

Proof.– One shows inductively that for any r ∈ N, there is a slp of length bounded by
(
n+r

r

)
whose

intermediate results are all monomials xα with |α| ≤ r (once one has a list of all the monomials of
degree bounded by r − 1, each one of the

(
n+r−1

r

)
homogeneous monomials of degree r is simply

obtained from one of the list multiplying by a single variable). Finally we multiply all monomials of
f by their coefficients and add them up, that is we add 2

(
d+n

d

)
instructions to obtain a slp encoding

for f . ¤

Also, it is clear that a sparse polynomial has a “short” slp (if one knows in advance a bound for
the degree): Let f ∈ k[x1, . . . , xn], deg f ≤ d, be a polynomial with at most N non-zero coefficients,
then L(f) ≤ Nd + N − 1.
Reciprocally, if a polynomial f ∈ k[x1, . . . , xn] is represented by a slp of length L and a bound for
its degree d is known, its dense encoding is trivially obtained within dO(n)L(f) operations, simply
interpolating in a grid of (d + 1)n points. Of course this is not very satisfactory since we loose
the possible benefit we had of having a short slp for f . However, it is important to notice that
polynomials with short slp’s are very rare. This is an important classification fact:
Fix a bound d for the degree of the polynomials. In the same way that sparse polynomials (we mean
polynomials with at least one prescribed zero coefficient) belong to the union of closed hyperplanes
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of the set of all polynomials, polynomials with slp’s essentially shorter that the length given by the
standard dense encoding belong to a closed hypersurface of the set of all polynomials (see [35] or
[34, Th. 3.2]):

Proposition 1.4 For every c ∈ N, and for every n, d ∈ N big enough, there exists a hypersurface
H ⊂ A(n+d

d ) such that

{f ∈ k[x1, . . . , xn], deg f ≤ d and L(f) ≤ (nd)c} ⇒ f =
∑

aαxα with (aα)α ∈ H.

Roughly speaking this fact says that a random polynomial of degree d takes essentially as much
time to be evaluated than its whole number of (zero and non-zero) monomials. Polynomials like in
the statement of Proposition 1.4 are very special, and are nowadays called smart polynomials. We
will show that quite amazingly the polynomials that naturally appear when dealing with geometric
questions related to polynomial equations are smart.

A bad feature of slp encodings is that two different slp’s may encode the same polynomial, or more
simply a slp can encode the zero polynomial, without our noticing. Of course, even if we know the
degree of f , evaluating in a grid of (d+1)n points is forbidden for too expensive. There is in this line
a remarkable result due to Heintz and Schnorr ([34, Th. 4.4]) that shows that there exist test grids
(correct test sequences) whose cardinality depend polynomially on the slp length of the polynomial:

Lemma 1.5 Let F := {f ∈ k[x1, . . . , xn] : deg f ≤ d, L(f) ≤ L}. There exists in any big enough
set of k (whose size depends polynomially on d and L) a subset A with #A = (nL)O(1) such that:

∀f ∈ F , f(a) = 0 ∀ a ∈ An ⇒ f = 0.

This is an existence result and nobody knows until now how to exhibit economically such correct test
sequences. However, one can replace it by the Zippel-Schwartz zero test for the design of probabilistic
algorithms ([68, 59]):

Lemma 1.6 Let A ⊂ k be a finite set. For any f ∈ k[x1, . . . , xn], f 6= 0, the probability that a
randomly chosen a ∈ An annihilates f verifies

Prob(f(a) = 0) ≤ deg f

#A .

1.2 Algorithms

The formalization of our algorithms is given by the Blum-Shub-Smale machine over k with the
restriction that the only branches allowed are comparisons to zero. Roughly speaking the algorithm is
a finite sequence of instructions performed on the input, where each instruction can be an arithmetic
operation (+,−, ·) on elements of k or a comparison to zero and a selection of how to continue
depending on the result of the comparison. We refer to [5, Ch. 3 and 4]. The special feature here
is that most of the algorithms we refer to compute as their output slp encodings instead of lists of
coefficients (dense or sparse encodings). For many of them, the input is also encoded by slp’s, see
[37, Sec. 1.2] for a more formal presentation.
In some cases we refer to bounded probability algorithms, algorithms with special nodes that flip coins
(these nodes randomly choose the following instruction between two possible ones with probability
1/2 for each of them ([5, Sec. 17.1], [37, Sec. 1.2]) so that the error probability of the result of the
algorithm is bounded by 1/4. In our setting probability is introduced by choosing a random element
a with equidistributed probability in a set {0, 1, . . . , N −1}n where a certain polynomial f of known
degree will be specialized in order to apply the Zippel-Schwartz zero-test.
The complexity or time of the algorithm is equal to the number of arithmetic operations performed
(each arithmetic operation on k has unit cost), comparisons, selections and flipping coins can be
considered with no cost since if they are meaningful their number is bounded by the number of
operations. Again this model can be adapted to more realistic needs, e.g. counting bit operations
in an integer setting.
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1.3 Parameters

We adopt the following parameters to measure an input polynomial system f1, . . . , fs ∈ k[x1, . . . , xn]:
the number of variables n, a bound for the degrees d, the number of polynomials s, the maximum
length L of slp’s computing f1, . . . , fs and also a parameter δ which measures the maximum di-
mension of the underlying linear algebra structures. This new parameter appeared naturally during
the search of good algorithms with slp encodings, and is mentioned for the first time in [25]. It
is associated to the input polynomials and is called the geometric degree of the input polynomial
system. It is in the worst case bounded by the Bézout number dn although it can be substantially
smaller.
In case s ≤ n + 1 and f1, . . . , fs is a reduced weak regular sequence, that is, for 1 ≤ i ≤ s− 1, fi+1

is not a zero-divisor modulo the ideal (f1, . . . , fi) which is a radical ideal (this implies in particular
that for 1 ≤ i ≤ s, the variety V (f1, . . . , fi) is pure of codimension i), we define here the parameter
δ as

δ := max
1≤i≤s

deg(V (f1, . . . , fi))

where deg denotes the usual geometric affine degree of the variety.
For instance if V ⊂ A3 is the variety defined by the reduced regular sequence f1 = x(z − 1), f2 =
z, f3 = y(z − 1), one obtains δ = 2 (note that δ does not coincide with the cardinality of this finite
variety, but measures the biggest degree attained by successively adding the equations).
In case the input polynomials f1, . . . , fs do not define a reduced weak regular sequence, we perturb
them performing a sufficiently generic scalar combination: for a good choice of a1, . . . , an+1 ∈ ks (the
meaning of good choice is explained in Section 1.5 below), we define the polynomials f̃1, . . . , f̃n+1 as

f̃1 := a11f1 + · · ·+ a1sfs, . . . , f̃n+1 := an+11f1 + · · ·+ an+1sfs,

and we define a geometric degree δ (associated to a := (a1, . . . , an+1) of the input polynomial system
as

δ(a) := max
1≤i≤n+1

deg(V (f̃1, . . . , f̃i)).

For instance the value of δ associated to the system of polynomials f1 = x2, f2 = x− y2, f3 = 1− yz
is not 1 as this is not a reduced sequence, but 2.
The definition given here is a simplified version of the many different definitions of geometric degree
of the input polynomial system that appear in different papers, each time adapted to their context
(see for instance [25, 47, 61, 50, 28, 37]). In particular we only choose a geometric degree depending
of the good choice a, which is enough for our purpose, and skip the definition of the geometric degree
which is an intrinsic quantity that does not depend on the choice of a.

1.4 Basic linear algebra ingredients

Our algorithms rely on the possibility of performing the usual linear algebra operations by means
of algorithms behaving well with slp’s. For instance the computation of (slp’s for) the coefficients
of the characteristic polynomial of a D × D matrix, as well as the computation of its adjoint and
its determinant, can be done within O(D4) arithmetic operations with no divisions and no branches
[3].
Another useful fact is that a slp of length L for the computation of a polynomial f ∈ k[x1, . . . , xn]
of degree bounded by d produces easily slp’s of length O(d2L) for the homogeneous components of
any given degree of f ([45, Lem. 13], [8, Lem. 21.25].
Also, there is a classic division free algorithm known as Strassen’s Vermeidung von Divisionen [64]
which computes a slp for the quotient of two polynomials provided it is a polynomial. More precisely

Proposition 1.7 Let f, g ∈ k[x1, . . . , xn] be polynomials encoded by slp’s of length L such that
f(0) = 1. Assume that f divides g in k[x1, . . . , xn] and that deg g/f ≤ d. Then there is an
algorithm which computes a slp for g/f within complexity O(d2(d + L)).
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The idea is simply to use that

f−1 =
1

1− (1− f)
=

∑

k≥0

(1− f)k

and to truncate all operations and the result at order d. This algorithm is easily adapted to more
general situations when f(a) 6= 0 for a ∈ kn, or when f 6= 0 and one looks probabilistically for
a ∈ kn such that f(a) 6= 0.
Finally there is a bounded probability algorithm to compute the greatest common divisor of two
multivariate polynomials encoded by slp’s [41].

1.5 Input preparation

Given f1, . . . , fs ∈ k[x1, . . . , xn] which define an arbitrary variety V := V (f1, . . . , fs) ⊂ An, as many
authors do we replace the original input system by taking a linear combination of the polynomials
and a change of variables, in order to attain the good underlying linear algebra structure we discussed
partly in Section 1.3.

• In case f1, . . . , fs are not (known to be) a reduced regular sequence we replace them by
f̃1, . . . , f̃n+1 as explained in Section 1.3, for a choice of a = (a1, . . . , an+1) ∈ k(n+1)×s such
that:

– V (f̃1, . . . , f̃n+1) = V .
– For 0 ≤ r ≤ n− 1, if V (f̃1, . . . , f̃n−r) 6= V , then Ir := (f̃1, . . . , f̃n−r) is a radical ideal of

dimension r outside V (that is every primary component Q of Ir such that V (Q) 6⊂ V is
prime of dimension r).

These conditions imply that if a minimal equidimensional decomposition of V is given by

V = V0 ∪ · · · ∪ Vn−1

where for 0 ≤ r ≤ n− 1, Vr is either empty or equidimensional of dimension r, then

V (Ir) = V ′
r ∪ Vr ∪ · · · ∪ Vn−1

where V ′
r is either empty or an equidimensional variety of dimension r (that contains in par-

ticular all the components of lower dimension of V ).

In case the original variety V := V (f1, . . . , fs) is empty, the perturbed polynomials f̃1, . . . , f̃n+1

verify that for a certain t ≤ n, (f̃1, . . . , f̃t) is a reduced regular sequence and V (f̃1, . . . , f̃t+1) =
∅.
An important fact is that Bertini’s theorem insures that for a generic choice of such a matrix
a, the desired conditions are always attained (see for instance [1, Sec. 4], [27, Sec. 3.2], [58,
Prop. 18 and proof of Th. 19]). Moreover, the coefficients of the matrices a giving bad choices
belong to a hypersurface of degree bounded by 4(d + 1)2n ([50, Lem. 1 and 2] or [46, Prop.
4.3 and Cor. 4.4]). This enables us to apply the Zippel-Schwartz zero test.

• We replace the variables x1, . . . , xn by new variables yk = bk1x1 + · · · bknxn, 1 ≤ k ≤ n, such
that for 0 ≤ r ≤ n − 1, the variables y1, . . . , yr are in Noether normal position with respect
to the equidimensional component Wr of V (In−r) of dimension r, that is, the morphism
π : Wr → Ar, y 7→ (y1, . . . , yr) is finite of degree deg Wr.

In fact we look for a more technical condition (see Assumption 4.1 below) which implies this
Noether position one. Again the important fact is that a generic choice of the new variables
insures the desired conditions. Moreover, the coefficients of the matrices b giving bad choices
belong to a hypersurface of degree bounded by n(n− 1)d2n ([46, Prop. 4.5]), which enables us
to apply the Zippel-Schwartz zero test again.
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2 The Nullstellensatz

This section discusses results on the effective Nullstellensatz that motivate the spirit of this survey
paper. It also presents some complexity aspects in more detail.
The (weak) Nullstellensatz states (for a field k with algebraic closure k):

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. The equation system

f1(x) = 0, . . . , fs(x) = 0

has no solution in k
n

if and only if there exist g1, . . . , gs ∈ k[x1, . . . , xn] satisfying the
Bézout identity

1 = g1 f1 + · · ·+ gs fs. (1)

Upper bounds

Bounds for the degrees of polynomials gi’s satisfying Identity (1) immediately yield a linear system
of equations. Showing such bounds is what is nowadays called Effective Nullstellensätze.
In 1926, Hermann [36] (see also [31], [54]) proved that in case Identity (1) holds, there exist
g1, . . . , gs ∈ k[x1, . . . , xn] with deg gi fi ≤ 2 (2d)2

n−1
. After a conjecture of Keller and Gröbner, this

estimate was dramatically improved by Brownawell [7] to deg gifi ≤ n2dn +nd in case char (k) = 0,
while Caniglia, Galligo and Heintz [9] showed that deg gifi ≤ dn2

holds in the general case.
These results were then independently refined by Kollár [43] and by Fitchas and Galligo [19] to

deg gi fi ≤ max{3, d}n, (2)

which is optimal in case d ≥ 3. For d = 2, Sombra [62] showed that the bound deg gifi ≤ 2n+1

holds.

A lower bound

We turn now to a lower bound estimate. The following well-known example due to Masser and
Philippon yields a lower bound for any general degree estimate. Set

f1 := xd
1 , f2 := x1 − xd

2 , . . . , fn−1 := xn−2 − xd
n−1 , fn := 1− xn−1 xd−1

n

for any positive integers n and d. These are polynomials of degree d in n variables. Let g1, . . . , gn ∈
Q[x1, . . . , xn] be polynomials satisfying Bézout identity (1). Specializing it at

x1 := t(d−1)dn−2
, x2 := t(d−1)dn−3

, . . . , xn−1 := td−1, xn := 1/t for t 6= 0

one obtains
1 = g1(t(d−1)dn−2

, . . . , td−1, 1/t) t(d−1)dn−1

which implies that degxn
g1 ≥ (d− 1)dn−1.

In fact here is a Bézout identity with optimal degrees for these polynomials:

1 = x(d−1)dn−1

n xd
1−x(d−1)dn−1

n

(
xd

1−(xd
2)

d
)−· · ·−x(d−1)dn−1

n

(
xdn−2

n−2 −(xd
n−1)

dn−2)
+

(
1−(xn−1x

d−1
n )dn−1)

i.e. g1 = x
(d−1)dn−1

n , g2 = −g1

(
xd−1

1 +· · ·+(xd
2)

d−1
)
, . . . , gn = 1+xn−1x

d−1
n +· · ·+(xn−1x

d−1
n )dn−1−1.

This example immediately shows that the dense encoding of any output g1, . . . , gn has length at least(
dn−dn−1+n

n

)
, which is exponential in the length

(
d+n

n

)
of the dense encoding of the input. Moreover,
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a slight perturbation of this example —replacing xn by a linear combination of the variables—
destroys all the sparsity of the output.
However in this case there is at least one choice of smart polynomials since a coarse computation
shows that L(g1) ≤ n(d− 1) and L(gi) ≤ (n + 5i)(d− 1). Here we have used the identity:

xdi−1+xdi−2y+· · ·+ydi−1 =
(
xd−1+xd−2y+· · ·+yd−1

) · · · (
xdi−1(d−1)+xdi−1(d−2)y+· · ·+ydd−1(d−1)

)
.

Arithmetic bounds

Now let us consider the arithmetic aspects of the Nullstellensatz, that is when the input polynomials
have integer coefficients (or more generally coefficients in a number ring). In the case of integer
coefficients, the Nullstellensatz takes the following form:

Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials such that the equation system

f1(x) = 0, . . . , fs(x) = 0

has no solution in Cn. Then there exist a ∈ Z \ {0} and g1, . . . , gs ∈ Z[x1, . . . , xn]
satisfying the Bézout identity

a = g1 f1 + · · ·+ gs fs.

Let h(f) denote the height of an arbitrary polynomial f ∈ Z[x1, . . . , xn], defined as the logarithm
of the maximum absolute value of its coefficients, and for the sequel set h := maxi h(fi). A slight
modification of Masser and Philippon example yields the lower bound h(a) ≥ dnh.
On the other hand the bound (2) reduces Bézout identity (1) to a system of Q-linear equations,
which by application of Cramer rule gives an estimate for the height of a and the polynomials gi of
type s dn2

(h + log s + d).
It was soon conjectured that the optimal height bound should be closer to the mentioned lower
bound than to this trivial upper bound.
Philippon [55] obtained the first sharp estimate for the denominator a in a Bézout identity: deg gi ≤
(n + 2) dn, h(a) ≤ κ(n) dn(h + d), where κ(n) depends exponentially on n. Then the first essential
progress on height estimates for all the polynomials gi was achieved by Berenstein and Yger who,
from 1991 to 1999 [1, 2], obtained deg gi ≤ n (2 n+1) dn, h(a), h(gi) ≤ λ(n) d4n+3 (h+log s+d log d),
where λ(n) is a (non-explicit) constant which depends exponentially on n. Their proof relies on the
previous work of Philippon and on techniques from complex analysis. Using the algebraic techniques
described in Paragraph “Idea of an algorithm” below, the author and Pardo [44, 45] obtained the
same kind of estimates though less precisely. In 1998 Sombra convinced us that the techniques
were better than the obtained results and that what was lacking was a deeper height analysis.
This lead to the nowadays best and essentially optimal arithmetic bound [46] stated in Paragraph
“Computational results” below.

Idea of an algorithm

Since 1993, Heintz, Giusti and their collaborators initiated a strong current area of research on com-
putational issues related to the Nullstellensatz [27, 20, 45, 25, 24, 30]. The fact that the polynomials
gi’s satisfying the Bézout identity in the Masser and Philippon counterexample were smart did not
seem to be a coincidence. They searched for arguments and tools behaving well under specializations
in order to generalize this fact. A good algorithmic answer is given by the application of the duality
theory for Gorenstein algebras to this setting. We refer to E. Kunz [48, Appendix F] for a complete
mathematical presentation of the duality theory.
The initial spirit of the algorithm is quite simple. It works by successive divisions:

1 ∈ (f1, . . . , fs) ⇐⇒ fs is invertible (mod (f1, . . . fs−1))
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and more generally, once gs, . . . , gi+1 are determined

1−gsfs−· · ·−gi+1fi+1 ∈ (f1, . . . , fi) ⇐⇒ ∃gi : 1−gsfs−· · ·−gi+1fi+1 ≡ gifi (mod (f1, . . . fi−1)).

To illustrate the algorithm assume now that (f1, . . . , fs) defines the empty variety, that s = n + 1
and that Ir := (f1, . . . , fn−r) is an ideal of dimension r for 0 ≤ r ≤ n − 1. Thus I0 := (f1, . . . , fn)
is a zero-dimensional ideal, and the first step is straightforward: B := k[x1, . . . , xn]/I0 is a finite-
dimensional k-vector space. Therefore an inverse gn+1 for fn+1 in B can be obtained for instance
using the characteristic polynomial χn+1 of (the multiplication by) fn+1 in B and the Cayley-
Hamilton theorem: χn+1(t) = tD + cD−1t

D−1 + · · · + c0 (with c0 ∈ k∗ since fn+1 is invertible)
implies that we can define

gn+1 := − 1
c0

(fD−1
n+1 + cD−1f

D−2
n+1 + · · ·+ c1). (3)

For the second recursion step, even if one can mimic the finite-dimensional vector space argument,
in the best case the framework is a finite-rank free module B := k[x1, . . . , xn]/I1 over A := k[x1],
and the argument above fails since here c0 ∈ k[x1] does not necessarily divide the expression in the
numerator of the corresponding formula (3).
The trace formula giving the duality theory of Gorenstein algebras is the tool which enables us to
generalize the previous argument to the case when we are not in a finite vector space frame. It
performs effective divisions modulo complete intersection ideals. It was introduced in the context
of the effective Nullstellensatz in [20], and then refined in [58, 45, 47, 24, 30]. The latest optimal
results for the arithmetic aspects when the base ring is a number ring are obtained in [46].

Here we describe only the basic aspects of the theory we need to sketch the proof.
Let Ir = (f1, . . . , fn−r) ⊂ k[x1, . . . , xn] be a reduced complete intersection ideal (of dimension r),
such that B := k[x1, . . . , xn]/Ir is a finite-rank free module over A := k[x1, . . . , xr].
The dual A-module B∗ := Hom A(B,A) can be seen as a B-module with scalar multiplication defined
by f · τ(g) := τ(f g) for f, g ∈ B and τ ∈ B∗. It happens to be a free B-module of rank 1. Any of its
generators is called a trace of B. There is a canonical trace σ associated to the complete intersection
Ii, and particular polynomials am, bm ∈ k[x1, . . . , xn] verifying the following trace formula:

∀g ∈ k[x1, . . . , xn], g ≡
∑
m

σ(gam)bm (mod Ir).

The canonical trace σ is related to the usual trace Tr of B/A by the equality Tr (g) ≡ σ(Jg)
(mod Ir) where J is the Jacobian determinant of the complete intersection Ir with respect to the
variables xi+1, . . . , xn.

Now we are able to describe —at least theoretically— the second recursion step. All steps follow
the same pattern.
Let I1 = (f1, . . . , fn−1), B = k[x1, . . . , xn]/I1 and A := k[x1] be in the hypothesis of the duality
theory. Let χn(t) := tD +cD−1t

D−1+· · ·+c0 be the characteristic polynomial of fn in B/A. Observe
that c0 ∈ A \ {0} since fn is not a zero-divisor modulo I1. We define

f∗n := fD−1
n + cD−1f

D−2
n + · · ·+ c1,

gn := − 1
c0

∑
m

σ(f∗n(1− gn+1fn+1)am)bm.

Fact: gn belongs to k[x1, . . . , xn] (i.e. c0 divides the numerator) and gnfn ≡ 1−gn+1fn+1 (mod I1).
Proof.–

• In fact c0 |σ(f∗n(1− gn+1fn+1)am) in A = k[x1] for every m:
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Since by hypothesis there exists q ∈ k[x1, . . . , xn] such that 1−gn+1fn+1 ≡ q fn (mod I1) and
on the other hand f∗n fn ≡ −c0 (mod I1), we infer that f∗n(1 − gn+1fn+1) ≡ −c0q (mod I1).
Therefore

σ(f∗n(1− gn+1fn+1)am) = σ(−c0q am) = −c0σ(q am)

since σ is a A-morphism and c0 ∈ A.

• By the trace formula, −c0 gn ≡ f∗n(1 − gn+1fn+1) ≡ −c0q (mod I1). Thus c0 gn fn ≡ c0 (1 −
gn+1fn+1) (mod I1). Since c0 is not a zero-divisor modulo I1 we conclude that gnfn ≡ 1 −
gn+1fn+1 (mod I1).

We finally observe that the relationship between this trace σ and the canonical trace Tr allows us
to replace in the computations σ that one does not know by Tr which is computable as a coefficient
of the characteristic polynomial. The polynomials am, bm are also easily computable.

Computational results
The foundational paper of this computational current of research on the Nullstellensatz is the one
of Giusti, Heintz and Sabia [27] followed by [20]:

Theorem 2.1 Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree bounded by d. Then there is a
bounded probability algorithm of size sO(1)dO(n) which decides whether the ideal (f1, . . . , fs) is trivial
or not, and in case it is, produces slp’s of the same length for polynomials g1, . . . , gs ∈ k[x1, . . . , xn]
satisfying the Bézout identity 1 = g1 f1 + · · · + gs fs. The degree of these polynomials was first
bounded by dO(n2) [27, Sec. 2, Th.] and then by dO(n) [20, Th. 2].

This result follows after an input preparation of the kind of the one described in Section 1.5 in order
to place the input in the hypothesis of the duality theory, and a recursive application of the division
procedure. The canonical trace is computed as a coefficient of the characteristic polynomial of the
multiplication map in B/A. A suitable basis of the natural zero-dimensional vector space associated
to B/A is obtained reducing to the two variables case.
Later on, the input polynomials were no longer considered in their dense encoding: the complexity
bounds are now given in terms of the lengths of the slp encoding and of the geometric degree of the
input polynomials [25, Th. 20], [24, Th. 4, Th. 21], that is what is called intrinsic Nullstellensatz:

Theorem 2.2 Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree bounded by d given by slp’s
of length bounded by L with no common zeroes in k

n
. Let δ be a geometric degree of the input

equation system. Then there is a bounded probability algorithm of size (sndδL)O(1) which produces
slp’s of the same length for polynomials g1, . . . , gs ∈ k[x1, . . . , xn] satisfying the Bézout identity
1 = g1 f1 + · · ·+ gs fs. The degree of these polynomials are bounded by n2dδ.

The proof of this theorem is based on the techniques of [27] in what concerns the recursive divisions.
The dependence on δ is due to the precise results on the degrees of [58] and [47, 61] where bounds
in terms of δ were first computed. In order to obtain a final bound depending polynomially on L
(and not on dn) the authors introduced a formal version of Newton’s method which produces with
good complexity good bases of the complete intersection ideals recursively considered. This method
is essential in all further developments and will be introduced in a simple frame in Section 4.1.

Now let us add the arithmetic aspects of the Nullstellensatz.
The duality technique introduced above also yields arithmetic bounds. That was done in [44, 45]: the
slp produces an integer a and polynomials gi’s such that deg gi ≤ (nd)c n, h(a), h(gi) ≤ (n d)c n(h +
log s+d), where c is a universal constant. Then an arithmetic analogue of the intrinsic Nullstellensatz
was obtained in [30, 29]. To this aim the authors introduced the notion of height of a polynomial
system, the arithmetic analogue of the geometric degree of the system. In [46] these results are
generalized and brought to an optimal form. As a consequence of this intrinsic statement, a sparse
version is obtained, recently improved by Sombra in [63].
More precisely, the main result of [46] in its simplest form is the following:
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Theorem 2.3 Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials without common zeros in Cn. Set
d := maxi deg fi and h := maxi h(fi).
Then there exist a ∈ Z \ {0} and g1, . . . , gs ∈ Z[x1, . . . , xn] such that

• a = g1 f1 + · · ·+ gs fs,

• deg gi ≤ 4 ndn,

• h(a), h(gi) ≤ 4 n (n + 1) dn (h + log s + (n + 7) log(n + 1) d).

The proof of this arithmetic Nullstellensatz also relies on the trace formula. However there is another
key ingredient which is the notion of local height of a variety defined over a number field K introduced
there:
For V ⊂ An(Q) an equidimensional affine variety defined over K and for an absolute value v over K,
the local height hv(V ) of V at v is defined —inspired by results of Philippon— as a Mahler measure
of a suitable normalized Chow form of V . This definition is consistent with the Falting’s height h(V )
of V , namely:

h(V ) =
1

[K : Q]

∑

v∈MK

Nv hv(V ),

where MK denotes the set of canonical absolute values of K, and Nv the local degree of K at v.
Then the authors obtained estimations of the local height of the trace and the norm of a polynomial
f ∈ K[x1, . . . , xn] with respect to an integral extension K[Ar] ↪→ K[V ]. There are also local
analogues of many of the global results of Bost, Gillet and Soulé [6] and Philippon [56].

3 Zero-dimensional varieties

We devote this section to the description of a zero-dimensional variety by means of two different
presentations: a classic description that we call here, following [24, Sec. 2.1], a geometric resolution
of the variety (also known as a shape lemma presentation or a rational univariate representation),
and its Chow form (also known as the u-resultant when associated to a system of equations). We
compare both approaches.
For the whole section, Z ⊂ An denotes a 0-dimensional variety (that is a finite variety) of cardinality
D.

3.1 Geometric Resolutions

Geometric resolutions were first introduced in the works of Kronecker and König in the last years
of the XIX century. Nowadays they are widely used in computer algebra. We refer to [23] for a
complete historical account.
A geometric resolution of Z consists of an affine linear form `(x) = u0 + u1x1 + · · · + unxn ∈
k[x1, . . . , xn] and of polynomials q ∈ k[t] and w = (w1, . . . , wn) ∈ k[t]n (where t is a new single
variable) such that:

• The affine linear form ` is a primitive element of Z, that is `(ξ) 6= `(ξ′) for all ξ 6= ξ′ in Z.

• The polynomial q is monic of degree D and q(`(ξ)) = 0 for all ξ ∈ Z; that is,

q(t) =
∏

ξ∈Z

(t− `(ξ))

is the minimal polynomial of ` over Z.
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• For 1 ≤ i ≤ n, deg wi < D and

Z = {(w1(`(ξ)), . . . , wn(`(ξ))) ; ξ ∈ Z} =
{
(w1(τ), . . . , wn(τ)) ; τ ∈ k / q(τ) = 0

}
;

that is, w parametrizes Z by the zeroes of q.

Observe that the minimal polynomial q and the parametrization p are uniquely determined by the
variety Z and the affine linear form `. We say that (q, w) is the geometric resolution of Z associated
to `.

The existence of such a geometric resolution of Z (at least with coefficients in k) is simple to show:
Let `(x) = 0 be any projection hyperplane that separates the zeroes of Z (any generic enough
hyperplane will do), and define q(t) =

∏
ξ∈Z(t − `(ξ)). Thus q is a polynomial of degree D := #Z

that vanishes on Z. Now for 1 ≤ i ≤ n, let wi(t) be the unique polynomial of degree strictly
bounded by D which verifies that wi(`(ξ)) = ξi for every ξ = (ξ1, . . . , ξn) ∈ Z. Then the polynomial
xi − wi(`(x)) also vanishes on Z and it is easy to show that in fact

Z = V (q(`(x)), x1 − w1(`(x)), . . . , xn − wn(`(x))) .

The computation of a geometric resolution
The algorithm that we describe here has its beginning in [26] and the ideas were then refined in [25]
with the introduction of Newton’s method and in [24] where the use of computable companion matri-
ces replaced theoretical algebraic roots. Further improvements were then developed independently
in [51, 28] and [33] where a significant speed-up is obtained by a technique called deforestation.
Here, in order to simplify the presentation we assume that the zero-dimensional variety Z is given
as the zero set of a reduced regular sequence f1, . . . , fn in k[x1, . . . , xn].

Theorem 3.1 ([24, Th. 19]) Let f1, . . . , fn ∈ k[x1, . . . , xn] be polynomials of degree bounded by d
and encoded by slp’s of length L. Assume that the polynomials are a reduced regular sequence and
set δ for a geometric degree of the input polynomial system.
Then there is a bounded probability algorithm which computes (slp’s for) a separating linear form `
and a geometric resolution (q, v) of Z associated to ` within complexity (ndδL)O(1).

The algorithm has n recursive steps: it adds one equation at a time. For simplicity one assumes
that x1, . . . , xn are in Noether normal position with respect to the ideals (f1, . . . , fi), 1 ≤ i ≤ n.
The i-th step computes from a geometric resolution of the zero-dimensional variety

Zi := V (f1, . . . , fi) ⊂ Ai(k(x1, . . . , xn−i))

a geometric resolution of the zero-dimensional variety

Zi+1 := V (f1, . . . , fi+1) ⊂ Ai+1(k(x1, . . . , xn−i−1)).

The first input is given by the geometric resolution (q(t) := f1(x1, . . . , xn−1, t), w1(t) := t) of Z1 :=
V (f1) associated to the separating linear form ` := xn, and the last (n−1) step computes a geometric
resolution of the zero dimensional variety Zn = Z.
The crucial point here is that the input of step i+1 cannot be simply the output of step i, where the
natural length of this output would be Li+1 = (ndδi)O(1)Li (where δi is the size of the underlying
linear algebra at step i), since in that case the recursion would yield an output length

Ln = (nd)O(n)(δ0 · · · δn−1)O(1)L = (ndδ)O(n)L

which does not represent any improvement with respect to other known algorithms.
The alternative was for the first time addressed in [26] where the authors dealt with the necessity
of a compression of the input data at each recursive step that enabled them to add Li instead
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of multiplying it : Li+1 = (ndδi)O(1)L + Li. Another principal breakthrough of this paper is
that it adapted the concept of geometric resolution to a positive dimension context, rediscovering
Kronecker’s approach.
The general form of an algorithm like this one is considered in more detail for the computation
of Chow forms in Section 5, after the introduction of Newton’s method and the use of companion
matrices in some simple cases.

3.2 Chow forms

Set L(U, x) := U0 + U1x1 + · · · + Unxn for a generic (affine) linear form where U := (U0, . . . , Un)
denotes a new group of variables. Typically a specialized linear form `(x) := L(u, x) does not meet
any of the points of Z unless u ∈ An is a root of the following polynomial

ChZ(U) =
∏

ξ∈Z

L(U, ξ).

This polynomial is called the (normalized) Chow form of Z. It happens to be a homogeneous
polynomial in k[U ] of degree D. We refer to [60, Section I.6.5] for the proof of this fact.
Thus, the main feature of the Chow form is that for any u ∈ kn+1,

ChZ(u) = 0 ⇐⇒ Z ∩ {L(u, x) = 0} 6= ∅.

Chow forms → geometric resolutions

A Chow form gives straightforward a “generic” geometric resolution and hence, by specialization,
families of geometric resolutions. We describe here the procedure, essentially due to Kronecker:
The polynomial PZ(U, t) ∈ k[U, t] (where t is a single variable like before) defined by

PZ(U, t) := (−1)DChZ(U0 − t, U1, . . . , Un) =
∏

ξ∈Z

(t− L(U, ξ))

verifies that P (U, x) := PZ(U,L(U, x)) =
∑

α aα(x)Uα vanishes clearly on every ξ ∈ Z. Thus, for
every α, aα(ξ) = 0 for every ξ ∈ Z, which implies in particular that ∂P (U,x)

∂Ui
also vanishes on every

ξ ∈ Z.
Now for 1 ≤ i ≤ n,

∂P

∂Ui
(U, x) =

∂PZ

∂Ui
(U,L(U, x)) +

∂PZ

∂t
(U,L(U, x))xi

implies that for every ξ ∈ Z,

∂PZ

∂Ui
(U,L(U, ξ)) +

∂PZ

∂t
(U,L(U, ξ))ξi = 0.

This last equality means that for every u ∈ k
n+1

such that both `(x) := L(u, x) verifies that
`(ξ) 6= `(ξ′) for all ξ 6= ξ′ in Z and ∂PZ

∂t (u, `(ξ)) 6= 0 for all ξ ∈ Z (these conditions are fulfilled in a

non-empty open Zariski subset of k
n+1

), one has that

ξi = −
∂PZ

∂Ui
(u, `(ξ))

∂PZ

∂t (u, `(ξ))
.

A proper geometric resolution of Z associated to ` is then given by q(t) := PZ(u, t) and the polyno-
mials wi(t) that one can obtain using the discriminant ρ(U) of PZ(U, t) with respect to t to eliminate
the polynomial ∂PZ

∂t (u, `(ξ)) appearing in the denominator (replacing it by the non-zero constant
ρ(u)).
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Geometric resolutions → Chow forms:
Now let us show how to derive the Chow form from a given geometric resolution of Z with respect
to a linear form `. This simple and beautiful construction relies on the fact that even if we do not
know the coordinates of each zero ξ of Z, a geometric resolution gives the information of the zeroes
altogether:
We are looking for

ChZ(U) =
∏

ξ∈Z

L(U, ξ) = |Diagξ∈Z

(
L(U, ξ)

)|,

where |Diag( )| denotes the determinant of the diagonal matrix with the entries under the brackets
in the diagonal. But the information we have is that of q(t) =

∏
ξ∈Z(t − `(ξ)) whose companion

matrix Cq is similar (∼) to Diagξ∈Z

(
`(ξ)

)
since `(ξ) 6= `(ξ′) for ξ 6= ξ′. For 1 ≤ i ≤ n, we also have

wi such that ξi = wi(`(ξ)). Thus

wi(Cq) ∼ wi

(
Diagξ∈Z

(
`(ξ)

)) ∼ Diagξ∈Z

(
wi(`(ξ))

) ∼ Diagξ∈Z

(
ξi

)
.

We infer that
L

(
U, (Id, w1(Cq), . . . , wn(Cq))

) ∼ Diagξ∈Z

(
L(U, ξ)

)

and we conclude by taking the determinant of the left hand side.

This beautiful application of companion matrices is a crucial tool that was introduced in this context
in [24, pp. 285-286] to replace each zero in Z by their “all-together information”.

4 Equidimensional varieties

A variety is said to be equidimensional if all its irreducible components have the same dimension.
We recall that the degree of an equidimensional variety V is defined as the number of points in the
intersection of V with a generic linear variety of codimension equal to the dimension of V .
To simplify the presentation, we set n = r+m and we distiguish the variables in two groups: the set
of free variables y = (y1, . . . , yr) and the set of dependent variables x = (x1, . . . , xm) of the extension
k[V ]: for that purpose we assume for the whole section that V ⊂ An = Ar+m is an equidimensional
variety of dimension r and degree D, defined by polynomials in k[y1, . . . , yr, x1, . . . , xm], which
satisfies the following assumption:

Assumption 4.1 We assume that Z := V ∩ {y1 = 0, . . . , yr = 0} is a zero-dimensional variety of
cardinality #Z = deg V = D.

Assumption 4.1 implies that the variables y1, . . . , yr are in Noether normal position with respect to
V [46, Lem. 2.14]. That means that if we set A := k[y1, . . . , yr], A ∩ I(V ) = {0} holds, and that
for 1 ≤ i ≤ m, there is an integral dependence equation for xi over A modulo I(V ) ⊂ A[x1, . . . , xm]:
there exists a non-zero and monic polynomial pi ∈ A[xi] ∩ I(V ). We remark that the previous
condition is satisfied by any variety under a generic linear change of variables.

4.1 Geometric resolutions

We present here the notions of geometric resolution of an equidimensional variety of positive dimen-
sion.
Under Assumption 4.1 we can reduce easily to the zero-dimensional case: we invert the variables
y1, . . . , yr. We set K := k(y1, . . . , yr) for the field of fractions of A = k[y1, . . . , yr] and we consider
the following objects:

Ie := K[x1, . . . , xm] · I(V ) ⊂ K[x1, . . . , xm]
V e := V (Ie) ⊂ K

m
,
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where I(V ) is the ideal of V and V (Ie) is the variety defined by Ie. V e is a zero-dimensional variety of
cardinality D = deg V and a geometric resolution of V is (essentially) given by a geometric resolution
of V e. It does not describe the whole variety V but describes it outside a given hypersurface. It
consists of an affine linear form ` = u0 + ur+1x1 + · · ·+ ur+mxm ∈ k[x1, . . . , xm] and of polynomials
q ∈ A[t] and w = (w1, . . . , wm) ∈ A[t]m such that:

• The affine linear form ` is a primitive element of V e, that is `(ξ) 6= `(ξ′) for all ξ 6= ξ′ in V e.

• The polynomial q, of degree D in t, is the monic minimal polynomial of ` with respect to the
extension K ↪→ K[V e]. The Noether position assumption guarantees that the coefficients of q
belong to A and also that the total degree of q equals D (see for instance [58, Cor. 2]).

• For 1 ≤ i ≤ m, degt wi < D and ρ xi = wi(`) in K[V e], where ρ ∈ A is the discriminant of q
with respect to t. The polynomial wi also belongs to A[t] [28, Sec. 3.2].

Thus, we infer that

V e = { (
w1(`(ξ))

ρ
, . . . ,

wm(`(ξ))
ρ

) ; ξ ∈ V e } = { (
w1(τ)

ρ
, . . . ,

wm(τ)
ρ

) ; τ ∈ K / q(τ) = 0 }.

In particular, since q is monic in t, for every η = (η1, . . . , ηr) ∈ Ar such that ρ(η) 6= 0, #(V ∩ {y1 =
η1, . . . , yr = ηr}) = D and the D roots (η, ξη) ∈ Ar+n are obtained via the D different roots τη of
q(η, t) = 0:

V ∩ {y1 = η1, . . . , yr = ηr} = { (η1, . . . , ηr,
w1(η, τη)

ρ(η)
, . . . ,

wm(η, τη)
ρ(η)

) for τη s.t. q(η, τη) = 0 }.

For simplicity of notation, we say that outside the hypersurface {ρ = 0} ⊂ Ar+m the variety
V ⊂ Ar+m coincides with

{ (y,
w(y, τy)

ρ(y)
) for τy s.t. q(y, τy) = 0 }.

We say that (q, w) is the geometric resolution of V associated to `. It gives a simple description of V
outside the discriminant variety. There is another equivalent approach, more suitable algorithmically,
where the geometric resolution of V is defined outside the variety {q′ = 0} where q′ = ∂q/∂t instead
of outside the discriminant variety (cf. Section 3.2).

Observe that Assumption 4.1 implies that

Z = V ∩ {y1 = 0, . . . , yr = 0} = {(0,
w(0, τ0)

ρ(0)
) for τ0 s.t. q(0, τ0) = 0 }.

The next section is crucial: it shows how the tractable information of the r-dimensional equidi-
mensional variety V is encoded in the arbitrary input equations plus the information of the zero-
dimensional fibre Z. In other terms it shows how to recover a geometric resolution of V from a
geometric resolution of Z, lifting the points (0, ξ0) ∈ Z to the corresponding (y, ξy) ∈ V .

4.2 Dimension zero → positive dimension

Let V ⊂ Ar+m be an equidimensional variety of dimension r satisfying Assumption 4.1 and set as
usual Z := V ∩ {y1 = 0, . . . , yr = 0}. Supppose we are given a geometric resolution (qZ , wZ) of Z
associated to a separating linear form `. How can we derive from it a geometric resolution (qV , wV )
of V ?
The major tool here is the application of Newton’s method to lift an “approximate zero”, that is
a geometric resolution of the zero-dimensional fibre Z, to the geometric resolution of V . Newton’s
method has been applied in a similar way to recover the exact factorization of multivariate polynomi-
als from factorization algorithms for univariate polynomials by E. Kaltofen in [40]. For polynomial
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systems it has been previously used by W. Trinks [66] and by F. Winkler [67]. In our specific frame
it has been re-introduced by J. Heintz et al. in [25].
First let us recall Hensel’s lifting, that is, the algebraic version of Newton’s method, in its classic
presentation:

Proposition 4.2 Let p be a prime integer number, f ∈ Z[x] and ξ0 ∈ Z such that

f(ξ0) ≡ 0 (mod p), f ′(ξ0) 6≡ 0 (mod p).

Then, for all k ∈ N, there exists ξk ∈ Z such that

f(ξk) ≡ 0 (mod p2k

), ξk ≡ ξ0 (mod p).

The existence (and also uniqueness mod p2k

) of this sequence of integers is given by the recursive
application of Newton’s operator

Nf (x) = x− f(x)
f ′(x)

to the input approximate zero ξ0:

for all k ≥ 1, ξk ≡ Nf (ξk−1) (mod p2k

).

Hensel’s lifting translates directly to a constructive implicit function theorem, that is the version we
use here:

Proposition 4.3 Set A := k[y1, . . . , yr] and A[x] := A[x1, . . . , xm]. Let V ⊂ Ar+m be an equidimen-
sional variety of dimension r defined by a reduced regular sequence f1, . . . , fm ⊂ A[x], and assume
moreover that V satisfies Assumption 4.1.
Set M = (y1, . . . , yr) ⊂ A for the maximal ideal associated to 0, F (y, x) := (f1(y, x), . . . , fm(y, x))
and DxF := (∂fi/∂xj)1≤i,j≤m.
Let ξ0 ∈ Am be such that F (y, ξ0) ∈M (i.e. F (0, ξ0) = 0, that is (0, ξ0) ∈ Z) and |DxF |(y, ξ0) /∈M.
Then the recursive application of

NF (xt) := xt − (DxF (y, x))−1F (y, x)t

initialized at ξ0 approximates the corresponding fiber root (y, ξy) ∈ V with quadratic precision. That
is, if Nk

F denotes the application of k times the Newton operator, Nk
F (ξ0) tends quadratically to a

m-tuple of formal power series ξy ∈ k[[y]]m verifying:

• F (y, ξy) = 0

• ξy(0) = ξ0.

where “tends quadratically” means that F (y, Nk
F (ξ0)) ∈M2k

.

Next section gives an idea of how to derive the polynomial qV of a geometric resolution of V from
a geometric resolution of Z:

Idea of the algorithm

We adopt the abusive notation N∞
F (ξ0) := ξy.

For the rest of the section, let V = V (f1, . . . , fm) ⊂ Ar+m be an equidimensional variety of dimension
r satisfying Assumption 4.1 which is in the hypothesis of Proposition 4.3. We will recover the
polynomial qV of a geometric resolution of V from a geometric resolution of Z associated to a linear
form `, lifting the roots (0, ξ0) ∈ Z to their corresponding fiber roots (y, ξy) ∈ V (via the inmersion
k[[y]] ↪→ K).
Without loss of generality we identify Z with {ξ0 : f1(0, ξ0) = · · · = fm(0, ξ0) = 0} ⊂ Am.

18



We know that the total degree of qV ∈ A[t] equals D, and we observe that ` ∈ k[x1, . . . , xm] is also
a separating linear form for V e.
The information we have is qZ(t) =

∏
ξ0∈Z(t− `(ξ0)) ∈ k[t] and w := wZ ∈ k[t] such that for every

ξ0 ∈ Z, ξ0 = w(`(ξ0)) = (w1(`(ξ0)), . . . , w1(`(ξ0))).
Here is a very informal sketch of how things work:
By Proposition 4.3 we know that for every ξ0 ∈ Z, N∞

F (ξ0) = ξy ∈ k[[y]]m. Thus we are looking for

qV (y, t) =
∏

(y,ξy)

(t− `(ξy)) =
∏

(y,ξy)

(t− `(N∞
F (ξ0))).

As we have the a priori bound D for the degree of qV in the variables y as well, to obtain it exactly
it is enough to approximate each root ξy by a n-tuple of power series up to order D, that is to
compute dlog2 De iterations of Newton operator on ξ0 and then to truncate the obtained polynomial
at degree D.
Of course we don’t know the roots ξ0 ∈ Z, but we are looking in fact for the characteristic polynomial
of the diagonal matrix Diagξy

(
`(ξy)

)
, and —as at the end of Section 3— we have the information

of all ξ0 ∈ Z together via the companion matrix C = CqZ
of qZ : for 1 ≤ i ≤ m,

wi(C) ∼ Diagξ0∈Z

(
(ξ0)i

)
=⇒

N∞
F

(
w(C)

) ∼ (
Diagξ0

(
(N∞

F (ξ0))1
)
, . . . , Diagξ0

(
(N∞

F (ξ0))m

))

∼ (
Diagξy

(
(ξy)1

)
, . . . , Diagξy

(
(ξy)m

))
=⇒

`
(
N∞

F

(
w(C)

)) ∼ Diagξy

(
`(ξy)

)
,

and we should conclude taking its characteristic polynomial which is exactly the polynomial qV we
are looking for.
Again, as we have the a priori bound D for the degree of qV , it is enough to compute all approxi-
mations up to order D and then to truncate the obtained characteristic polynomial at degree D as
well.
Let us conclude with a word on the computational aspects:
We set k := dlog2 De and we compute formally polynomials g1, . . . , gm and h corresponding to the
numerators and a single denominator of the k-th iteration of Newton operator on a m-tuple of
indeterminate variables (x1, . . . , xm). We apply them on the matrices w1(C), . . . , wm(C). Using
the Cayley-Hamilton theorem we invert the matrix h(w(C)) modulo its determinant in k[y], which
is invertible as a power series. We approximate the inverse by a formal power series truncated at
order D. All remaining computations are truncated at order D. The details of this procedure can
be found for instance in [32, Proof of Th. 2], which deals with a generalization of what is presented
here.
Generalizations of Newton-Hensel symbolic lifting where the strong hypothesis made here are weak-
ened, allowing multiplicities, are being deeply studied by Grégoire Lecerf ([51, 28, 52, 53] and work
in progress).

4.3 Chow forms

For a detailed mathematical account of Chow forms we refer to [60, Sec. I.6.5], [21, Chap. 3], [15],
and to [46, Sec. 1.2.2] for the specific normalization introduced here.
Let V ⊂ An = Ar+m be as before an equidimensional variety of dimension r and degree D satisfying
Assumption 4.1 (although unnecessarily heavy, the notation y = (y1, . . . , yr) for the free variables
and x = (x1, . . . , xm) for the dependent ones is kept here for the sake of coherence).
Generically a linear variety of codimension r+1 does not meet V . Like in the zero-dimensional case,
the condition on the coefficients of these linear varieties to meet V is given by a polynomial called
a Chow form of V . We formalize that: For i = 0, . . . , r, let Ui = (Ui0, Ui1, . . . , Uin) be a group of
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n + 1 variables and set U := (U0, . . . , Ur), and L(Ui, (y, x)) := Ui0 + Ui1 y1 + · · · + Uin xm for the
associated generic linear form in the variables (y, x).
Define

ΦV = {(u0, . . . , ur; ξ) , ξ ∈ V, L(u0, ξ) = 0, . . . , L(ur, ξ) = 0} ⊂ (An+1)r+1 × An,

and denote by π : (An+1)r+1 × An → (An+1)r+1; (u, ξ) 7→ u the canonical projection. Then the
Zariski closure of the image of ΦV , π(ΦV ) ⊂ (An+1)r+1, is a closed hypersurface [60, p.66]. We
define the Chow form of V as any squarefree defining equation FV ∈ k[U0, . . . , Ur] of π(ΦV ).
The main feature of the Chow form is that for every u0, . . . , ur ∈ Pn,

FV (u0, . . . , ur) = 0 ⇔ V ∩ {Lh(u0, (y, x)) = 0} ∩ · · · ∩ {Lh(ur, (y, x)) = 0} 6= ∅.

Here Lh(Ui, (y, x)) = Ui0y0 + Ui1y1 + · · ·+ Uinxm stands for the homogeneization of L and V ⊂ Pn

for the projective closure of V .
A Chow form FV is a multihomogeneous polynomial of degree D in each group of variables Ui (0 ≤
i ≤ r). The projective closure V ⊂ Pn is uniquely determined by a Chow form of V ([60, p. 66]).
Moreover, it is possible to derive equations for the variety V from a Chow form of V ([21, Chap.
3, Cor. 2.6]). In case V is irreducible, FV is a irreducible polynomial and, in the general case, a
Chow form of V of the equidimensional variety V is the product of the Chow forms of its irreducible
components.
Observe that the Chow form of an equidimensional variety is uniquely determined up to a scalar
factor. Here we follow [46, Sec. 1.2.2] and define the (normalized) Chow form ChV by fixing the
choice of this scalar factor through the condition

ChV (e0, . . . , er) = 1,

where ei denotes the (i + 1)-vector of the canonical basis of kn+1. That is the coefficient of the
monomial UD

0 0 · · ·UD
r r (the fact that this coefficient is not zero follows from Assumption 4.1).

Chow forms → geometric resolutions:

The procedure described in Section 3.1 is generalizable to any dimension:
We define

P(U0, t, y) := (−1)deg V ChV ((U00 − t, U01, . . . , U0n); e1 − y1e0; . . . ; er − yre0)

For every ξ = (y, ξy) ∈ V , we observe that P(U0, L(U0, ξ), y1, . . . , yr) = 0 since

V ∩ {L(U0, (y, x)) = L(U0, (y, ξy))} ∩ {y1 = y1} ∩ · · · ∩ {yr = yr} 6= ∅.

Thus P(U0, L(U0, ξ), y1, . . . , yr) vanishes on V e. Moreover degt P = deg V since degU0
ChV = deg V

and for a generic u0, `(y, x) := L(u0, (y, x)) separates the zeroes of V e. Finally P is monic in t since it
can be shown that its leading coefficient is independent from y, and ChV (−e0, e1, . . . , er) = (−1)deg V .
Then we conclude as in Section 3.1.

Geometric resolutions → Chow forms

If we proceed exactly as in the pure zero-dimensional case we obtain ChV e(U0) ∈ K[U0] in a single
set of variables U0 and with extraneous coefficients depending on the free variables y (cf. the Chow
form of [50, Sec. 3.3]).
The first polynomial although probabilistic algorithm to compute the Chow form of an equidimen-
sional variety satisfying Assumption 4.1 from a geometric resolution is given in [37, Prop. 3.5]. It
follows from the main technical result Main Lemma 2.3 of that paper that we discuss here in a
simplified form:
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Proposition 4.4 Set A := k[y1, . . . , yr] and A[x] := A[x1, . . . , xm]. Set n := r + m and let V ⊂ An

be an equidimensional variety of dimension r defined by a reduced regular sequence f1, . . . , fm ⊂ A[x].
Assume moreover that V satisfies Assumption 4.1. Suppose that a geometric resolution (q, w) of
Z = V ∩ {y1 = 0, . . . , yr = 0} associated to a linear form ` is given, and that f1, . . . , fm are
polynomials of degrees bounded by d encoded by slp’s of length L.
Then there is a deterministic algorithm which computes (a slp for) the Chow form ChV within
complexity (ndD)O(1)L.

Idea of the proof.–
The computation of the Chow form relies on a way of writing it as a quotient of products of Chow
forms of zero-dimensional varieties with respect to different base fields [37, Prop. 2.5]:

ChV (U0, . . . , Ur) =
∏r

i=0 ChZi
(Ui)∏r

i=1 ChZi(ei)
, (4)

where Z0, . . . , Zr denote the zero-dimensional varieties of degree D defined as

Z0 := Z = V (y1, . . . , yr, f1, . . . , fm) ⊂ An(k)
Z1 := V (L(U0, (y, x)), y2, . . . , yr, f1, . . . , fm) ⊂ An(k(U0))

...
Zr := V (L(U0, (y, x)), . . . , L(Ur−1, (y, x)), f1, . . . , fm) ⊂ An(k(U0, . . . , Ur−1))

and ChZi(ei) consists on specializing the group of variables Ui on the (i + 1)-vector of the canonical
basis of kn+1 (which corresponds to the hyperplane yi).
Now fix 0 ≤ i ≤ r. Remember that as Zi is zero-dimensional, ChZi =

∏
ξU∈Zi

L(Ui, ξU ).
It can be shown that for each (0, ξ0) ∈ Z, Proposition 4.3 centered at (e1, . . . , ei) holds and gives
back from ξ0 (an approximation of) the unique ξU ∈ k[[U0 − e1, . . . , Ui−1 − ei]]m such that ξU ∈ Zi

and ξU (e1, . . . , ei) = ξ0.
Then we proceed as in Section 4.2 (Idea of the algorithm) to recover ChZi which is the determinant
of the diagonal matrix DiagξU∈Zi

(
L(Ui, ξU )

)
from the companion matrix Cq of q which is similar to

Diagξ0∈Z

(
`(ξ0)

)
.

A final comment concerning the algorithm: in order to avoid divisions in the computation of the
polynomial ChV , we need to invert the denominator in the right hand side of Identity 4 and replace
it by a formal power series. However as it is not directly invertible we need to compute its order
and its graded component of lowest degree. This information also decides up to which order the
approximations of the numerator and the denominator have to be computed. This is done in [37,
Lem. 2.10].

Similar lifting ideas could seem to lead to a simpler algorithm to compute the Chow form of the
variety: the Chow form can be written as the numerator of the independent term of a certain
characteristic polynomial, which can be approximated from a good fiber using Newton method.
However it is important to observe that up to now an algorithm that approximates the power series
corresponding to a quotient does not yield an approximation of the numerator. That is the reason
why the product formula above is so useful.

5 Arbitrary varieties

In this section V ⊂ An is an arbitrary variety. Thus V can be decomposed in the following manner:

V = V0 ∪ · · · ∪ Vn

where for 0 ≤ r ≤ n, Vr is either empty or an equidimensional variety of dimension r. The
degree D of V is defined, following [31], as the sum of the degrees of its irreducible, or equivalently
equidimensional, components.
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We suppose that V is described as the zero set of f1, . . . , fs ∈ k[x1, . . . , xn] of degrees bounded
by d and described by slp’s of size bounded by L. In this section we deal with the question of
producing an algorithm which determines (slp’s for) the equidimensional components of V . These
can be described by means of equations, or of geometric resolutions, or by their Chow forms.
Set theoretic descriptions of the equidimensional components can be found for instance in [14, 22]
where the algorithms are for dense input representation and deterministic, with complexity of order
(sdn2

)O(1), or in [38, 39] for a probabilistic algorithm for slp input representation of complexity
(sdn)O(1)L. Geometric resolution algorithms and similar ones are given in [17] for the classic point
of view and in [50, 51] for evaluation methods.
The evaluation methods algorithms have all more or less the same recursive structure, as in the
zero-dimensional case. First they need a preparation of the input as described in Section 1.5 or
similar in order to produce a good linear algebra underlying structure. Then the algorithms adds
one equation at the time, computing at each level in the same manner equations for what they want
modulo some extraneous factors (a consequence of the input preparation) that need to be cleaned
at some point. Here we describe roughly the algorithm of [37] which computes probabilistically (a
slp for) a Chow form of each equidimensional component of V .

Idea of the algorithm
The algorithm relies on three major ingredients:

• Ingredient 1: the generalization of Proposition 4.4 presented in [37, Main Lemma 2.3], where
instead of being given a reduced regular sequence f1, . . . , fm we assume the weaker condition
that f1, . . . , fm ∈ I(V ) and that for every ξ0 ∈ Z, the localized ideals I(V )ξ0 and (f1, . . . , fm)ξ0

coincide.

• Ingredient 2: a bounded probability algorithm which given a Chow form of V and a polynomial
f which is not a zero-divisor modulo I(V ) returns a Chow form of V ∩ V (f) [37, Lem. 3.8].

• Ingredient 3: a bounded probability algorithm which given a Chow form of an equidimensional
variety with some components contained in a given hypersurface returns separated Chow forms
for both parts [37, Lem. 3.9].

Let V = V0 ∪ · · · ∪ Vn be the variety defined by the input polynomials. If V 6= An, the input
preparation (Section 1.5) enables us to assume that

V (f1) = Vn−1 ∪ V ′
n−1 , V (f1, f2) = (Vn−2 ∪ Vn−1) ∪ V ′

n−2

where the varieties V ′
n−1, V

′
n−2 are equidimensional varieties of codimension 1 and 2 respectively

containing all other components of V , and that f1 satisfies the hypothesis of Ingredient 1 for V ′
n−1.

Also V ′
n−1 ∩ V (f2) = (Vn−2 ∪ Ṽn−2) ∪ V ′

n−2 where Ṽn−2 is the remaining equidimensional part of
codimension 2 included in Vn−1.
The input of the first step is ChV (f1) = ChVn−1∪V ′n−1

from which we compute ChVn−1 and ChV ′n−1
by

Ingredient 3 since Vn−1 ⊂ V (f2) and no component of V ′
n−1 does.

The latter should be the input of next step: from the Chow form of V ′
n−1 one can compute, by

Ingredient 2, the Chow form of V ′
n−1∩V (f2) = (Vn−2∪Ṽn−2)∪V ′

n−2 and then apply again Ingredient
3 to separate the Chow form of Vn−2 ∪ Ṽn−2 from that of V ′

n−2 (the Chow form of Vn−2 ∪ Ṽn−2 will
be broken up in its two parts at the end by another application of Ingredient 3). However the
complexity considerations introduced after Theorem 3.1 prevent that since the complexity would
explode due to the recursion.
What we do is to compress the information of V ′

n−1: from its Chow form we obtain probabilistically
a geometric resolution of the zero-dimensional variety Zn−1 = V ′

n−1 ∩ V (x1, . . . , xn−1) associated to
a certain linear form, and these arrays of coefficients will be the input of next step together with f1.
The second step begins computing again ChV ′n−1

from the geometric resolution of Zn−1 and f1

by application of Ingredient 1. Then it follows as explained in the previous paragraph computing
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the Chow forms of Vn−2 ∪ Ṽn−2 and of V ′
n−2, and again keep aside the former and compress the

information of the latter replacing it by a geometric resolution of Zn−2 = V ′
n−2 ∩ V (x1, . . . , xn−2).

All steps follow now the same pattern. At the end of this part of the algorithm one obtains a list
of Chow forms of Vn−1, Vn−2 ∪ Ṽn−2, . . . , V0 ∪ Ṽ0 where Ṽr is either empty or an equidimensional
variety of dimension r included in Vr+1 ∪ · · · ∪ Vn−1 while no irreducible component of Vr is. The
algorithm concludes extracting from these Chow forms the Chow forms of Vn−2, . . . , V0 by application
of Ingredient 3.
The final result is in a simplified form:

Theorem 5.1 [37, Th. 1] Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree bounded by d
encoded by straight-line programs of length bounded by L. Set V := V (f1, . . . , fs) ⊂ An and let
V = V0 ∪ · · · ∪ Vn be its minimal equidimensional decomposition. Set δ for a geometric degree of the
input polynomial system.
Then there is a bounded probability algorithm which computes (slp’s for) Chow forms of V0, . . . , Vn

within (expected) complexity s(n d δ)O(1)L. Its worst case complexity is s(ndn)O(1)L.

An analogous result for the description of the equidimensional components of V by means of geo-
metric resolutions is obtained in [50].

6 Applications

6.1 The computation of the sparse resultant

We take this application concerning the computation of a class of sparse resultants from [37].
The classical resultant Resn,d of a system of n + 1 generic homogeneous polynomials f0, . . . , fn of
degree d in n + 1 variables is a polynomial in the indeterminate coefficients Ui = (Uiα, α), 0 ≤
i ≤ n, of the polynomials fi, that characterizes for which coefficients the system has a non-trivial
solution. This polynomial is homogeneous of degree dn in each set of indeterminate coefficients
(Ui). Clearly the number of variables and the degree bound make it prohibitively expensive to
write (the dense encoding of) this polynomial, unless very specific cases like the resultant of two
homogeneous polynomials in two variables. However a direct application of the computation of the
Chow form, more precisely of Proposition 4.4 above, shows that a straight-line program for Resn,d

can be deterministically computed within complexity (ndn)O(1). This can be extended to compute
some classes of sparse resultants.
The sparse resultant is the basic object in sparse elimination theory and has been used extensively
as a tool for the resolution of polynomial equation systems (see for instance [65], [57], [18]). Several
effective procedures were proposed to compute it (see e.g. [65], [10], [11]). Recently, C. D’Andrea
has obtained an explicit determinantal formula which extends Macaulay’s formula to the sparse case
([16]).
From the algorithmic point of view, the main assumption of sparse elimination theory is that com-
putations should be substantially faster when the input polynomials are sparse (in the sense that
their Newton polytopes are restricted). Basically, the parameters which control the sparsity are the
number of variables n and the normalized volume Vol(A) of the convex hull of the set A of exponents
(that is n! times its volume with respect to the Euclidean volume form of Rn). None of the previous
algorithms computing sparse resultants is completely satisfactory, as their predicted complexity is
exponential in all or some of these parameters (see [11, Cor. 12.8]).
The precise definition of the (unmixed) sparse resultant is as follows:
Let A = {α0, . . . , αN} ⊂ Zn be a finite set of integer vectors. We assume here that Zn is generated
by the differences of elements in A. For i = 0, . . . , n, let Ui be a group of variables indexed by the
elements of A, and set

fi :=
∑

α∈A
Uiα xα ∈ k[Ui][x±1

1 , . . . , x±1
n ]
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for the generic Laurent polynomial with support equal to A. Let WA ⊂ (PN )n+1 × (k
∗
)n be the

incidence variety of f0, . . . , fn in (k
∗
)n, that is

WA = {(ν0, . . . , νn; ξ); Fi(νi, ξ) = 0 ∀ 0 ≤ i ≤ n},
and let π : (PN )n+1 × (k

∗
)n → (PN )n+1 be the canonical projection. The variety π(WA) happens

to be an irreducible variety of codimension 1 (see [21, Chapter 8, Prop.-Defn. 1.1]), and the sparse
A-resultant ResA is defined as the unique —up to a sign— irreducible polynomial in Z[U0, . . . , Un]
which defines it. It is a multihomogeneous polynomial of degree Vol(A) in each group of variables
Ui.
As this resultant coincides with the Chow form of the toric variety associated to the input set A,
the result one can obtain is the following:

Proposition 6.1 ([37, Cor. 4.2] Let A ⊂ (N0)n be a finite set which contains {0, e1, . . . , en}.
Then there is a bounded probability algorithm which computes (a slp for) a scalar multiple of the
A-resultant ResA with (expected) complexity (n Vol(A))O(1). Its worst case complexity is (ndn)O(1),
where d := max{|α| ; α ∈ A}.
In fact, this expected polynomial behavior of the complexity is out of reach of the known and usual
matrix formulations, as in all of them the involved matrices have an exponential size.
As an example, the A-resultant ResA for

A := A(n, d) = {0, e1, . . . , en, e1 + · · ·+ en, 2e1 + · · ·+ 2en, . . . , de1 + · · ·+ den}
can be computed with (expected) complexity (nd)O(1) since Vol(A) = nd.
It would be desirable to extend this result in order to compute general mixed resultants.

6.2 The computation of the ideal of a variety

We take this application from [4]. It is a well-known fact that unless for very particular situations
there is not yet a good complexity algorithm to compute generators for the ideal of a variety from a
set theoretic description of the variety, that is to compute generators of the radical of an ideal from
generators of the ideal. Most of the known algorithms rely on Gröbner basis computations, whose
worst-case complexity is doubly exponential in the number of variables or at least in the dimension
of the variety. The result here is the following:

Theorem 6.2 [4, Th. 17] Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree bounded by d
which define a smooth irreducible variety V ⊂ An of dimension r.
Then there is a bounded probability algorithm which computes (slp’s for) a set of (n − r)(r + 1)
generators for I(V ), of degree bounded by deg V and within complexity s(ndn)O(1).

To give a rough idea of the algorithm we recall the notion of characteristic polynomial of an equidi-
mensional, in our case moreover irreducible, variety V ⊂ An of dimension r and degree D:
Let as usual U0, . . . , Ur be r + 1 groups of n + 1 variables Ui := (Uij)0≤j≤n, and L(Ui, x) :=
Ui0 + Ui1x1 + · · ·+ Uinxn. Also let (t0, . . . , tr) be a group of r + 1 single variables. A characteristic
polynomial PV ∈ k[U0, . . . , Ur][t0, . . . , tr] of V is defined as any defining equation of the Zariski
closure of the image of the map

ϕV : A(r+1)(n+1) × V → A(r+1)(n+1) × Ar+1, (u0, . . . , ur; ξ) 7→ (u0, . . . , ur; L(u0, ξ), . . . , L(ur, ξ))

which is a hypersurface. This is a multihomogeneous polynomial of degree D in each group of
variables Ui ∪ {ti}. Its degree in the group of variables (t0, . . . , tr) is also bounded by D.
By a result of [13], the ideal I(V ) of the smooth irreducible variety V is generated by the set of
polynomials (of degree D) PV (u, L(u1, x), . . . , L(ur, x)) for u := (u0, . . . , ur) ∈ A(r+1)(n+1). More-
over as I(V ) is locally a complete intersection (generated thus by n− r polynomials), one can show
that I(V ) can globally be generated by (n− r)(r + 1) of these polynomials.
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The algorithmic aspects of this construction rely on the fact that the characteristic polynomial can
be derived from the Chow form by a simple composition of variables ([46, Lem. 2.13]), and on a
careful choice of the localizations in order to recover a global description with bounded probability.
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eds., Approximation and optimization 8, Peter Lange Verlag (1995) 247-329.

25



[21] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, resultants, and multidimensional
determinants, Birkhäuser (1994).
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143, Birkhäuser (1996) 193-253.

[46] T. Krick, L.M. Pardo, M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math.
J. 109, No. 3 (2001) 521-598.
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