ECUACIONES POLINOMIALES Y ALGORITMOS

Primer Cuatrimestre 2008- Práctica 7

Ideales cero-dimensionales, anillos cociente, variedades irreducibles

- (1) Sea $f(X) = \prod_{i=1}^{n} (X \alpha_i) \in K[X]$ con $\alpha_i \in K$ todos distintos. Se define $g_i := \prod_{j \neq i} (X \alpha_j)$, $1 \leq i \leq n$.
 - Probar que $\{\overline{g_1}, \dots, \overline{g_n}\}$ es una base de $K[X]/\langle f \rangle$.
 - Dado $g \in K[X]$, determinar las coordenadas λ_i de $\overline{g} \in K[X] / \langle f \rangle$ en la base $\{\overline{g_1}, \dots, \overline{g_n}\}$, y relacionar esto con la interpolación de Lagrange.
- (2) Sea $f(X) = a_n X^n + \cdots + a_0 \in K[X]$ con $a_n \neq 0$. Se puede escribir :

$$f(X) = (a_n X^{n-1} + \dots + a_1)X + a_0$$

= $((a_n X^{n-2} + \dots + a_2)X + a_1)X + a_0$
\dots = $((\dots ((a_n X + a_{n-1})X + a_{n-2})X + \dots)X + a_1)X + a_0$.

Es decir, si se define inductivamente $H_n = a_n, H_{n-1} = H_n X + a_{n-1}, H_{n-2} = H_{n-1} X + a_{n-2}, \dots, H_0 = H_1 X + a_0$, entonces, $H_0 = f$ y gr $(H_{n-i}) = i$ $(0 \le i \le n)$.

- Probar que $\{\overline{H_1}, \ldots, \overline{H_n}\}$ es una base de $K[X]/, \langle f \rangle$. (Los polinomios H_i se llaman los polinomios de Horner, y satisfacen que calcular H_{n-1}, \ldots, H_0 sucesivamente es la forma de evaluar un polinomio f general en 1 variable que usa la menor cantidad de productos).
- Sea $\mu_X: K[X]/\langle f \rangle \longrightarrow K[X]/\langle f \rangle$ la transformación lineal "multiplicar por X" en $K[X]/\langle f \rangle$, o sea $\mu_X(\overline{g}) = \overline{Xg}$.
 - Escribir la matriz de μ_X en la base $\{H_n, \ldots, H_1\}$.
 - Determinar el polinomio característico de la tranformación lineal μ_X .
- (3) Probar que $\mathbb{R}[X]/\langle X^2 \rangle \longrightarrow \mathbb{R}^2$; $\overline{f} \mapsto (f(0), f'(0))$ es un isomorfismo de \mathbb{R} -espacios vectoriales.
- (4) Probar que:
 - $\mathbb{R}[X]/\langle X^2+1\rangle$ y \mathbb{C} son anillos (luego cuerpos) isomorfos.
 - $K[X,Y]/\langle X \rangle$ y K[Y] son anillos isomorfos.
 - $K[\mathbf{X}]/\langle X_1,\ldots,X_n\rangle$ y K son anillos (luego cuerpos) isomorfos.
- (5) Sea $I = \langle XY + Z XZ, X^2 Z, 2X^3 X^2YZ 1 \rangle \subset \mathbb{Q}[X, Y, Z]$. Determinar si I es cerodimensional y en caso afirmativo calcular $\mathbf{V}_{\mathbb{C}}(I)$.
- (6) Sea $I = \langle Y + X^2 1, XY 2Y^2 + 2Y \rangle \subset \mathbb{R}[X, Y]$.
 - Determinar una base del \mathbb{R} -espacio vectorial $\mathbb{R}[X,Y]/I$.
 - Determinar un isomorfismo entre $\mathbb{R}[X,Y]/I$ y \mathbb{R}^n para algún $n \in \mathbb{N}$.
 - Escribir la tabla de multiplicación de los elementos de la base hallada (que determina la multiplicación del anillo $\mathbb{R}[X,Y]/I$) y decidir si $\mathbb{R}[X,Y]/I$ es un cuerpo.
- (7) Sea $I = \langle X^2 + Y^5, X^3 + Y^4 \rangle \subset \mathbb{C}[X, Y]$. Decidir si los siguientes pares de polinomios determinan la misma clase en $\mathbb{C}[X, Y] / I$: XY y 1, $XY^5 e Y^4$, $Y^4 y X^4 Y$, $y 5X^2 + 7Y^2 y 5Y^2 + 7X^2$.

- (8) Sea $I = \langle X^4Y Z^6, X^2 Y^3Z, X^3Z^2 Y^3 \rangle \subset K[X, Y, Z]$. Determinar una base del K-espacio vectorial K[X, Y, Z] / I.
- (9) Sea $I = \langle XY^4 Y^4 + 3X^3 3X^2, X^2Y 2X^2, 2XY^4 2Y^4 X^3 + X^2 \rangle \subset \mathbb{C}[X, Y]$. Calcular \sqrt{I} .
- (10) Sea $I \subset K[X_1, \dots, X_n]$ un ideal cero-dimensional. Probar que

$$\#\mathbf{V}_K(I) \le \dim_K K[X_1,\ldots,X_n]/\sqrt{I}$$

pero que no tiene por qué darse la igualdad si K no es algebraicamente cerrado.

- (11) Sea $I \subset \mathbb{C}[X_1, \dots, X_n]$ un ideal cero-dimensional con $\mathbf{V}_{\mathbb{C}}(I) = \{\alpha^{(1)}, \dots, \alpha^{(N)}\}.$
 - \bullet Probar que el epimorfismo Φ visto en clase de $\mathbb{C}\text{-espacios}$ vectoriales

$$\Phi : \mathbb{C}[X_1, \dots, X_n]/I \to \mathbb{C}^N$$

$$\overline{f} \mapsto (f(\alpha^{(1)}), \dots, f(\alpha^{(N)})$$

es un morfismo de anillos (considerando en \mathbb{C}^n la estructura natural de anillo dada por el producto coordenada a coordenada $(a_1, \ldots, a_N) \cdot (b_1, \ldots, b_N) := (a_1b_1, \ldots, a_Nb_N)$

- Probar que \overline{f} tiene un inverso multiplicativo en $\mathbb{C}[X_1,\ldots,X_n]/I$ si y solo si para $1 \leq i \leq N$, se tiene $f(\alpha^{(i)}) \neq 0$.
- (12) Sea $V \subset K^n$ una variedad no vacía. Una descomposición

$$V = V_1 \cup \cdots \cup V_r$$

donde cada V_i es irreducible se llama una descomposición minimal si $V_i \not\subset V_j$ para $i \neq j$. Probar que toda variedad $V \neq \emptyset$ admite una descomposición minimal y que ésta es única salvo orden.

- (13) Sean $V \subset W \subset K^n$ variedades. Probar que toda componente irreducible de V está contenida en alguna componente irreducible de W.
- (14) Sea K un cuerpo infinito y sea $V \subset K^n$ una variedad tal que existen polinomios en $f_1, f_2, f_3 \in K[T]$ que satisfacen

$$V = \{(f_1(t), f_2(t), f_3(t)), t \in k\}.$$

(Este es un ejemplo de una curva definida paramétricamente.)

- Observar que si $F: K \to K^3$ está definida como $F(t) = (f_1(t), f_2(t), f_3(t))$, entonces V = F(K), y probar que $\mathbf{I}_K(V) = \{g \in K[X, Y, Z] : g \circ F = 0\}$ donde $g \circ F$ es el polinomio que consiste en reemplazar en g las variables X, Y, Z por los polinomios $f_1(T), f_2(T), f_3(T)$ respectivamente.
- Probar que $\mathbf{I}_K(V)$ es un ideal primo.

Concluir que entonces V es irreducible.

- (15) Sea $I = \langle XZ Y^2, X^3 YZ \rangle \subset \mathbb{C}[X, Y, Z]$.
 - Aplicar el teorema de extensión para calcular $V := \mathbf{V}_{\mathbb{C}}(I)$ (con Z > Y > X).
 - Probar que V es la unión de dos componentes irreducibles: $V_1 = \mathbf{V}_{\mathbb{C}}(X,Y)$ y $V_2 = \mathbf{V}_{\mathbb{C}}(XZ Y^2, X^3 YZ, X^2Y Z^2)$ (Sug: para probar que V_2 es irreducible, probar que V_2 es una curva parametrizable como en el ejercicio anterior.)