ECUACIONES POLINOMIALES Y ALGORITMOS

Práctica 10 * 1er. Cuatrimestre 2002

Variedades Proyectivas

- 1.- Sea IK un cuerpo infinito. Probar que un polinomio $f \in \mathbb{I}[X_1, ..., X_n]$ es homogeneo de grado d si y solo si $f(tX_1, ..., tX_n) = t^d f(X_1, ..., X_n)$ para todo $t \in \mathbb{I}[X_n]$.
- 2.— Sean $f,g \in \mathbb{C}[X,Y,Z]$ polinomios homogeneos de grado d y e respectivamente, tales que $f(0,0,1) \neq 0$ y $g(0,0,1) \neq 0$. Usando el ejercicio anterior, probar que $\mathrm{Res}_Z(f,g) \in \mathbb{C}[X,Y]$ es homogeneo de grado d e si no es nulo.
- **3.** Este ejercicio prueba que si $I \subset \mathbb{K}[X_0, \dots, X_n]$ es un ideal homogeneo, entonces toda base de Gröbner reducida de I (respecto de cualquier orden) está formada por polinomios homogeneos.
 - (i) Si usamos el algoritmo de división de Hironaka para dividir un polinomio homogeneo f por polinomios homogeneos f_1, \ldots, f_s , probar que los cocientes y el resto son homogeneos tambien. ¿Cuál es el grado del resto?
 - (ii) Si f y g son homogeneos, probar que S(f,g) también lo es.
 - (iii) Concluir.
- **4.** Probar que si I_1, \ldots, I_s son ideales homogeneos, entonces $I_1 + \cdots + I_s$, $I_1 \cap \cdots \cap I_s$ e $I_1 \cdots I_s$ son ideales homogeneos.
- 5.— Variedades proyectivas irreducibles: Una variedad proyectica $V \subset \mathbb{P}^n(\mathbb{K})$ es irreducible si no es unión de dos variedades proyectivas estrictamente mas chicas.
 - (i) Probar que toda variedad proyectiva es unión finita de variedades proyectivas irreducibles.
 - (ii) Probar que un ideal homogeneo $I \subset \mathbb{K}[X_0, \dots, X_n]$ es un ideal primo si y solo si cada vez que el producto de dos polinomios homogeneos f y g está en I, entonces f o g está en I.
 - (iii) Sea I un ideal homogeneo. Probar que si el ideal I es primo, entonces la variedad proyectiva $V(I) \subset \mathbb{P}^n(\mathbb{K})$ es irreducible, y que si I es radical, vale la recíproca.
 - (iv) Probar que si \mathbb{K} es algebraicamente cerrado, hay una correspondencia biyectiva entre ideales primos homogeneos de $\mathbb{K}[X_0,\ldots,X_n]$ estrictamente contenidos en $< X_0,\ldots,X_n>$ y variedades proyectivas irreducibles no vacías de $\mathbb{P}^n(\mathbb{K})$.
- **6.** Probar que un ideal primo homogeneo es radical.
- 7.- Sea $f \in \mathbb{K}[X_1, \dots, X_n]$ y sea > un orden graduado (o diagonal) en $\mathbb{K}[X_1, \dots, X_n]$.
 - (i) Probar que > induce el siguiente orden monomial >_h en $\mathbb{K}[X_0,\ldots,X_n]$:

$$X_0^d X^\alpha >_h X_0^e X^\beta \iff X^\alpha > X^\beta \quad \text{o} \quad X^\alpha = X^\beta \text{ y } d > e$$

(donde $X := (X_1, \dots, X_n) \text{ y } \alpha, \beta \in \mathbb{N}_0^n$).

- (ii) ¿Es este orden graduado?
- (iii) Probar que si $f \in \mathbb{K}[X_1, \dots, X_n], M_{>_h}(f^h) = M_{>}(f).$
- 8.— Probar que si $I \subset \mathbb{K}[X_1, \ldots, X_n]$ es un ideal, > es un orden monomial y $G = \{g_1, \ldots, g_t\}$ es una base de Gröbner de I con respecto a >, entonces $G^h := \{g_1^h, \ldots, g_t^h\}$ es una base de Gröbner de $I^h \subset \mathbb{K}[X_0, \ldots, X_n]$ con respecto al orden $>_h$.
- 9.— Dar un algoritmo para calcular generadores para la clausura proyectiva de una variedad afín en el caso en que IK es algebraicamente cerrado, y mostrar con un contraejemplo por qué ese algoritmo falla en el caso en que IK no es algebraicamente cerrado.

- 10.— Probar que $W \subset \mathbb{A}^n(\mathbb{K})$ es irreducible si y solo si su clausura proyectiva $\overline{W} \subset \mathbb{P}^n(\mathbb{K})$ lo es.
- 11.— Probar que si $W \subset \mathbf{A}^n(\mathbb{K})$ es una variedad afín, ninguna componente irreducible de \overline{W} está incluida en el hiperplano al infinito $V(X_0) \subset \mathbb{P}^n(\mathbb{K})$.