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Abstract. We present a solution for the classical univariate rational
interpolation problem by means of (univariate) subresultants. In the
case of Cauchy interpolation (interpolation without multiplicities), we
recover explicit formulas for the solution in terms of symmetric functions
of the input data, hence generalizing the well-known formulas for La-
grange interpolation. In the case of the osculatory rational interpolation
(interpolation with multiplicities), we get determinantal expressions in
terms of the input data.

1. Cauchy and osculatory interpolation

The Cauchy interpolation problem or rational interpolation problem con-
sidered already in [Cau1841, Ros1845, Pred1953] is the following:

Let K be a field, and a, b ∈ N0. Set ` = a + b. Given a
set {x0, . . . , x`} of ` + 1 points in K, and y0, . . . , y` ∈ K,
determine –if possible– polynomials A, B ∈ K[x] such that
deg(A) ≤ a, deg(B) ≤ b and

(1)
A

B
(xi) = yi, 0 ≤ i ≤ `.

This might be considered as a generalization of the classical Lagrange
interpolation problem for polynomials, where b = 0 and a = `. In contrast
with that case, there is not always a solution to this problem, since for
instance by setting y0 = · · · = ya = 0, the numerator A is forced to be
identically zero, and therefore the remaining ya+k, 1 ≤ k ≤ ` − a, have to
be zero as well.

The obvious generalization of the Cauchy interpolation problem receives
the name osculatory rational interpolation problem or rational Hermite in-
terpolation problem:

Let K be a field, and a, b ∈ N0. Set ` = a + b. Given a set
{x0, . . . , xk} of k + 1 points in K, a0, . . . , ak ∈ N such that
a0+ · · ·+ak = `+1, and yi,j ∈ K, 0 ≤ i ≤ k , 0 ≤ j < ai, not
all of them equal to zero, determine –if possible– polynomials
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A, B ∈ K[x] such that deg(A) ≤ a, deg(B) ≤ b and

(2)

(
A

B

)(j)

(xi) = j! yi,j , 0 ≤ i ≤ k, 0 ≤ j < ai.

This problem has also been extensively studied from both an algorithmic
and theoretical point of view, see for instance [Sal1962, Kah1969, Wuy1975,
TF2000] and the references therein. In all these previous works, the solution
of the problem comes in some kind of recursive continuous fraction, and
it is not actually explicit. A unified framework, called rational function
reconstruction, is presented in the book [vzGG2003] for both the Cauchy
interpolation and the osculatory rational interpolation problems. It uses
remainder sequences in the Extended Euclidean Algorithm.

Yet an explicit general formula in terms of the input data is not found
in the literature. In the classical (Cauchy) case, an explicit formula can be
derived from the results on symmetric operators in a suitable ring of poly-
nomials presented in [Las2003], as shown in [Las]. In this paper, we get
the explicit formulas for the Cauchy interpolants by expressing the subre-
sultants in terms of the Sylvester sums introduced by Sylvester in [Syl1853].
Furthermore, we give determinantal expressions for the solution of the os-
culatory rational interpolation problem in terms of the input data. These
latter expressions are given as quotients of determinants of matrices. Note
that there are also explicit formulas for the Hermite interpolants in terms of
the input data, see for instance [DKS2012] for a presentation of them. But
yet we do not have a closed formula for subresultants in roots in the multiple
case, so a generalization of Theorem 1.1 is yet not a forward application of
Sylvester’s multiple sums, and some more work on the subject must be done
in order to shed light to the general problem.

We first present the result for the Cauchy interpolation problem. For
U, V ⊂ K, we set R(U, V ) :=

∏
u∈U,v∈V (u− v).

Theorem 1.1. Given (a, b), X := {x0, . . . , x`} and y0, . . . , y` as above. Let
d be maximal such that 0 ≤ a ≤ d and

A :=
∑

X′⊂X,|X′|=d

R(x,X ′)
( ∏
xj /∈X′

yj
)
/R(X \X ′, X ′) ∈ K[x]

is not identically zero. Then a solution for the Cauchy interpolation problem
(1) exists if and only if for

B :=
∑

X′′⊂X,|X′′|=`−d

R(X ′′, x)
( ∏
xj∈X′′

yj
)
/R(X ′′, X \X ′′) ∈ K[x],

one has B(xi) 6= 0 for all 0 ≤ i ≤ `. In that case the (essentially unique)
solution is given by A/B.

In particular, when a = `, Theorem 1.1 will specialize to the well-known
Lagrange interpolation polynomial, associated to the data {(xi, yi)}0≤i≤`,
which is equal to∑

0≤i≤`
yi

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

=
∑

0≤i≤`
yi

R(x,X \ {xi})
R(xi, X \ {xi})

.
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Before stating our main result for the osculatory rational interpolation
problem, we need to set a notation:

Notation 1.2. Set a, b ∈ N such that a + b = `, a0, . . . , ak ∈ N such that
a0 + · · ·+ ak = ` + 1, as in (2). We define

• X :=
(
(x0, a0); . . . ; (xk, ak)

)
an array of pairs in K × N and Y :=(

yi,j ; 0 ≤ i ≤ k, 0 ≤ j < aj
)
. We call these the input data for the

osculatory rational interpolation problem.
• Set u ∈ N. The generalized Vandermonde or confluent matrix (c.f.

[Kal1984]) of size u + 1 associated to X is the (non-necessarily

square) matrix Vu+1(X) ∈ K(u+1)×(`+1) defined by

Vu+1(X) :=

`+1

Vu+1(x0, a0) . . . Vu+1(xk, ak) u+1 ,

where for any t, Vu+1(xi, t + 1) ∈ K(u+1)×(t+1) is defined by

Vu+1(xi, t + 1) :=

t+1

1 0 0 . . . 0
xi 1 0 . . . 0
x2
i 2xi 1 . . . 0 u+1

...
...

...
...

xu
i uxu−1

i

(
u
2

)
xu−2
i . . .

(
u
t

)
xu−t
i

• We define the matrix Uu+1(X,Y ) ∈ K(u+1)×(`+1) associated to X
and Y as:

Uu+1(X,Y ) :=

`+1

Uu+1(x0; y0,0, . . . , y0,a0−1) . . . Uu+1(xk; yk,0, . . . , yk,ak−1) u+1 ,

where for any t, Uu+1(xi, yi,0, . . . , yi,t) ∈ K(u+1)×(t+1) is defined by

t+1

yi,0 yi,1 . . . yi,t
xiyi,0 xiyi,1 + yi,0 . . . xiyi,t + yi,t−1

...
...

... u+1

xu
i yi,0 xu

i yi,1 + uxu−2
i yi,0 . . .

∑t
j=0

(
u
j

)
xu−j
i yi,t−j

,

with the convention that when u < j,
(
u
j

)
xu−ji = 0.

The next result expresses the solution of the osculatory rational interpo-
lation problem in terms of the input data as follows:
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Theorem 1.3. Under the notation above, let d be maximal such that 0 ≤
d ≤ a and

A := −det

`+1 1

1

Vd+1(X)
... d+1

xd

U`−d+1(X,Y ) 0 `−d+1

∈ K[x]

is not identically zero. Then a solution for the osculatory rational interpo-
lation problem (2) exists if and only if for

B := det

`+1 1

Vd+1(X) 0 d+1

1

U`−d+1(X,Y )
... `−d+1

x`−d

∈ K[x],

one has B(xi) 6= 0 for all 0 ≤ i ≤ k. In that case the (essentially unique)
solution is given by A/B.

2. Proof of the results

Let us start by showing that a solution for the rational interpolation
problem is essentially unique.

Proposition 2.1. If the osculatory rational interpolation problem (2) has
a solution, then there is a unique solution A/B with gcd(A,B) = 1 and A
monic.

Proof. If there is a solution, then, cleaning common factors and dividing by
the leading coefficient of A, there is a solution satisfying the same degree
bounds with gcd(A,B) = 1 and A monic. Assume A1/B1 and A2/B2 are

both solutions of the same type. Then, (A1/B1)
(j)(xi) = (A2/B2)

(j)(xi)
implies

(A1B2 −A2B1/B1B2)
(j)(xi) = 0 for 0 ≤ i ≤ k, 0 ≤ j < ai,

which inductively implies that (A1B2−A2B1)
(j)(xi) = 0 for the `+ 1 condi-

tions. But A1B2 −A2B1 is a polynomial of degree at most `, and therefore
A1B2 = A2B1. Therefore, A1 = cA2 and B1 = cB2 with c ∈ K \ {0}, as
both A1 and A2 are monic, then c = 1 and the claim follows. �

To prove our results, we first connect the solutions of the osculatory ra-
tional interpolation problem (and the Cauchy interpolation problem as a
special case) to subresultants of the following two polynomials:

• f :=
∏k

j=0(x−xj)
aj , which we write f =

∑`+1
i=0 fix

i, where f`+1 = 1.
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• g ∈ K[x] the unique polynomial of degree less than or equal to `
such that

g(j)(xi) = j! yi,j , 0 ≤ i ≤ k, 0 ≤ j < ai,

which we expand as g =
∑`

i=0 gix
i, where gi = 0 for deg(g) < i ≤ `.

This polynomial is the so-called Hermite interpolation polynomial
associated to the data

{(x0, a0), . . . , (xk, ak)}, {yi,j}0≤i≤k, 0≤j<ai .

By assumption g 6= 0 since we assumed that some of the yi,j is
non-zero.

For d ≤ `, consider the d-th subresultant polynomial Sresd(f, g) of f and g,
defined as

Sresd(f, g) := det

2`+1−2d

f`+1 · · · · · · fd+1−(`−d−1) x`−d−1f(x)
. . .

...
... `−d

f`+1 · · · fd+1 x0f(x)
g` · · · · · · gd+1−(`−d) x`−dg(x)

. . .
...

... `+1−d

g` · · · gd+1 x0g(x)

.

Note that the previous definition makes sense even if deg(g) = m < `,
and agrees for d ≤ m with the usual definition of subresultant of f and g
given by the matrix of the right size ` + 1 + m − 2d, since f is monic. For
m < d < ` we have, according to the definition above, that Sresd(f, g) = 0,
and for d = `, Sres`(f, g) = g = Sresm(f, g).

We have the universal subresultant Bézout identity

(3) Sresd(f, g) = Fd f + Gd g,

where

Fd := det

2`+1−2d

f`+1 · · · · · · fd+1−(`−d−1) x`−d−1

. . .
...

... `−d

f`+1 · · · fd+1 x0

g` · · · · · · gd+1−(`−d) 0
. . .

...
... `+1−d

g` · · · gd+1 0

,

and

Gd := det

2`+1−2d

f`+1 · · · · · · fd+1−(`−d−1) 0
. . .

...
... `−d

f`+1 · · · fd+1 0
g` · · · · · · gd+1−(`−d) x`−d

. . .
...

... `+1−d

g` · · · gd+1 x0

.
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Observe that deg(Gd) ≤ `− d when Gd 6= 0.

The result below, strongly related to [vzGG2003, Theorem 5.16], expresses
the existence and uniqueness of the solution of the osculatory rational inter-
polation problem in terms of the subresultant sequence of f and g.

Proposition 2.2. Let (a, b) be given, and set d ≤ a to be maximal such
that Sresd(f, g) 6= 0. Then the osculatory rational interpolation problem (2)
has a solution if and only if Gd(xi) 6= 0 for all 0 ≤ i ≤ k. In this case, the
(essentially unique) solution is given by

A

B
=

Sresd(f, g)

Gd
,

and moreover gcd
(
Sresd(f, g), Gd

)
= 1.

Proof. We use [vzGG2003, Th. 5.16]: Problem (2) has a solution if and only
if the minimal row rj = sjf + tjg in the Extended Euclidean Algorithm such
that dj := deg(rj) ≤ a satisfies that gcd(rj , tj) = 1, in which case rj/tj is
the canonical solution. Note that for di := deg(ri), we have dj ≤ a < dj−1
by the definition of rj .
Then, by the Fundamental Theorem of PRS (c.f. [Coll1967, BT1971] or
[GCL1996, Th.7.4]), Sresdj (f, g) and Sresdj−1−1(f, g) are (non-zero) constant
multiples of rj , and Sresd′(f, g) = 0 for dj < d′ < dj−1 − 1. In any case, if
d ≤ a is the largest such that Resd(f, g) 6= 0, one has Resd(f, g) = c rj for
some c 6= 0 in K.
But Resd(f, g) = Fdf + Gdg with deg(Resd(f, g)) + deg(Gd) < deg(f) im-
plies by [vzGG2003, Lemma 5.15] that Fd = c sj and Gd = c tj too. More-
over, by [vzGG2003, Lemma 3.15 (v)], gcd(Fd, Gd) = 1, which implies that
gcd

(
Sresd(f, g), Gd

)
= 1 ⇔ Gd(xi) 6= 0 for all 0 ≤ i ≤ k, by the def-

inition of f . Therefore, there is a solution to the problem if and only if
Gd(xi) 6= 0, for all 0 ≤ i ≤ k, and the essentially unique solution is given by
Sresd(f, g)/Gd. �

Proposition 2.2 has the advantage that it can be applied to produce ex-
plicit formulae for the rational interpolation problem in terms of the input
data. We first prove our result on the Cauchy interpolation problem, when
f has simple roots.

Proof of Theorem 1.1. Set X = {x0, . . . , x`} for the set of roots of

f =
∏`

i=0(x − xi) and Z for the set of m roots of g, the unique polyno-
mial of degree bounded by ` which satisfies g(xi) = yi for 0 ≤ i ≤ `.
Using Proposition 2.2 above, it is sufficient to prove that Sresd(f, g) = A
and Gd = B. We use Sylvester’s single-sum formula in roots for Sresd (see for
instance the original paper of Sylvester [Syl1853, Art. 21] or the many other
references on the topic), and also for Gd ([Syl1853, Art. 29], or [KS2012],
Remark after Lemma 6):
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Sresd(f, g) =
∑
|X′|=d

R(x,X ′)
R(X \X ′, Z)

R(X \X ′, X ′)
,

=
∑
|X′|=d

R(x,X ′)

∏
xi /∈X′ g(xi)

R(X \X ′, X ′)
,

Gd = (−1)`−d
∑

|X′′|=`−d

R(x,X ′′)
R(X ′′, Z)

R(X ′′, X \X ′′)

=
∑

|X′′|=`−d

R(X ′′, x)
R(X ′′, Z)

R(X ′′, X \X ′′)

=
∑

|X′′|=`−d

R(X ′′, x)

∏
xi∈X′′ g(xi)

R(X ′′, X \X ′′)
.

where both X ′, X ′′ ⊂ X. We get that A = Sresd(f, g) and B = Gd if we
substitute g(xi) = yi for all i above. �

Observe that in the previous theorem, if a = ` then Sres`(f, g) = g 6=
0 and the solution is given by the Lagrange interpolation polynomial, as
mentioned in the introduction.

To prove Theorem 1.3 for the osculatory rational interpolation problem
we need the following notation, that we already used in [DKS2012].

Notation 2.3. Recall X =
(
(x0, a0); . . . ; (xk, ak)

)
. Given a polynomial h(z)

and u ∈ N, the generalized Wronskian of size u + 1 associated to X is the
(non-necessarily square) matrix Wh,u+1(X) ∈ K(u+1)×(`+1) defined by

Wh,u+1(X) :=

`+1

Wh,u+1(x0, a0) . . . Wh,u+1(xk, ak) u+1 ,

where for any t, Wh,u+1(xi, t + 1) ∈ K(u+1)×(t+1) is defined by

Wh,u+1(xi, t + 1) :=

t+1

h(xi) h′(xi) . . . h(t)(xi)
t!

(zh)(xi) (zh)′(xi) . . . (zh)(t)(xi)
t! u+1

...
...

...

(zuh)(xi) (zuh)′(xi) . . . (zuh)(t)(xi)
t!

,

with the convention that when k < j,
(
k
j

)
xk−ji = 0.

First we prove the following lemma:

Lemma 2.4. Using the notation above, if there is a solution for the oscu-
latory rational interpolation problem, then the essentially unique solution is
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given by

A

B
= −

det

`+1 1

1

Vd+1(X)
... d+1

xd

Wg,`−d+1(X) 0 `−d+1

det

`+1 1

Vd+1(X) 0 d+1

1

Wg,`−d+1(X)
... `−d+1

x`−d

where d ≤ a is maximum such that the numerator does not vanish.

Proof. We apply Proposition 2.2 for the maximum d ≤ a such that Sresd(f, g) 6=
0. In [DKS2012, Theorem 2.5] we proved that

Sresd(f, g) = (−1)`+1−d det
(
V`+1(X)

)−1
det

`+1 1

1

Vd+1(X)
... d+1

xd

Wg,`−d+1(X) 0 `−d+1

.

To prove a similar statement about Gd consider the following matrices:

Mf :=

2`−d+2

f0 . . . f`+1 0
. . .

. . .
... `−d

f0 . . . f`+1 0

, Mg :=

2`−d+2

g0 . . . g` x0

. . .
. . .

... `+1−d

g0 . . . g` x`−d

and

Ud :=

2`−d+2

Id+1 d+1

Mf `−d

Mg `+1−d
,

where Id+1 is the (d + 1)× (2`− d + 2) matrix with the identity matrix on
the left and zero otherwise. Then from the definition of Gd we have that

Gd = det(Ud).
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Also, similarly as in [DKS2012, Theorem 2.5], we have

2`−d+2

d+1 Id+1

`−d Mf

`+1−d Mg

`+1 `−d+1

0 `+1

V2`−d+1(X)

0 Id`−d+1 `−d+1

=

`+1 `−d 1

Vd+1(X) ∗ 0 d+1

0 M ′f 0 `−d

1

Wg,`+1−d(X) ∗
... `+1−d

x`−d

,

where M ′f is a triangular matrix with f`+1 = 1 in its diagonal. This implies
that

Gd = (−1)`−d det
(
V`+1(X)

)−1
det

`+1 1

Vd+1(X) 0 d+1

1

Wg,`−d+1(X)
... `+1−d

x`−d

.

�

Now we can easily prove Theorem 1.3:

Proof of Theorem 1.3. We simply compute in the previous lemma the
entries of the matrix Wg,`−d+1(X), applying Leibniz rule and the fact that

g(t−j)(xi) = (t− j)! yi,j for 0 ≤ i ≤ k and 0 ≤ j < ai:

(zug)(t)(xi)

t!
=

t∑
j=0

(
u

j

)
xu−ji yi,t−j .

�

Acknowledgements: We are grateful to Alain Lascoux for having ex-
plained us part of the results in [Las2003].
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