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Abstract. For any given subgroup H of a finite group G, the Quillen poset

Ap(G) of nontrivial elementary abelian p-subgroups, is obtained from Ap(H)
by attaching elements via their centralizers in H. We exploit this idea to

study Quillen’s conjecture, which asserts that if Ap(G) is contractible then

G has a nontrivial normal p-subgroup. We prove that the original conjecture
is equivalent to the Z-acyclic version of the conjecture (obtained by replacing

contractible by Z-acyclic). We also work with the Q-acyclic (strong) version

of the conjecture, reducing its study to extensions of direct products of simple
groups of p-rank at least 2. This allows us to extend results of Aschbacher-

Smith and to establish the strong conjecture for groups of p-rank at most

4.

1. Introduction

Given a finite group G and a prime number p, let Ap(G) be the Quillen poset
of nontrivial elementary abelian p-subgroups of G. We can study the homotopical
properties of Ap(G) by means of its order complex. In [16], Quillen proved that
Ap(G) is contractible if G has a nontrivial normal p-subgroup. He also conjectured
the converse, giving rise to the well-known Quillen conjecture. That is, if Ap(G) is
contractible then G has a nontrivial normal p-subgroup. Equivalently, if G has no
nontrivial normal p-subgroup, then Ap(G) is not contractible. This conjecture has
been widely studied during the past decades and various cases have been proved,
but the full conjecture remains open in general.

In this article, we consider the following versions of the conjecture. Let Op(G)

be the largest normal p-subgroup of G, and H̃∗(X,R) the reduced homology of a
finite poset X (which is the homology of its order complex K(X)), with coefficients
in the ring R.

(QC) If Op(G) = 1 then Ap(G) is not contractible.

(R-QC) If Op(G) = 1 then H̃∗(Ap(G), R) 6= 0.

We will usually take R = Z or Q. Hence we have:
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(Z-QC) If Op(G) = 1 then H̃∗(Ap(G),Z) 6= 0.

(Q-QC) If Op(G) = 1 then H̃∗(Ap(G),Q) 6= 0.

Note that (Q-QC) implies (Z-QC), which implies the original conjecture (QC).
The most important advances on the conjecture were achieved on the stronger

version (Q-QC). Quillen established (Q-QC) for solvable groups, groups of p-rank
at most 2 and some families of groups of Lie type [16]. Later, various authors
dealt with the p-solvable case (see [1, 7] and [20, Ch.8]) and in [4] Aschbacher and
Kleidman showed (Q-QC) for almost-simple groups. In [5], Aschbacher and Smith
proved that a group G satisfies (Q-QC) if p > 5 and whenever G has a unitary
component Un(q) with q ≡ −1 (mod p) and q odd, then (QD)p holds for all p-

extensions of Um(qp
e

) with m ≤ n and e ∈ Z (see Definition 3.2). In a joint work
with Sadofschi Costa and Viruel [14], we proved new cases of the conjecture, not
included in the previously mentioned results. In [14], we worked with the integer
version of the conjecture (Z-QC) and proved that it holds if K(Sp(G)) is homotopy
equivalent to a 2-dimensional and G-invariant subcomplex. Recall that Sp(G) is
the Brown poset of nontrivial p-subgroups of G and that Ap(G) ↪→ Sp(G) is a
homotopy equivalence (see [16, Proposition 2.1]). In particular, the integer version
holds for groups of p-rank at most 3. Recall that the p-rank of G is the dimension
of K(Ap(G)) plus one.

Further applications and results concerning the homotopy type of the p-subgroup
complexes can be found in [6, 9, 15, 20]. In [10, (1.4)], the authors considered a
version of the conjecture even stronger than the rational one (Q-QC): if Op(G) = 1
then the Euler characteristic of Ap(G) is not 1. We will not work with this version.

In this article, we approach the study of Quillen’s conjecture via the examination
of the centralizers of the elementary abelian p-subgroups on suitable subgroups.
Roughly, if H is a nontrivial subgroup of G, Ap(G) can be obtained first by passing
from Ap(H) to the homotopy equivalent subposet N (H), consisting of members
E ∈ Ap(G) with E ∩ H 6= 1, and then from N (H) to Ap(G) by attaching the
remaining subgroups along their links in N (H). If E ∈ Ap(G) and E ∩H = 1, its
link in N (H) is Ap(CH(E)), where CH(E) is the centralizer of E in H. We can
understand the homotopy type of Ap(G) from that of Ap(H) and the structure of
these centralizers. In some cases, we extract points E ∈ Ap(G) with contractible
link in N (H), and this is guaranteed precisely when Op(CH(E)) 6= 1. In this
way, we can work with smaller subposets and apply inductive arguments. This
approach has its roots in the previous work with E.G. Minian on the fundamental
group of these complexes [12]. The poset N (H) was also considered by Segev and
Webb [18, 19]. In this article we put more emphasis on the attachment process, the
behaviour of these centralizers as links, and the extraction of points. This viewpoint
seems to have been barely exploited, and we hope that the techniques and results
of this article can shed more light on future methods for studying the topology of
the p-subgroup posets and consequences, beyond Quillen’s conjecture.

We will study (Z-QC) and (Q-QC) by using the idea described above and working
under the following inductive assumption. Let R = Z or Q.

(H1)R Proper subgroups and proper central quotients of G satisfy
(R-QC).

By a proper central quotient of G we mean a quotient of G by a nontrivial central
subgroup Z ≤ Z(G) (here Z(G) denotes the center of G). The hypothesis of the
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central quotients is motivated by the fact that if Z ≤ Z(G) is a p′-group, then
Ap(G) is naturally isomorphic to Ap(G/Z) (see Proposition 2.4).

The inductive assumption (H1)R is valid in the context of a counterexample of
minimal order to the conjecture. That is, if H satisfies (R-QC) for all |H| < |G|,
then (H1)R holds for G. Therefore, we may replace the content of (H1)R by this
stronger inductive requirement.

The following theorem summarizes some of the main results of this article. It
shows (R-QC) under (H1)R and some extra hypothesis on the group. We follow
the notation of [5, 8] for the simple groups.

Theorem 1. Let G be a finite group and p a prime number. Let R = Z or Q.
Suppose that (H1)R holds for G and that one of the following holds:

(1) Op′(G) 6= 1;
(2) Ap(G) is not simply connected;
(3) p = 3 and G has a component L such that L/Z(L) ∼= U3(23);
(4) G has a component L such that L/Z(L) has p-rank 1.

Then G satisfies (R-QC).
In particular, a counterexample of minimal order G to (R-QC) fails (1)-(4), and

hence it is an extension of a direct product of non-abelian simple groups of p-rank
at least 2.

Our theorem has no restriction on the prime p (except for item (3)) and it is
stated for both versions of the conjecture (Z-QC) and (Q-QC). For example, item
(1) is a generalization to every prime p of the analogous result [5, Proposition 1.6]
stated for p > 5, and in our proof we use the classification of simple groups to a
much lesser extent. Item (2) of the above theorem is based on our previous work
on the fundamental group [11]. The more technical hypotheses of items (3) and (4)
are focused on extending [5, Main Theorem] to every odd prime p.

We describe now some consequences of Theorem 1.
First, it allows us to conclude that the original conjecture (QC) and the integer

homology version (Z-QC) are equivalent for every prime p.

Theorem 2. The original Quillen’s conjecture and the integer Quillen’s conjecture
(Z-QC) are equivalent. That is, (QC) holds for all finite groups if and only if
(Z-QC) holds for all finite groups.

This result strongly depends on the integer version of items (1) and (2) of The-
orem 1. It does not follow from [5, Proposition 1.6], which is stated for rational
homology and p > 5.

On the other hand, items (3) and (4) of Theorem 1 allow us to handle the groups
containing a component isomorphic to L2(23) (p = 3), U3(23) (p = 3) or Sz(25)
(p = 5). Aschbacher and Smith excluded the groups containing these components
during their analysis of the conjecture for odd p, mainly because the centralizers
of their field automorphisms of order p have nontrivial normal p-subgroups (see
Section 5 for a more detailed discussion). Nevertheless, our theorem shows that we
can suppose that G does not contain these components if we are aiming to prove
Quillen’s conjecture. This allows us to extend the main result of Aschbacher-Smith
to p = 5.

Corollary 3. Theorem [5, Main Theorem] also holds for p = 5.
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The extension of [5, Main Theorem] to p = 3 is not immediate since its proof
depends on [5, Theorem 5.3], which is stated for p ≥ 5. 1

Finally, we combine Theorem 1 with the classification of the simple groups of
low p-rank, the structure of their centralizers and the classification of groups with a
strongly p-embedded subgroup (i.e. with disconnected Quillen’s complex), to yield
the p-rank 4 case of the conjecture.

Theorem 4. If G has p-rank at most 4, then it satisfies (Q-QC).

Theorem 1 follows from Theorems 4.1, 5.1 and 6.1, and Corollary 4.4, and Re-
mark 2.1. The proof of Theorem 2 is given in Section 4, and the proof of Corollary 3
can be found below the statement of Theorem 5.1. Finally, Theorem 4 is proved in
Section 7. We also include an Appendix containing basic properties of the almost-
simple groups with a strongly p-embedded subgroup.

Acknowledgements. I would like to thank Eĺıas Gabriel Minian for his valu-
able suggestions that helped me to improve the presentation of this article. I am
also very grateful to Stephen D. Smith for his careful reading of this article and all
of his generous and constructive comments which significantly improved the pre-
sentation. In particular, for many suggestions on the format of Section 3, Theorem
1 and the consequences of these methods.

2. Preliminary results

In this section we establish the main definitions and tools that we will use
throughout the paper. We refer to [3] for more details on finite group theory.

All the groups considered here are finite. By a simple group we will mean a
non-abelian simple group. We adopt the conventions of [8] for the names of the
simple groups and their automorphisms. We denote by Cn, Dn, Sn and An the
cyclic group of order n, the dihedral group of order n, the symmetric group on n
letters and the alternating group on n letters, respectively.

Let G be a finite group and p a prime number. Denote by Z(G) the center of G.
Let Op(G) be the largest normal p-subgroup of G and Op′(G) the largest normal
p′-subgroup of G. The Fitting subgroup F (G) of G is the largest normal nilpotent
subgroup of G, and it is the direct product of the subgroups Oq(G), for q prime
dividing the order of G. For a fixed prime p, let Ω1(G) := 〈x ∈ G : xp = 1〉. The
p-rank of G is

mp(G) := 1 + dimK(Ap(G)) = max{logp(|A|) : A ∈ Ap(G) ∪ {1}}.

If H,K ≤ G are subgroups of G, then NH(K) denotes the normalizer of K in H
and CH(K) the centralizer of K in H. Denote by [H,K] the subgroup generated
by the commutators between elements of H and K. If g ∈ G, write Hg = g−1Hg.

Recall that E(G), the layer of G, is the (central) product of the components of
G, and that the generalized Fitting subgroup F ∗(G) is the central product of E(G)
and F (G). We refer to [3, Chapter 11] for the main properties of these subgroups.

Let Out(H) = Aut(H)/Inn(H) denote the group of outer automorphisms of H.
If H is a group of Lie-type, Inn diag(H) denotes the subgroup of inner-diagonal
automorphisms of H, and Out diag(H) = Inn diag(H)/Inn(H).

1In a forthcoming work based on the results of this article, we also extend [5, Main Theorem]
to p = 3, and hence to every odd prime.
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Remark 2.1. If Op(G) = 1 = Op′(G), then F (G) ≤ Op(G)Op′(G) = 1 and
F ∗(G) = E(G) has trivial center. Therefore, F ∗(G) = L1 . . . Ln is the direct
product of the components {L1, . . . , Ln} of G, which are non-abelian simple groups
of order divisible by p. Since F ∗(G) is self-centralizing, F ∗(G) ≤ G ≤ Aut(F ∗(G)).
Moreover, Aut(F ∗(G)) can be easily described by using the fact that if L is a simple
group, then Aut(Ln) ∼= Aut(L) o Sn and that Aut(L×K) ∼= Aut(L)×Aut(K) if L
and K are non-isomorphic simple groups.

If X is a finite poset, we can study its homotopy properties by means of its
associated order complex K(X), whose simplices are the nonempty chains of X. If
x ∈ X and Y ⊆ X is a subposet, let Y≥x = {y ∈ Y : y ≥ x}. Define analogously
Y>x, Y≤x and Y<x. The link of x in Y is Y<x ∪ Y>x.

Recall that if f, g : X → Y are two order preserving maps between finite posets
X and Y such that f ≤ g (i.e. f(x) ≤ g(x) for all x ∈ X), then f and g are
homotopic when regarded as simplicial maps. Write X ' Y if K(X) ' K(Y ).
Note that this is not the usual convention that we employed in the previous articles
[11, 13].

We recall below Quillen’s fiber lemma for finite posets. If Y,X are sets, X − Y
denotes the complement of Y in X.

Proposition 2.2 ([16, Proposition 1.6]). Let f : X → Y be an order preserving
map between finite posets. If f−1(Y≤y) is contractible for all y ∈ Y (resp. f−1(Y≥y)
is contractible for all y ∈ Y ), then f is a homotopy equivalence. In particular, if
X ⊆ X0 and X>x is contractible for all x ∈ X0 −X (resp. X<x is contractible for
all x ∈ X0 −X) then X ↪→ X0 is a homotopy equivalence.

The Brown poset Sp(G) is the poset of nontrivial p-subgroups of G. The inclusion
Ap(G) ↪→ Sp(G) is a homotopy equivalence by [16, Proposition 2.1], and if Op(G) 6=
1 then Ap(G) is contractible (see [16, Proposition 2.4]).

Quillen related the direct product of groups with the join of their p-subgroup
posets. The join of two posets X ∗ Y is the poset whose underlying set is the
disjoint union of X and Y , keeping the given ordering within X and Y , and setting
x < y for each x ∈ X and y ∈ Y . Moreover, K(X ∗ Y ) equals the join of simplicial
complexes K(X) ∗K(Y ), and this is homeomorphic to the topological join of K(X)
and K(Y ) (see [16, Proposition 1.9]). If Y ⊆ X are finite posets and x ∈ X, then
note that the link of x in Y is the join Y<x ∗ Y>x.

Proposition 2.3 ([16, Proposition 2.6]). Ap(G1 ×G2) ' Ap(G1) ∗ Ap(G2).

The following two results show that, in some sense, it is enough to study the
homotopical properties of Ap(G) when Z(G) is the trivial group. Let R = Z or Q.

Proposition 2.4. Let Z ≤ Z(G). The following hold.

(1) If Z is a nontrivial p-group, then Ap(G) is contractible.
(2) If Z is a p′-group then the induced map Ap(G) → Ap(G/Z) is an isomor-

phism of posets. Moreover, Op(G/Z) ∼= Op(G).
(3) In particular, if G satisfies (H1)R and Z 6= 1 is a p′-group, then G satisfies

(R-QC), where R = Z or Q. Therefore, we may assume that Z(G) = 1
under (H1)R to study (R-QC).

Proof. Part (1) follows easily since Op(Z) ≤ Op(G). Part (2) follows directly from
the isomorphism theorems and Sylow’s theorems. For the “Moreover” part of (2),
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note that if H ≤ G then Op(HZ/Z) ∼= Op(HZ) since Z is a central p′-subgroup of
G. Finally, part (3) is a consequence of the definition of the (H1)R hypothesis and
part (2). �

Below we give an immediate consequence of the (H1)R hypothesis.

Lemma 2.5. If G satisfies (H1)R and either Z(G) 6= 1 or Ω1(G) < G, then G
satisfies (R-QC).

Therefore, under (H1)R, we may assume that Z(G) = 1 and Ω1(G) = G to study
(R-QC).

Proof. Suppose that Op(G) = 1. If Z(G) 6= 1 then Ap(G) = Ap(G/Z(G)) by
the above lemma. Since G/Z(G) is a proper central quotient of G, it satisfies
(R-QC) by (H1)R. Moreover, we also have that Op(G/Z(G)) = Op(G) = 1, so

H̃∗(Ap(G), R) = H̃∗(Ap(G/Z(G)), R) 6= 0.
If Ω1(G) < G, then Ω1(G) satisfies (R-QC) by (H1)R. Note that Op(Ω1(G)) =

1 since Ω1(G) is normal in G. Since Ap(G) = Ap(Ω1(G)), H̃∗(Ap(G), R) =

H̃∗(Ap(Ω1(G)), R) 6= 0. �

In the lemmas below, we recall some results that will play a fundamental role
in the proof of our main theorems. For a given subgroup H ≤ G, we “inflate” the
subposet Ap(H) and then we show that the remaining points of Ap(G) are attached
to this inflated subposet throughout their centralizers in H.

Definition 2.6. For H ≤ G, let

N (H) := {E ∈ Ap(G) : E ∩H 6= 1}.

We sometimes abbreviate NH = N (H).

We can also regard the poset N (H) as the “neighbourhood” of Ap(H), and
N (H) − Ap(H) as the “boundary” of this neighbourhood. We give below some
consequences of this definition, which were used for computing the examples given
in [14] (cf. [18, 19]).

Lemma 2.7. If H ≤ G then Ap(H) ↪→ N (H) is a strong deformation retract.

Proof. Let i : Ap(H) ↪→ N (H) be the inclusion and ϕ : N (H) → Ap(H) the
map defined by ϕ(E) = E ∩ H. Then i and ϕ are order preserving maps with
iϕ ≤ IdN (H) and ϕi = IdAp(H). �

Next, we show that the elements outside N (H) attach to it via their centralizers
in H.

Lemma 2.8. Let H ≤ G be a subgroup and let E ∈ Ap(G) be such that E∩H = 1.
Then N (H)>E is homotopy equivalent to Ap(CH(E)).

Proof. Let f : Ap(CH(E)) → N (H)>E and g : N (H)>E → Ap(CH(E)) be the
maps defined by f(A) = AE and g(A) = A ∩ H. Then fg(A) = (A ∩ H)E ≤ A
and gf(A) = (AE) ∩ H = A (by modular law). Hence fg ≤ IdN (H)>E

and gf =
IdAp(CH(E)). �

We can rebuild Ap(G) from N (H) by attaching points in the following way.
Take a linear extension of the complement Ap(G) − N (H) = {E1, . . . , Er} such
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that Ei ≤ Ej implies i ≤ j. For each 0 ≤ i ≤ r, consider the subposet Xi =
N (H) ∪ {E1, . . . , Ei}. This gives rise to a filtration

N (H) = X0 ⊆ X1 ⊆ . . . ⊆ Xr = Ap(G),

where Xi = Xi−1 ∪ {Ei} and the link of Ei in Xi−1 is

(Ap(Ei)− {Ei}) ∗ N (H)>Ei '

(
ki∨
l=1

Smp(Ei)−2

)
∗ Ap(CH(Ei)),

with ki = p(
mp(Ei)

2 ). Recall that if E is an elementary abelian p-group, Ap(E)−{E}
is homotopy equivalent to a wedge of p(

mp(E)
2 ) spheres of dimension mp(E)− 2 (cf.

[16, p.58]).
This provides a useful way to study the homotopy type of Ap(G) if we select

a convenient subgroup H ≤ G for which we understand the structure of these
centralizers. In particular, if they are contractible, the homotopy type of Ap(H)
does not change.

Lemma 2.9 (cf. [14, Lemma 4.3]). Let G be a finite group and let H ≤ G. In
addition, suppose that Op(CH(E)) 6= 1 for each E ∈ Ap(G) with E ∩H = 1. Then
Ap(G) ' Ap(H).

Proof. Let E ∈ Ap(G) −N (H). By Lemma 2.8 N (H)>E ' Ap(CH(E)), which is
contractible by hypothesis. Finally, by Proposition 2.2 and Lemma 2.7, Ap(G) '
N (H) ' Ap(H). �

For example, we will usually take H to be LCG(L), where L is a simple com-
ponent of G. Note that F ∗(G) ≤ H. If E ∈ Ap(NG(L)) and E ∩ H = 1 then
CH(E) = CL(E)CG(LE) and Ap(CH(E)) ' Ap(CL(E))∗Ap(CG(LE)). The group
CL(E) is the centralizer of an elementary abelian p-group acting on the simple group
L, which can be described by using the classification of the finite simple groups.
We may also apply inductive arguments on CG(LE).

3. The homology propagation lemma

The aim of this section is to propose a generalization of the Homology Propa-
gation Lemma [5, Lemma 0.27], stated in Lemma 3.14. Both lemmas allow us to
propagate non-zero (free) homology from proper subposets to the whole Quillen
poset. These tools will be very useful to establish Quillen’s conjecture when we
have an extra inductive assumption such as (H1)R.

Our Lemma 3.14 shares the spirit of [5, Lemma 0.27] but with two extra features:
it works for homology with coefficients in Z, and it can be applied to suitable proper
subposets X ⊂ Ap(G). This subposet X will be typically chosen to be homotopy
equivalent to Ap(G) but better behaved, in certain sense, than the Quillen poset.
In many cases, we will see that X satisfies the hypotheses of Lemma 3.14 while
Ap(G) does not.

Before proceeding with the proof of this lemma, we need some definitions and
generalizations of the results of [5]. From now on, we suppress the coefficient
notation on the homology and suppose that they are taken in the ring R = Z or Q.
The definitions given below do not depend on the coefficient ring.

Let X be a finite poset. Recall that a chain of X is a subset a ⊆ X whose
elements are pairwise comparable. We usually write a = (x0 < x1 < . . . < xn)
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to emphasize the order of its elements. Denote by max a and min a the maximum
and minimal element of a respectively, if a is nonempty. Let X ′ be the poset of
nonempty chains of X. Equivalently, X ′ is the face poset of K(X).

Denote by C̃∗(X) the augmented chain complex of X with coefficients in R.

Recall that C̃n(X) is freely generated by the chains (x0 < x1 < . . . < xn) in X.

Write Z̃n(X) for the subgroup of n-cycles and H̃∗(X) for the reduced homology of

X. We say that a chain a ∈ X ′ is an addend of α ∈ C̃n(X), and we write a ∈ α, if
a appears with non-zero coefficient in the sum decomposition of α in the canonical
basis of C̃n(X).

Definition 3.1. Let X be a finite poset. A chain a ∈ X ′ is full if for every x ∈ X
such that {x}∪ a is a chain we have that x ∈ a or x ≥ max a. A chain b containing
a is called a-initial chain if for every x ∈ b− a, we have x > max a.

The following property was introduced by Aschbacher and Smith in [5].

Definition 3.2. We say that G satisfies the Quillen dimension property at p, (QD)p
for short, if H̃mp(G)−1(Ap(G)) 6= 0. That is, Ap(G) has non-zero homology in the
highest possible degree.

Observe that the top integer homology group of Ap(G) is always free, so this
definition does not depend on the chosen coefficient ring Z or Q. It is worth noting
that finite groups may not satisfy (QD)p in general. This had been already observed
by Quillen in [16].

Definition 3.3. Suppose that G satisfies (QD)p and let m = mp(G) − 1. If

α ∈ H̃m(Ap(G)) = Z̃m(Ap(G)) is a non-zero cycle and a ∈ α is an addend of α, we
say that a or max a exhibits (QD)p for G. Note that a is a full chain.

Next, we recall a special configuration of the p-solvable case of the conjecture.
Its proof depends on the classification of the finite simple groups and can be found
in [20, Theorem 8.2.12]. See also [1, 5, 7].

Theorem 3.4. If G = Op′(G)A, where A is an elementary abelian p-group acting
faithfully on Op′(G), then G satisfies (QD)p exhibited by A.

Now we set up the proper context that we need to culminate in the proof of
Lemma 3.14. We shall work under [5, Hypothesis 0.15], which we state below.

Hypothesis 3.5 (Central product). H ≤ G and K ≤ CG(H) with H ∩ K a
p′-group.

Hypothesis 3.5 implies that [H,K] = 1 and H ∩K ≤ Z(H) ∩ Z(K). Moreover,
we have that

Ap(HK) ' Ap(H/H ∩K) ∗ Ap(K/H ∩K)

since HK is a central product and the shared central subgroup H ∩K is a p′-group
(see [5, Lemma 0.11]).

Under appropriate circumstances, there will be non-zero cycles α and β in the
homology of Ap(H) and Ap(K) respectively, and they will give rise to a non-zero
cycle α × β (the shuffle product) in the homology of Ap(HK). The final goal is
to show that this product cycle produces non-zero homology for Ap(G). In order
to do that, we will ask for some subgroup A ∈ Ap(H) involved in α to satisfy
suitable strong hypotheses. With these hypotheses, if α×β is the zero cycle (i.e. a
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boundary) in H̃∗(Ap(G)), we will reduce to a calculation in H̃∗(Ap(K)) and then
arrive to a contradiction.

The idea of this section is to perform the above homology computations in a
typically proper subposet X, which, in general, will be constructed to be homotopy
equivalent to Ap(G). Hence, showing that α× β is a non-zero cycle in H̃∗(X) will
lead to non-zero homology in Ap(G), as desired.

The reduction described above is in fact carried out inside the subposet N (K),
lying over Ap(K). We shall take X containing N (K).

Definition 3.6. Under Hypothesis 3.5, we call a subposet X ⊆ Ap(G) an NK-
superset if N (K) ⊆ X.

We proceed now to generalize the definitions and results coming after [5, Hy-
pothesis 0.15].

Definition 3.7 ([5, Definition 0.19]). Assume Hypothesis 3.5. Let a = (A0 < . . . <
Am) and b = (B0 < . . . < Bn) be a chains of Ap(H) and Ap(K) respectively. We
define the following chain in Ap(HK):

a ∗ b := (A0 < . . . < Am < B0Am < . . . < BnAm).

Let c = (0, 1, 2, . . . ,m + n + 1). A shuffle is a permutation σ of the set {0, 1, 2,
. . . ,m + n + 1} such that σ(i) < σ(j) if i < j ≤ m or m + 1 ≤ i < j. Let
σ(c) := (σ(0), σ(1), . . . , σ(m+ n+ 1)).

With the notation of the above definition, let Cj = Aj if j ≤ m or Bj−(m+1) if
j ≥ m + 1. For a shuffle σ, define (a × b)σ to be the chain whose i-th element is
Cσ(0)Cσ(1) . . . Cσ(i).

Definition 3.8 ([5, Definition 0.21]). Assume Hypothesis 3.5. The shuffle product
of a and b is

a× b :=
∑

σ shuffle

(−1)σ(a× b)σ ∈ C̃m+n+1(Ap(HK)).

Extend this definition by linearity to the tensor product of the chain complexes
C̃∗(Ap(H)) and C̃∗(Ap(K)).

Recall that we are aiming to apply later Lemma 3.14 which, in contrast to [5,
Lemma 0.27], works with a potentially proper NK-superset X of Ap(G). In many

situation it will be the case where Ap(H) ⊆ X, hence C̃∗(Ap(H)) ⊆ C̃∗(X) and the
following lemmas are automatic. However, our overall arguments do not require
this assumption, so we supply the lemmas below to also cover these cases.

Lemma 3.9. Assume Hypothesis 3.5 and let X be an NK-superset.

(i) If a ∈ X ′ ∩ Ap(H)′, b ∈ Ap(K)′ and σ is a shuffle, then (a× b)σ ∈ X ′.
(ii) If α ∈ C̃∗(X) ∩ C̃∗(Ap(H)) and β ∈ C̃∗(Ap(K)) then α × β ∈ C̃∗(X) ∩

C̃∗(Ap(HK)).

Proof. If C ∈ (a × b)σ, then either C ∈ a ⊆ X or else C contains some subgroup
B ∈ b. In the latter case, C ∩K ≥ B 6= 1, so C ∈ N (K) ⊆ X since X is an NK-

superset. This proves part (i). Part (ii) follows from (i), by C̃∗(X)∩ C̃∗(Ap(H)) =

C̃∗(X ∩ Ap(H)) and a linearity argument. �

Proposition 3.10 (cf. [5, Corollary 0.23]). Under Hypothesis 3.5, if α ∈ Z̃m(Ap(H))

and β ∈ Z̃n(Ap(K)) then α× β ∈ Z̃m+n+1(Ap(HK)). In addition, if X is an NK-

superset and α ∈ C̃∗(X) then α× β ∈ Z̃m+n+1(X).
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Proof. The first part is [5, Corollary 0.23], and the second part follows from Lemma
3.9. �

Remark 3.11. Let X be a finite poset and a ∈ X ′. Denote by C̃∗(X)a the subgroup

of a-initial chains and by C̃∗(X)¬a the subgroup of non-a-initial chains. Clearly we
have a decomposition

C̃∗(X) = C̃∗(X)a ⊕ C̃∗(X)¬a.

Moreover, if ∂ denotes the boundary map of its chain complex, then

∂(C̃∗(X)¬a) ⊆ C̃∗(X)¬a.

If γ ∈ C̃∗(X) then γ = γa + γ¬a, where γa corresponds to the a-initial part of γ,
and

∂γ = ∂(γa) + ∂(γ¬a) = (∂(γa))a + (∂(γa))¬a + ∂(γ¬a).

This remark yields the following lemma.

Lemma 3.12 (cf. [5, Lemma 0.24]). If a ∈ X ′ is a full chain then (∂γ)a = (∂γa)a.

The following lemma generalizes [5, Lemma 0.25(i)] to NK-supersets.

Lemma 3.13 (cf. [5, Lemma 0.25]). Assume Hypothesis 3.5.

(i) If a ∈ Ap(H)′ and b ∈ Ap(K)′ then (a × b)a = (a × b)σ=id = a ∗ b in

C̃∗(Ap(HK)) ⊆ C̃∗(Ap(G));
(ii) In addition, if X is an NK-superset and a ∈ X ′, then the conclusion of (i)

remains true in C̃∗(X).

Proof. Let σ be a shuffle and C ∈ (a × b)σ with C /∈ a. Then C ≥ B for some
B ∈ b, so C ∈ N (K) (see the proof of Lemma 3.9). Since H ∩ K is a p′-group,
C /∈ Ap(H). Therefore, (a× b)σ is a-initial if and only if σ = id, proving item (i).
Item (ii) follows from Lemma 3.9. �

We prove now the mentioned generalization of the fundamental Homology Prop-
agation Lemma [5, Lemma 0.27]. Recall that we are working with coefficients in
R = Z or Q.

Lemma 3.14. Let G be a finite group. Let H,K ≤ G and X ⊆ Ap(G) be such
that:

(i) H and K satisfy Hypothesis 3.5;
(ii) X is an NK-superset;

(iii) There exist a chain a ∈ Ap(H)′ ∩X ′ and a cycle α ∈ C̃m(Ap(H))∩ C̃m(X)

such that the coefficient of a in α is invertible and α 6= 0 in H̃m(Ap(H))
(for some m ≥ −1);

(iv) In addition, such a is a full chain in X and X>max a ⊆ N (K);

(v) H̃∗(Ap(K)) 6= 0.

Then H̃∗(X) 6= 0.
In particular, under (i), hypotheses (ii), (iii) and (iv) hold if:

(a) coefficients are taken in Q,
(b) X = Ap(G), and
(c) H has (QD)p exhibited by A ∈ Ap(H) such that Ap(G)>A ⊆ A×K

(This is the hypothesis in [5, Lemma 0.27], so the present result is indeed a gener-
alization).
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Proof. We essentially carry out the original proof of [5, Lemma 0.27] inside C̃∗(X)
since X is an NK-superset.

By hypothesis (v), there exists a cycle β ∈ C̃n(Ap(K)) which is not a boundary

in C̃∗(Ap(K)). Choose a chain a and a cycle α as in the hypothesis (iii). Then

α × β ∈ Z̃m+n+1(X) by hypotheses (i), (ii), (iii) and Proposition 3.10. We show
that α× β gives a non-zero cycle in the homology of X.

Suppose by way of contradiction that for some chain γ ∈ C̃m+n+2(X) we have
that

(3.1) α× β = ∂γ.

Write β =
∑
i qi(B

i
0 < . . . < Bin) and γ =

∑
j∈J pj(C

j
0 < . . . < Cjm+n+2). Now

take a-initial parts in both sides of the expression of (3.1).

(3.2) (α× β)a = (∂γ)a.

Note that no intermediate group lying in X can be added within a due to hypothesis
(iv). Let A = max a. By item (ii) of Lemma 3.13, the left-hand-side of (3.2) becomes

(3.3) (α× β)a = q(a× β) = q
∑
i

qi a ∪ (ABi0 < . . . < ABin),

where by hypothesis (iii), q 6= 0 is the coefficient of a in α, and it is invertible. The
expression in (3.3) is then equal to the right-hand-side of (3.2), which using Lemma
3.12 is

(∂γ)a =
∑
j∈J′

pj

m+n+2∑
k=m+1

(−1)k a ∪ (Cjm+1 < . . . < Ĉjk < . . . < Cm+n+2)

=
∑
j∈J′

pj(−1)m+1
n+1∑
k=0

(−1)ka ∪ (Cjm+1 < . . . < Ĉjk+m+1 < . . . < Cm+n+2).(3.4)

The hat notation Ĉjk means that this term does not appear in the chain, and

J ′ = {j ∈ J : a ⊆ (Cj0 < . . . < Cjm+n+2)}. For 0 ≤ k ≤ n+ 1, set Dj
k := Cjk+m+1.

Since Cjk+m+1 > A, we have Dj
k ∈ N (K) by hypothesis (iv), so that Dj

k ∩K 6= 1.
We use now the ∼ operation, which maps an a-initial chain to its subchain

beginning just after max a. Apply the ∼ operation on both sides of the equation
of a-initial chains (3.2) using the expressions of (3.3) and (3.4) respectively. The

left-hand-side of (3.2) becomes qβ̃, where

β̃ =
∑
i

qi(AB
i
0 < . . . < ABin) ∈ C̃∗(Ap(N (K))).

The right-hand-side of (3.2) becomes ∂γ̃, with

γ̃ =
∑
j∈J′

pj(−1)m+1(Dj
0 < . . . < Dj

n+1) ∈ C̃∗(Ap(N (K))).

Now we reduce the above homology computation in N (K) to a calculation

in H̃∗(Ap(K)). Consider the homotopy equivalence given by the poset map ϕ :
N (K) → Ap(K) of Lemma 2.7. Denoting by ϕ∗ the induced map in the chain

complexes, we get the following equalities in C̃∗(Ap(K)):

(3.5) qβ = ϕ∗(qβ̃) = ϕ∗(∂(γ̃)) = ∂(ϕ∗(γ̃)),
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where ϕ∗(γ̃) ∈ C̃n+1(Ap(K)). Since q is invertible, we have found that β is a

boundary in the chain complex C̃∗(Ap(K)), contradicting our initial assumption
on β. �

Note that Lemma 3.14 does not require H to have (QD)p, which by contrast was
fundamental in [5, Lemma 0.27]. This assumption is relaxed within the statements
of (iii) and (iv).

Remark 3.15. If coefficients are taken in Q, then the coefficient requirement in
hypothesis (iii) is automatically guaranteed if a ∈ α. If they are taken in Z, then
hypothesis (iii) implies that the coefficient of a ∈ α is ±1. We may eliminate this

restriction in hypothesis (iii) if we can take β ∈ H̃∗(Ap(K),Z) of order prime to
the coefficient q of a in α by (3.5) (or if it is not a torsion element).

Remark 3.16. Indeed, getting hypothesis (v) in the above lemma is in general the
hard part. In [5], this hypothesis is frequently obtained by applying [5, Theorem
2.4], which has certain restrictions on the prime p. One of our goals is to try to
avoid restrictions on p, so we investigate other methods to get this hypothesis.

4. The reduction Op′(G) = 1

In this section we show that if G satisfies (H1)R and Op′(G) 6= 1 then G satisfies
(R-QC), with R = Z or Q. This reduces the study of (R-QC) to finite groups G
with Op′(G) = 1.

This is motivated by the original result [5, Proposition 1.6], stated for p > 5
and R = Q. We prove a more general version of this fact by using Lemma 3.14,
without those restrictions on the prime p and for R = Z or Q. In the proof, we
will construct a subposet X of Ap(G) satisfying the hypotheses of Lemma 3.14.
This route is comparatively elementary in contrast with [5, Proposition 1.6], which
quotes the strongly CFSG-dependent result [5, Theorem 2.4]. Our proof does not
depend on that result and we will only need to quote Theorem 3.4, which uses only
easy facts about coprime automorphisms of the simple groups (whereas [5, Theorem
2.4] requires much deeper details about the structure of the simple groups).

Theorem 4.1. Suppose that G satisfies (H1)R and that Op′(G) 6= 1. Then G
satisfies (R-QC).

Proof. Suppose that G satisfies (H1)R and that Op′(G) 6= 1. Assume that Op(G) =

1. Our goal is to show that H̃∗(Ap(G), R) 6= 0, with coefficients in R = Z or Q.
First, note that if H < G is a proper normal subgroup such that Ap(H) '

Ap(G), then Op(H) ≤ Op(G) = 1 and hence, by (H1)R, 0 6= H̃∗(Ap(H), R) ∼=
H̃∗(Ap(G), R). Therefore, we can further assume that no such subgroup exists:

(H2) If H < G is a proper normal subgroup then Ap(H) 6' Ap(G).

Now we head to the construction of a homotopy equivalent subposet X of Ap(G)
to apply Lemma 3.14 and get our goal. To achieve this, we are going to deduce
a series of properties on our group G which will lead to the choice of convenient
subgroups H and K and the definition of X satisfying the hypotheses of Lemma
3.14. In view of Lemma 2.5, we can suppose that:

(H3) Z(G) = 1 and Ω1(G) = G.

Let L := Op′(G), which is nontrivial by hypothesis. The following claim holds
by (H3).
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Claim 1. CG(L) < G, and hence some A ∈ Ap(G) acts faithfully on L.

Recall that for A ∈ Ap(G), we have that Op(LA) = CA(L) since A is a Sylow
p-subgroup of LA. Moreover, A acts faithfully on L if and only if CA(L) = 1. Let

F = {A ∈ Ap(G) : A acts faithfully on L},
N = {A ∈ Ap(G) : A acts non-faithfully on L}.

The following assertion is immediate from these definitions.

Claim 2. F and N are disjoint, Ap(G) = F ∪ N , F is nonempty by Claim 1
and N = N (CG(L)).

With an eye on the notation of Lemma 3.14, for A ∈ F let HA := LA and
KA := CG(HA). The following claim gives some properties of HA and KA.

Claim 3. HA and KA satisfy Hypothesis 3.5, KA = CCG(L)(A) and N>A =
N (KA)>A.

Proof. Note that CG(LA) = CCG(L)(A) and that HA ∩KA ≤ Z(HA) = Z(LA) is
a p′-group since Op(LA) = CA(L) = 1. Therefore HA and KA satisfy Hypothesis
3.5.

Since CG(LA) ≤ CG(L), we have that N (KA) ⊆ N (CG(L)) = N . Hence
N (KA)>A ⊆ N>A. Conversely, if B ∈ N>A then B ≤ CG(A) and CB(L) 6= 1.
Hence, 1 6= CB(L) = CG(A) ∩B ∩ CG(L) = B ∩ CG(LA) = B ∩KA. �

Now we will see how the configuration of Lemma 3.14 brings new ideas beyond
the analogous result of [5]. We show next how to get hypothesis (v) of this lemma
(see Remark 3.16).

Claim 4. There is A ∈ F with Op(KA) = 1.

Proof. If for all A ∈ F we have Op(CCG(L)(A)) = Op(KA) 6= 1, then, by Claim 2
and Lemma 2.9, we get Ap(G) ' Ap(CG(L)). This contradicts (H2) since CG(L)
is normal in G. �

Next, we define the subposet X by removing points of Ap(G) with contractible
link, so we preserve the homotopy type. By Claim 4, we can take A ∈ F of maximal
p-rank subject to Op(KA) = 1. Let X = Ap(G) − F>A = N ∪ (F − F>A). Note
that N ∩ (F − F>A) = ∅ by Claim 2.

Claim 5. If B ∈ Ap(G) − X then X>B = N>B is contractible. In particular,
X ' Ap(G).

Proof. If B ∈ Ap(G) − X = F>A then, by the consequences above, X>B = N>B
since F>B ⊆ F>A and Ap(G)>B = F>B ∪N>B . It follows from Lemma 2.8 that

X>B = N>B ' Ap(CCG(L)(B)) = Ap(KB) ' ∗
since Op(KB) 6= 1. Finally, by Proposition 2.2, X ' Ap(G). �

Claim 6. Ap(LA) ⊆ X.

Proof. Let B ∈ Ap(LA). Since A is a Sylow p-subgroup of LA, there exists g ∈ L
such that B ≤ Ag, so CB(L) ≤ CAg (L) = (CA(L))g = 1. Therefore B is faithful on
L, that is, B ∈ F , and |B| ≤ |A|. Hence B /∈ F>A, which means that B ∈ X. �

We check the hypotheses of Lemma 3.14 with H = HA = LA, K = KA =
CG(LA) and the subposet X defined above.
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(i) It holds by Claim 2.
(ii) If B /∈ X, then B acts faithfully on L, so 1 = CB(L) ≥ CB(LA) = B ∩K.

In consequence, N (K) ⊆ X and X is an NK-superset.
(iii) By Theorem 3.4 applied to H = LA, we can pick a non-zero element α ∈

H̃m(Ap(H), R), wherem = mp(A)−1. Since Z̃m(Ap(H)) = H̃m(Ap(H), R),
α is actually a cycle, and by a dimension argument, it involves a full chain
a. Since A is a Sylow p-subgroup of H, after conjugating α, we may sup-
pose that A ∈ a. Moreover, by Claim 6 C̃∗(Ap(H)) ⊆ C̃∗(X).
The coefficient of a in α is invertible if R = Q. For R = Z, this is also true,
but it is less immediate and depends on the results of [7]. See below for
further details.

(iv) By (iii) a is a full chain, A = max a and X>A = N (KA)>A by Claims 2
and 3 and the consequences above.

(v) It holds by (H1)R since Op(KA) = 1 by the choice of A satisfying Claim 4,
and KA = CG(LA) ≤ CG(L) < G by Claim 1.

By Claim 5 and Lemma 3.14, H̃∗(Ap(G), R) ∼= H̃∗(X,R) 6= 0.
We explain now how to obtain the invertible coefficient for a in α if R = Z, in

order to fulfil hypothesis (iii) of Lemma 3.14. In the proof of (iii) above, we begin
by fixing the cycle α, and then we choose a chain a ∈ α, which is always a full chain
since α lies in the top degree chain group. Hence, we need to show that for some
a ∈ α its coefficient is equal to ±1 (see Remark 3.15). This is possible by using the
explicit description of a nontrivial cycle that Dı́az Ramos gave for the p-solvable
case in [7]. It follows from the proofs of [7, Theorems 5.1, 5.3 & 6.6].

This concludes the proof of the theorem for both versions of the conjecture. �

We give below some applications of Theorem 4.1. The following results depend
on the results obtained on the fundamental group of the p-subgroup posets [12] and
the almost-simple case of the conjecture [4].

Theorem 4.2 (cf. [12, Theorem 5.2]). If G is not an almost-simple group and
Op′(G) = 1, then π1(Ap(G)) is a free group.

Theorem 4.3 ([4]). If G is an almost-simple group, then H̃∗(Ap(G),Q) 6= 0.

Corollary 4.4. Suppose that G satisfies (H1)R, with R = Z or Q, and that Ap(G)
is not simply connected. Then G satisfies (R-QC).

Proof. Suppose that Op(G) = 1. The result clearly holds if Ap(G) is not connected,

since H̃0(Ap(G),Z) is a non-zero free group in that case. If Op′(G) 6= 1 then G
satisfies (R-QC) by Theorem 4.1. On the other hand, if G is almost-simple then
we are done by Theorem 4.3.

Therefore we can assume that Ap(G) is connected, Op′(G) = 1 and that G is not
almost-simple. By Theorem 4.2, π1(Ap(G)) is a free group, and since Ap(G) is con-
nected but not simply connected, we also have that π1(Ap(G)) 6= 1. Finally, by the

Hurewicz isomorphism in the first homology group, we conclude that H̃1(Ap(G),Z)
is a non-zero free group. Hence, G satisfies (R-QC). �

Now we prove Theorem 2.

Proof of Theorem 2. We only need to prove that if the original conjecture (QC)
holds for all finite groups, then the integer homology version (Z-QC) holds.
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Let G be a group with Op(G) = 1. We shall prove that H̃∗(Ap(G),Z) 6= 0. By
induction, we can assume that (Z-QC) holds for every group H with |H| < |G|,
so G satisfies (H1)Z. By Corollary 4.4 we can also suppose that Ap(G) is simply
connected. Since G satisfies (QC), some of its homotopy groups are nontrivial, so

by the Hurewicz theorem H̃∗(Ap(G),Z) 6= 0. �

We close this section by using the rational version of Theorem 4.1 to extend
some results, of [14] on the integer conjecture (Z-QC), to the rational conjecture
(Q-QC). Below we recall some of the main results of [14].

Theorem 4.5 ([14, Corollary 3.3]). Suppose that K(Sp(G)) is homotopy equivalent
to a 2-dimensional and G-invariant subcomplex. Then G satisfies (Z-QC).

Corollary 4.6 ([14, Corollary 3.4]). The integer Quillen conjecture (Z-QC) holds
for groups of p-rank at most 3.

Corollary 4.7. Suppose that G satisfies (H1)Q and that K(Sp(G)) is homotopy
equivalent to a 2-dimensional G-invariant subcomplex. Then G satisfies (Q-QC).

Proof. Suppose that Op(G) = 1. We show that Ap(G) is not Q-acyclic. By Lemma
2.5 and Theorems 4.1 and 4.3, we may further assume that Z(G) = 1, Op′(G) = 1
and that G is not an almost-simple group.

On the other hand, by Theorem 4.5, Ap(G) is not Z-acyclic. In order to prove
that it is not Q-acyclic, it is enough to show that Ap(G) has free abelian homology.
Since it has the homotopy type of a 2-dimensional complex K ⊆ K(Sp(G)), we only
need to verify that Hn(Ap(G),Z) ∼= Hn(K,Z) is a free abelian group for n = 0, 1, 2.

Clearly H2(K,Z) and H0(K,Z) are free abelian groups. Finally, by Theorem 4.2,
π1(Ap(G)) is a free group, so its abelianization H1(K,Z) is a free abelian group.
This completes the proof. �

We can extend Corollary 4.6 on the p-rank 3 case of (Z-QC), to the rational
version (Q-QC).

Corollary 4.8. The rational Quillen’s conjecture (Q-QC) holds for groups of p-
rank at most 3.

5. Particular cases

In this section we prove Theorem 5.1, which allows us to eliminate components
isomorphic to L2(23) (p = 3), U3(23) (p = 3) and Sz(25) (p = 5) in a minimal
counterexample to Quillen’s conjecture. These simple groups were excluded as
possible components during the analysis of the conjecture of Aschbacher-Smith [5],
due to the particular structure of the centralizers of their field automorphisms of
order p. Namely, these centralizers have nontrivial normal p-subgroups. However,
we will see that, because of this property, we can establish Quillen’s conjecture for
groups containing these types of components.

And since Sz(25) was the only obstruction in [5] for p = 5, in particular we get
their Main Theorem also for p = 5. For that purpose, we will use the structure of
these centralizers, which can be found in [8]. Recall that R = Z or Q.

Theorem 5.1. Suppose that G satisfies (H1)R and that G contains a component
L such that L/Z(L) is isomorphic to L2(23) (p = 3), U3(23) (p = 3) or Sz(25)
(p = 5). Then G satisfies (R-QC).
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We summarize next the scheme of the proof of [5, Main Theorem] to see why
these cases were excluded and to expose the key points to extend their theorem to
every odd prime p. In particular, we include the proof of Corollary 3 during the
discussion.

Let p be an odd prime, and G a group of minimal order subject to failing (Q-QC).
Assume further that if Un(q) is a component of G, with q ≡ −1 (mod p) and q
odd, then the p-extensions of Um(qp

e

) satisfy (QD)p for all m ≤ n and e ∈ Z. In
particular G satisfies (H1)Q. The proof splits into three steps.

Step 1. We get Op′(G) = 1 (this is [5, Proposition 1.6]).
To prove Op′(G) = 1 in [5], Theorems 2.3 and 2.4 there are invoked. However,

these theorems, stated for p odd, require that G does not contain components iso-
morphic to L2(23), U3(23) or Sz(25) with p = 3, 3, 5 respectively. By Theorem 4.1,
we can get the same reduction over G since (H1)Q holds, without those restrictions
on p and the components.

Step 2. If L is a component of G, then some p-extension of L fails (QD)p (this
is [5, Proposition 1.7]).

Similarly as in Step 1, Theorems 2.3 and 2.4 of [5] are invoked here. By Theorem
5.1, G does not contain components isomorphic to L2(23), U3(23) or Sz(25) with
p = 3, 3, 5 respectively. Therefore, we can invoke Theorems 2.3 and 2.4 of [5]
without those restrictions on p, so this step of the proof also extends to p ≥ 3. The
hypothesis on the unitary components also allows us to conclude that G does not
contain unitary components Un(q) with p | q + 1 and q odd.

Step 3. H̃∗(Ap(G),Q) 6= 0 since χ̃(Ap(G)g) 6= 0 for some g ∈ G.

First, note that if H̃∗(Ap(G),Q) = 0 then χ̃(Ap(G)g) = 0 for all g ∈ G, by the
Lefschetz fixed point theorem. This step consists then on deriving a contradiction
by showing that χ̃(Ap(G)g) 6= 0 for some g ∈ G (see [5, p.490]). This is Robinson’s
method [17]. The idea is to look for a subgroup Q = 〈g〉 × O2(Q) ≤ G with
O2(Q) 6= 1, for which χ̃(Ap(G)g) ≡ χ̃(Ap(G)Q) (mod 2) is non-zero. To construct
such subgroup Q, [5, Theorem 5.3] is invoked, which is stated for p ≥ 5. Therefore,
we can extend this step to p = 5 and, consequently, [5, Main Theorem] to p ≥ 5,
but not to p ≥ 3. This proves Corollary 3. See also the comment below [5, Main
Theorem] and the remark at the bottom of [5, p.493].

The extension of [5, Main Theorem] to p = 3 will be treated in a forthcoming
work. Roughly, if we want to construct such subgroup Q for p = 3 in Step 3, we
need first to eliminate some possible components of G, as we are doing in Theorem
5.1.

The problem with the components L ∼= L2(23) (p = 3), U3(23) (p = 3) or
Sz(25) (p = 5), is that their p-extensions do not have nonconical complements, as
defined in [5, Theorem 2.3], when they contain field automorphisms of order p. This
implies that we cannot invoke [5, Theorem 2.4], which is needed to get hypothesis
(v) of Lemma 3.14. Moreover, a p-extension LA satisfies (QD)p if and only if A
does not contain field automorphisms. In particular, if G does not contain field
automorphisms of order p of these components, we can invoke [5, Theorem 2.4] in
Step 2 of the proof of [5, Main Theorem] and eliminate these type of components.
In consequence, if we want to proceed as in [5] and eliminate these components
from a minimal counterexample G to Quillen’s conjecture, we only need to analyse
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the case that G contains a p-extension LA with A including field automorphisms
of order p.

The obstruction described above relies on the fact that Op(CL(A)) 6= 1 for every
A inducing field automorphisms of order p on such L. Nevertheless, this special
feature is exactly the ingredient we want to construct a proper subposet X ⊂ Ap(G)
suitable for use as X in Lemma 3.14. This key property allows us to extract these
kind of subgroups A from the poset Ap(G) and apply Lemma 3.14 with H = L.

Before we proceed with the proof of Theorem 5.1, we describe some preliminary
results that will be repeatedly used from now on.

Remark 5.2. With the aim of showing that H̃∗(Ap(G)) 6= 0, we will look for a
subposet X ⊆ Ap(G) and subgroups H,K to fit in the hypotheses of Lemma 3.14.
We will also require X homotopy equivalent to Ap(G). Indeed, we will construct
X, H and K from a very particular component L of G. In general, we will pick
H = LA and K = CG(LA), where A ≤ NG(L) is faithful on the component L. Our
first observation is that:

(0) We will choose A ∈ Ap(G) such that A ∩ L 6= 1, so A ≤ NG(L) if Z(L) is a
p′-group.

Note that if A ∈ Ap(G) and 1 6= A ∩ L, then 1 6= A ∩ L ≤ L ∩ La for all a ∈ A.
When Z(L) is a p′-group, this forces L = La and A ≤ NG(L).

(1) In proving (Q-QC), we will assume Op(G) = 1. Hence Op(L) = 1, so Z(L)
is a p′-group. Therefore, when H = L we get hypothesis (i) of Lemma 3.14.

(2) In proving (Q-QC), we can also assume that (H1)Q, e.g. by studying a
minimal counterexample.

(3) With (H1)Q, by Theorem 4.1 we have the reduction Op′(G) = 1. Hence, with
Op(G) = 1, we get

Z(E(G)) ≤ Z(F ∗(G)) = CG(F ∗(G)) ≤ F (G) ≤ Op(G)Op′(G) = 1.

Therefore, by using (2), that is (H1)Q, for H = L and K = CG(L) we get hypothesis
(v) of Lemma 3.14. Note that in general, if L is a component of G and F (G) = 1,
Op(CG(L)) = 1 and Z(L) = 1.

To conclude with this remark, we provide some possible paths to use Lemma
3.14.

Case 1. H = L, K = CG(L).
In particular we automatically get (i) and (v) of Lemma 3.14 by (1) and (3)

above.

Subcase 1a. X = Ap(G).
Here we get (a) and (b) of Lemma 3.14, so we only need to establish (c) of that

statement. That is, take A exhibiting (QD)p for L with Ap(G)>A ⊆ A×K.
This will hold for example in Case 1 of the proof of Theorems 5.1 and 6.1. There

we do get (QD)p for L, and “no outers” says roughly that any A maximal in L is
in fact maximal-faithful on L, so every E ∈ Ap(G)>A has the form E = ACE(L) ⊆
A×K.

Subcase 1b. X ( Ap(G).
Here we will have more work to do, e.g. by establishing conditions (ii), (iii)

and (iv) of Lemma 3.14, and of course showing that X and Ap(G) are homotopy
equivalent.
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Case 2. H = LA > L, K = CG(LA).
In this case, we will typically begin by constructing H as LE, where E does

not contain inner automorphisms of L, and later we will choose A ∈ Ap(LE) with
LA = LE.

Denote by Inn(G) the subgroup of Aut(G) of inner automorphisms of G. If
φ ∈ Aut(G) − Inn(G), we say that φ induces an outer automorphism on G. If
L ≤ G and E ≤ NG(L), then we can describe the types of automorphisms (inner
or outer) induced by the action of E on L via the map E → Aut(L).

Lemma 5.3. Let L ≤ G and E ≤ NG(L). Then

E ∩ (LCG(L)) = {x ∈ E : x induces an inner automorphism on L}.
In particular, E ∩ (LCG(L)) = 1 if and only if E acts by outer automorphisms on
L.

Proof. Clearly E ∩ (LCG(L)) acts by inner automorphisms on L. If x ∈ E induces
an inner automorphism on L, then there exists y ∈ L such that z = y−1x acts
trivially on L. Therefore, z ∈ CG(L) and x = yz ∈ LCG(L). �

Remark 5.4. If H ≤ G and mp(H) = mp(G) = m, then we have the inclusion

H̃m−1(Ap(H)) ⊆ H̃m−1(Ap(G)). In particular, if H has (QD)p then so does G.
On the other hand, if L = L1 × . . . × Ln is a direct product and each Li has

(QD)p then L has (QD)p. This follows from Proposition 2.3 and the homology
decomposition of a join.

The following lemma follows from the p-rank 2 case of the conjecture [16, Propo-
sition 2.10].

Lemma 5.5. Suppose that Op(G) = 1. If mp(G) = 1, or mp(G) = 2 with Ap(G)
connected, then G has (QD)p.

Proof. By [16, Proposition 2.10], H̃∗(Ap(G)) 6= 0. If mp(G) = 1 then clearly we

have H̃0(Ap(G)) 6= 0. If mp(G) = 2 and Ap(G) is connected then H̃0(Ap(G)) = 0,

so H̃1(Ap(G)) 6= 0. �

Now we prove Theorem 5.1.

Proof of Theorem 5.1. We prove the rational version (Q-QC). That is, we show

that Op(G) = 1 implies H̃∗(Ap(G),Q) 6= 0. The same proof works for the integer
version (Z-QC) by Remark 6.2.

As we are proving (Q-QC), we have its hypothesis Op(G) = 1. Let L be a
component of G as in the hypotheses of the theorem. The preliminary Remark 5.2
shows then that we can suppose that Op′(G) = 1, so Z(L) = 1 and L ∼= L2(23),
U3(23) or Sz(25), with p = 3, 3 or 5 respectively. We use the structure of the
centralizers of the automorphisms of L. We refer to (7-2), (9-1), (9-3) of [8, Part I]
for more details on the following assertions.

• If L = L2(23) then Aut(L) ∼= Lo〈φ〉, where φ induces a field automorphism
of order 3 on L, and CL(φ) ∼= L2(2) ∼= S3

∼= C3 oC2. Note that mp(L) = 1.

• If L = U3(23) then Out(L) = Out diag(L) o C6 and Out diag(L) ∼= C3. If
φ ∈ Aut(L) is a field automorphism of order 3, CInn diag(L)(φ) = CL(φ) ∼=
PGU3(2) ∼= ((C3 × C3) oQ8) o C3.
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(A) In particular, field automorphisms and diagonal automorphisms do
not commute, so any purely outer automorphism group of U3(23) has
3-rank at most 1.

(B) Note that mp(L) = 2 and Ap(L) is connected since it does not appear
in the disconnected list of Appendix Theorem A.1.

• If L = Sz(25) then Aut(L) ∼= Lo〈φ〉, where φ induces a field automorphism
of order 5 on L, and CL(φ) ∼= Sz(2) ∼= C5 o C4. Note that mp(L) = 1.

In any case, L satisfies (QD)p by Lemma 5.5, and if φ ∈ NG(L) induces a field
automorphism of order p on L then Op(CL(φ)) 6= 1. Let N = {E ∈ Ap(NG(L)) :
E ∩ (LCG(L)) 6= 1}.

We are going to use some of the claims stated in Remark 5.2. In particular, we
get Op(CG(L)) = 1 by item (3) of that remark.

We split the remaining of the proof in two cases.

Case 1: Ap(NG(L)) = N .
We are in Subcase 1a of Remark 5.2. That is, we take X = Ap(G), H = L and

K = CG(L), which satisfy hypothesis (v), (a) and (b) of Lemma 3.14.
Recall that we observed below the bullet items that H = L satisfies (QD)p,

which is exhibited by some A ∈ Ap(L). The hypothesis Ap(NG(L)) = N of this
case implies that there is no E ∈ Ap(G) inducing only outer automorphisms on L.
Therefore, if E ∈ Ap(G)>A then E = ACE(L) ⊆ A×K. This shows that condition

(c) of Lemma 3.14 holds, and therefore we conclude that H̃∗(Ap(G),Q) 6= 0 in this
case.

Case 2: Ap(NG(L)) 6= N .
Here, every E ∈ Ap(NG(L))−N induces outer automorphisms on L (see Lemma

5.3). In conjunction with item (A) of our above remark on the unitary group U3(23),
we conclude that |E| = p.

Next, we show that if E induces field automorphisms on L then Ap(G)>E is
contractible. Recall that the existence of field automorphisms of order p in G for
these types of componentes is the real obstruction in [5] to handle these components.
The idea here is to extract then these elements E from Ap(G) to get a homotopy
equivalent subposet X which will be more suitable to apply Lemma 3.14 (see also
Subcase 1b of Remark 5.2).

Claim. If E ∈ Ap(NG(L)) is a group of purely outer automorphisms of L
containing field automorphisms of order p, then Ap(G)>E is contractible.

Proof. Let E be as in the hypotheses of the claim. Therefore |E| = p by the above
paragraph, and also Op(CL(E)) 6= 1 by the discussion in the bullet points. We show
that Ap(G)>E is contractible by exhibiting a sequence of homotopy equivalences.

Take M = CL(E)CG(LE). Since E induces only outer automorphisms on L and
M contains only inners, we have

(5.1) E ∩M = 1.

We will prove that

Ap(G)>E ' Y ' Ap(M) ' ∗,
where

Y := {B ∈ Ap(G) : NB(L) > E} ⊆ Ap(G)>E .
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In order to prove that Ap(G)>E ' Y , we show that Y>B is contractible for
each B ∈ Ap(G)>E − Y , and then conclude that the inclusion Y ↪→ Ap(G)>E is a
homotopy equivalence by Proposition 2.2. To that aim, we construct a homotopy
equivalence Y>B ' Ap(CM (B)), and then we prove that Op(CM (B)) 6= 1.

Fix B ∈ Ap(G)>E − Y and take C ∈ Y>B . We prove that NC(L) ∩M 6= 1,
and in particular C ∩M 6= 1. If NC(L) contains inner automorphisms of L or acts
non-faithfully on L, then NC(L)∩M 6= 1 by Lemma 5.3. If NC(L) acts faithfully on
L and it does not contain inner automorphisms of L, then NC(L) embeds into both
Aut(L) and Out(L), and it has p-rank at least 2 since E < NC(L). However, NC(L)
can only contain field automorphisms of L since diagonal and field automorphisms
(of order p) do not commute (see item (A) above). On the other hand, a subgroup
of Out(G) containing only field automorphisms of L is cyclic of order p, showing
that NC(L) has p-rank at most 1. We have a well-defined homotopy equivalence
C ∈ Y>B 7→ C∩M ∈ Ap(CM (B)). The inverse is given by C ∈ Ap(CM (B)) 7→ CB.
Note that CB ∈ Y>B since E ∩ C ≤ E ∩M = 1 by (5.1), so

CB ≥ NCB(L) ≥ EC > E.

Therefore, Y>B ' Ap(CM (B)).
Next, we prove that Y>B is contractible by showing that Op(CM (B)) 6= 1. De-

compose B = EB̃, where B̃ is a complement to E in B. Since NB(L) = E, B̃ acts

regularly on the set {Lb : b ∈ B̃}. Let K = 〈Lb : b ∈ B̃〉. It is not hard to see that
CK(B) ∼= CL(E). Finally, observe that CK(B) is a normal subgroup of CM (B), so
Op(CM (B)) 6= 1. Therefore, Y>B ' Ap(CM (B)) is contractible. By Proposition
2.2, Y ↪→ Ap(G)>E is a homotopy equivalence.

By taking B = 1 in the above reasoning, Y ' Ap(M) is contractible since
1 6= Op(CL(E)) ≤ Op(CL(E)CG(LE)) = Op(M). In consequence, Ap(G)>E ' Y
is contractible. This finishes the proof of this claim. �

Now we construct our subposet X homotopy equivalent to Ap(G), which is
roughly obtained from Ap(G) by removing any E ∈ Ap(NG(L)) faithful on L
and containing some field automorphism of order p. To this end, we will actu-
ally concatenate two homotopy equivalences. In particular, if there are no field
automorphisms of order p of L in NG(L), then X = Ap(G).

We construct the first homotopy equivalence by extracting the purely outers that
contain field automorphisms of L. That is, in combination with Proposition 2.2 and
the above claim, the subposet
(5.2)
X0 = {E ∈ Ap(G) : if |E| = p then it does not induce field automorphisms on L}

is homotopy equivalent to Ap(G).
For the second homotopy equivalence, we extract the remaining elementary

abelian p-subgroups acting faithfully on L and containing some field automor-
phisms. Let W = {E ∈ Ap(NG(L)) : CE(L) = 1 and E contains some field
automorphism of L} and

X = Ap(G)−W.
If E ∈ X0−X, then E is faithful on L and it contains some field automorphisms of
order p of L, but |E| > p since E ∈ X0. On the other hand, since field and diagonal
automorphisms do not commute in the unitary case by item (A) above, we see that
E contains inner automorphisms of L. That is, 1 6= E ∩ (LCG(L)) by Lemma 5.3,
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and, moreover, |E : E ∩ (LCG(L))| = p. Hence, X<E = Ap(E ∩ (LCG(L))) ' ∗.
By Proposition 2.2, X ' X0 ' Ap(G).

Note that if we do not have field automorphisms of order p in NG(L) but we are in
Case 2, then we have no points to remove from Ap(G) and X = Ap(G). Moreover,
the only possibility here is L = U3(23) and p = 3, with NG(L) containing diagonal
automorphisms of order 3 since Ap(NG(L)) 6= N . Since both Inn diag(U3(23)) and
U3(23) have 3-rank 2 and the latter satisfies (QD)p, by Remark 5.4 Inn diag(U3(23))
also satisfies (QD)p, exhibited by cycles of A3(U3(23)).

In any scenario, to conclude the proof of Case 2, apply Lemma 3.14 with the
subposet X obtained above, H = L, K = CG(L), and a ∈ Ap(L)′ any chain
exhibiting (QD)p for L. Note that we get the inclusion X>max a ⊆ NK since
we removed the elements of Ap(G) that contain field automorphisms of L, and
max a ≤ L has p-rank 2 and it is maximal-faithful on L. �

6. Components of p-rank 1

In this section we show that, under (H1)R, if G has a component of p-rank 1
then G satisfies (R-QC), with R = Z or Q (see Theorem 6.1 below). We refer to
(7-13) of [8, Part I] for the main properties on simple groups of p-rank 1. Recall
that there are no simple groups of 2-rank 1.

Theorem 6.1. Suppose that G satisfies (H1)R and that it contains a component
L such that L/Z(L) has p-rank 1. Then G satisfies (R-QC).

Proof. We proceed similarly to Theorem 5.1, so following Remark 5.2 we can sup-
pose that Op(G) = 1 = Op′(G), and we get Op(CG(L)) = 1 and Z(L) = 1. Hence
L is a simple group of p-rank 1 and p is odd. Recall also that if B ∈ Ap(G) and
B ∩ L 6= 1 then B ≤ NG(L).

Let N = {E ∈ Ap(NG(L)) : E ∩ (LCG(L)) 6= 1}. We split the proof in two
cases.

Case 1. Ap(NG(L)) = N .
In this case, there are no outer automorphisms of order p of L inside G, and

Ω1(NG(L)) ∼= L×Ω1(CG(L)). Let A ∈ Ap(L). Since L has p-rank 1, A is maximal
faithful on L and it represents a connected component of Ap(L) exhibiting (QD)p
for L (see Lemma 5.5). Moreover, by item (0) in Remark 5.2 we get Ap(G)>A ⊆
A× CG(L). The hypotheses of Lemma 3.14 are verified with H = L, K = CG(L),

a = (A) ∈ α ∈ C̃0(Ap(L)) and X = Ap(G). This finishes the proof of Case 1.
In following case, we will see that in some subcases we take H = LA > L and

we do not remove points, so we apply Lemma 3.14 with X = Ap(G).

Case 2. Ap(NG(L)) 6= N .
Note that every E ∈ Ap(NG(L)) − N induces outer automorphisms on L and

has order p since mp(L) = 1 (see Table 1 in Appendix A). By Theorem 5.1, we
can suppose that L is not isomorphic to L2(23) (p = 3) nor to Sz(25) (p = 5).
Therefore, mp(LE) = 2 and LE has (QD)p (i.e. it is connected, see Table 1 in
Appendix A).

Case 2a. There exists E ∈ Ap(NG(L))−N with Op(CG(LE)) = 1.
Take such element E and let K = CG(LE). Note that hypotheses (v), (a) and

(b) of Lemma 3.14 hold with X = Ap(G), H = LE and K = CG(LE). We show
how to get hypothesis (c).
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Pick A ∈ Ap(LE) of order p2 exhibiting (QD)p for LE, and observe that LA =
LE and |A ∩ L| = p. If B ∈ Ap(G)>A then B ∩ L 6= 1 and hence B ∈ Ap(NG(L)).
Moreover, CB(L) 6= 1 since A ≤ B/CB(L) ≤ Aut(L), and the latter has p-rank 2.
In consequence, B = ACB(L). This shows that Ap(G)>A ⊆ A×K, and for some 1-

cycle α and chain a ∈ Ap(LA)′, we have A ∈ a ∈ α ∈ C̃1(Ap(LA)) exhibiting (QD)p
for H. Hence hypothesis (c) of Lemma 3.14 holds and we get H̃∗(Ap(G),Q) 6= 0.
This concludes the proof of Case 2a.

Case 2b. For all E ∈ Ap(NG(L))−N we have Op(CG(LE)) 6= 1.
Here we show that the poset X defined in (6.1) below is a homotopy equivalent

and proper subposet of Ap(G) that fits in the hypotheses of Lemma 3.14 with
H = L and K = CG(L).

Consider the subposets F0 = Ap(NG(L)) −N , F1 = {E ∈ Ap(NG(L)) : |E| =
p2, CE(L) = 1, E ∩ L 6= 1} and

(6.1) X := Ap(G)−F1.

We show that X ' Ap(G). If E ∈ F1, then E = (E∩L)E0, where E0∩(LCG(L)) =
1. Hence E0 ∈ F0 and Op(CG(LE)) = Op(CG(LE0)) 6= 1. Let B ∈ X>E . Since
mp(Aut(L)) = 2 and E acts faithfully on L with B ∩ L ≥ E ∩ L 6= 1, we have
that B ≤ NG(L), CB(L) 6= 1 and B = ECB(L). Therefore, X>E ' Ap(CG(LE)),
where the homotopy equivalence is given by B 7→ CB(L) with inverse C 7→ CE.
By Proposition 2.2, X ' Ap(G).

Finally, we appeal to Lemma 3.14 on this subposet X, with H = L, K = CG(L)

and a = (A) ∈ α ∈ C̃0(Ap(L)), where A ∈ Ap(L). This concludes the proof of Case
2b.

In any case, we have shown that G satisfies (Q-QC). For the integer version
(Z-QC) of this case, see Remark 6.2 below. �

Remark 6.2. In the proofs of Theorems 5.1 and 6.1, we invoked Lemma 3.14 with
some cycle α containing an arbitrary full chain a. Note that we could have chosen
first α and then a ∈ α in these proofs. Since α is an element of either C̃1(X) or

C̃0(X), it can be taken to have coefficients equal to ±1. For example, if α ∈ C̃1(X),
then pick α to be a simple cycle (that is, a cycle in the 1-skeleton of the simplicial
complex that does not self-intersect). By Remark 3.15, Theorems 5.1 and 6.1 extend
to the integer version of the conjecture (Z-QC).

7. The p-rank 4 case of Quillen’s conjecture

In this section we prove Theorem 4, establishing (Q-QC) for groups of p-rank at
most 4. We use the results of the previous sections together with the classification
of finite groups with a strongly p-embedded subgroup. We provide in Appendix A
further details of this classification, as well as some properties of these groups. We
will see that the structure of the centralizers of the simple groups of low p-rank
plays a fundamental role in the proof of this theorem.

The following elementary remark will be useful in the proof of Theorem 4.

Remark 7.1. Suppose that L is a normal subgroup of G such that Z(L) is a p′-group
(e.g. when L is a normal component of G). If every order p element of G induces
an inner automorphism on L, then Ω1(G) ≤ LCG(L) by Lemma 5.3. In particular,
Ap(G) = Ap(Ω1(G)) ' Ap(L) ∗ Ap(CG(L)) by Propositions 2.3 and 2.4.
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Proof of Theorem 4. Let G be a group of p-rank at most 4 and suppose that
Op(G) = 1. We prove that H̃∗(Ap(G),Q) 6= 0. Without loss of generality, we
can assume that G satisfies (H1)Q, and hence that the following conditions hold:

(1) G = Ω1(G) and Z(G) = 1 (by Lemma 2.5);
(2) mp(G) = 4 (by Corollary 4.8);
(3) Op′(G) = 1 (by Theorem 4.1);
(4) F ∗(G) = L1 . . . Ln is the direct product of simple components Li of order

divisible by p (by Remark 2.1);
(5) G is not an almost-simple group (by Theorem 4.3);
(6) Every component of G has p-rank at least 2 (by Theorem 6.1).

Since G is not almost-simple, n ≥ 2. By (6), mp(Li) ≥ 2 for all i, and since
4 ≥ mp(F

∗(G)) ≥ 2n, we conclude that n = 2, mp(L1) = 2 = mp(L2) and
mp(F

∗(G)) = 4.
If both Ap(L1) and Ap(L2) are connected, then L1 and L2 have (QD)p by

Lemma 5.5, and so does F ∗(G) and G by Remark 5.4. Indeed, more generally, this
argument shows the following case.

Case 0. If G contains a direct product of distinct subgroups G1, G2 of p-rank
2 for which Ap(G1) and Ap(G2) are connected with Op(Gi) = 1, i = 1, 2, then

H̃∗(Ap(G),Q) 6= 0.

In consequence, we can suppose that Ap(L1) is disconnected, i.e. that L1 has
a strongly p-embedded subgroup. The possibilities for such L1 are described in
Theorem A.1 of the Appendix. In particular, if p = 2 then L1 is isomorphic either
to L2(22) ∼= A5 or U3(22) by a p-rank argument (see Table 1).

On the other hand, by Remark 7.1, if G has a normal component Li then we can
suppose that G contains an outer automorphism of Li of order p, so p | |Out(Li)|.
Therefore, if p is odd, both Li are normal in G and this forces p = 3 and L1

∼= L3(22)
by Table 1.

Case 1. p = 2 and L1
∼= A5 or U3(22).

If f is an outer involution of A5 (resp. U3(22)), then CA5
(f) ∼= S3 of 2-rank 1,

(resp. CU3(22)(f) ∼= A5 of 2-rank 2). Both centralizers have disconnected Quillen

poset at p = 2. Moreover, Aut(A5) = S5
∼= A5oC2 and Aut(U3(22)) = U3(22)oC4,

with C4 inducing field automorphisms on U3(22).
We split the proof in two cases: when L1, L2 are permuted, and when they are

normal in G.

Case 1a. Some involution x ∈ G permutes L1 with L2.
Then NG(L1) = NG(L2) and it is a normal subgroup of G of p-rank 4 with

G = NG(L1)T , where T = 〈x〉. If NG(L1) induces no outer automorphism of order
2 on L1, then NG(L1) = L1 × L2 and hence, G ∼= L1 o C2. In this case, π1(A2(G))

is a nontrivial free group by [12, Theorem 5.6] and therefore H̃1(A2(G),Q) 6= 0.
Now assume that NG(L1) induces some outer automorphism, say f , of order

2 on L1. This eliminates L1
∼= U3(22) since CL1

(f) has 2-rank 2, which implies
m2(NG(L1)) ≥ 5. Hence L1

∼= A5. Now, A5 〈f〉 ∼= S5, which has 2-rank 2 and
(QD)2 (since A2(S5) is connected). By Case 0 above, NG(L1) = (L1 ×L2) 〈f〉 and
f induces an outer automorphism on both L1 and L2. Then the subposet

i(A2(G)) := {E ∈ A2(G) : E is the intersection of maximal elements of A2(G)}
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has dimension 2 (rather than dimension 3 of A2(G) itself). This can be proved
by using a similar argument to that of [14, Examples 4.10 & 4.11]. Finally, Corol-
lary 4.7 applies since K(i(A2(G))) is a G-invariant subcomplex of K(S2(G)) and
homotopy equivalent to K(A2(G)). This finishes the proof of Case 1a.

Case 1b. L1 is normal in G (hence L2 is also normal in G).
By Remark 7.1, we may assume that:

(H2) Both components L1 and L2 admit nontrivial outer automorphisms from
G.

Let H = L1CG(L1), N := N (H) and F := A2(G)−N . By (H2), F is nonempty,
and by Lemma 2.9, we can suppose that some E ∈ F has 1 = O2(CH(E)) =
O2(CL1

(E))O2(CG(L1E)). Note that the elements of F have order 2.

Subcase 1b(i). L1
∼= A5.

If E ∈ F then L1E ∼= S5, which has (QD)2. Fix E ∈ F with O2(CG(L1E)) =
1 and take A ∈ A2(L1E) exhibiting (QD)2 for L1E. Then L1E = L1A and
O2(CG(L1A)) = O2(CG(L1E)) = 1. The hypotheses of Lemma 3.14 can be checked
with X = A2(G), H = L1E, K = CG(L1E) and A exhibiting (QD)2 for L1E, so

H̃∗(A2(G),Q) 6= 0. This finishes the proof of Subcase 1b(i).

Subcase 1b(ii). L1
∼= U3(22).

By Subcase 1b(i), we may also suppose that L2 6∼= A5. By Case 0 and (H2), we
may assume that some involution f ∈ G induces outer automorphisms on L1 and
L2 simultaneously. Since CL1

(f) has 2-rank 2, we conclude that CL2
(f) has 2-rank

1. This forces L2
∼= L2(q), with q ≥ 5 odd and f inducing diagonal automorphisms

on L2, by the classification of simple groups of 2-rank 2 (see [3, Theorem 48.1]).
Moreover, if φ ∈ G is a field automorphism of L2 then CL2

(φ) ∼= L2(q1/2) has
2-rank 2, which leads to m2((L1L2) 〈φ〉) = 5. This contradicts our main hypothesis
that mp(G) = 4. In conclusion, G does not contain field automorphisms of L2 and
therefore, G ≤ Aut(L1)× Inn diag(L2).

By Theorem A.1, A2(L2) is connected. That is, L2 has (QD)2 exhibited by some
A ∈ A2(L2) (of 2-rank 2). Then O2(CG(L2A)) = O2(CG(L2)) = 1 by Remark 5.2,
and if B ∈ A2(G)>A then B/CB(L2) ≤ Inn diag(L2), which has 2-rank 2. Hence
CB(L2) 6= 1 and B = ACB(L2). By Lemma 3.14 applied to X = A2(G), H = L2

and K = CG(L2), we get H̃∗(A2(G),Q) 6= 0. This finishes the proof of Subcase
1b(ii), and hence of Case 1b and of Case 1.

Case 2. p = 3 and L1
∼= L3(22).

Note that Out(L3(22)) ∼= D12
∼= C3o(C2×C2) and Inn diag(L3(22)) ∼= L3(22)o

C3, so without loss of generality G ≤ Inn diag(L3(22))× Aut(L2). By Proposition
2.3 and the almost-simple case of the conjecture, we can suppose that G is not a
direct product of almost-simple groups. Hence, there exists C ∈ A3(G)−A3(L1L2)
of order 3 inducing diagonal automorphisms on L1

∼= L3(22). Note that L1C ∼=
(L1L2)C/L2

∼= Inn diag(L3(22)).
We show that C necessarily induces outer automorphisms on L2. If C does not

induce outer automorphisms on L2, then C ≤ L2CG(L2) and G contains the normal
subgroup Inn diag(L3(22)). This implies that CG(L2) = Inn diag(L3(22)), so G is
the direct product of Inn diag(L3(22)) by some almost-simple group T ≤ Aut(L2)
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with F ∗(T ) = L2. This is a contradiction to our earlier statement that G is not a
direct product. Therefore C also induces outer automorphisms on L2.

Recall that CL3(22)(C) ∼= A5 or C7 oC3, both of 3-rank 1. By Table 1, the poset

A3(Inn diag(L3(22))) is connected (not simply connected) and it has dimension 1.
Therefore, there exists D ∈ A3(L1C) of 3-rank 2 exhibiting (QD)3 for L1C. Note

that L1C = L1D. If O3(CG(L1C)) = 1 for some C, then H̃∗(A3(G),Q) 6= 0 by
Lemma 3.14 with X = A3(G), H = L1D and K = CG(L1D) = CG(L1C). Thus we
can assume that O3(CG(L1C)) 6= 1 for all C. In this case, let H = L1CG(L1) and
N = N (H). The subposet F := A3(G) − N consists of order 3 subgroups acting
by diagonal automorphisms on L1

∼= L3(22). By Lemma 2.9, A3(G) ' A3(H), so

H̃∗(A3(G),Q) = H̃∗(A3(H),Q) 6= 0 by (H1)Q.
This concludes the proof of the p-rank 4 case. �

Appendix A. Groups with a strongly p-embedded subgroup

In this appendix, we summarize some of the main results on the classification of
the groups with a strongly p-embedded subgroup, so that the reader can consult
them directly here. For further details see [2, 3, 8].

Recall that a finite group G has a strongly p-embedded subgroup if there exists
a proper subgroup M < G such that M contains a Sylow p-subgroup of G and
M ∩Mg is a p′-group for all g ∈ G−M . By [16, Proposition 5.2], G has a strongly
p-embedded subgroup if and only ifAp(G) is disconnected. In the following theorem
we state the classification of the groups with this property.

Theorem A.1 ([2, (6.2)]). The finite group G has a strongly p-embedded subgroup
(i.e. Ap(G) is disconnected) if and only if either Op(G) = 1 and mp(G) = 1, or
Ω1(G)/Op′(Ω1(G)) is one of the following groups:

(1) Simple of Lie type of Lie rank 1 and characteristic p,
(2) A2p with p ≥ 5,
(3) Aut(L2(23)), L3(22) or M11 with p = 3,
(4) Aut(Sz(25)), 2F4(2)′, McL, or Fi22 with p = 5,
(5) J4 with p = 11.

In Table 1 we summarize some properties on the almost-simple groups listed in
Theorem A.1. For more details on these assertions, see §7, §9 and §10 of [8, Part
I].
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