Fixed points on contractible spaces

Kevin I. Piterman

Philipps-Universität Marburg

Mathematisches Forschungsinstitut Oberwolfach

December 12, 2023

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \leq G$.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^{\mathcal{G}} \neq \emptyset$?

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^{\mathcal{G}} \neq \emptyset$?

• Brouwer fixed-point theorem. A cyclic group acting on a disc \mathbb{D}^n has a fixed point.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^G \neq \emptyset$?

- Brouwer fixed-point theorem. A cyclic group acting on a disc Dⁿ has a fixed point.
- But obviously "no" in general: $X = \mathbb{R}$ and $G = \mathbb{Z}$.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^G \neq \emptyset$?

- Brouwer fixed-point theorem. A cyclic group acting on a disc Dⁿ has a fixed point.
- But obviously "no" in general: $X = \mathbb{R}$ and $G = \mathbb{Z}$.
- At least acyclic over some ring is necessary: $X = S^n$ and $G = \mathbb{Z}_2$.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^G \neq \emptyset$?

- Brouwer fixed-point theorem. A cyclic group acting on a disc Dⁿ has a fixed point.
- But obviously "no" in general: $X = \mathbb{R}$ and $G = \mathbb{Z}$.
- At least acyclic over some ring is necessary: $X = S^n$ and $G = \mathbb{Z}_2$.
- If $G \neq 1$ is finite, it acts freely on the total space EG, which is contractible and always infinite-dimensional.

Let G be a group and X a topological space with a continuous G-action (usually a G-CW-complex).

Theorem (Equivariant Whitehead)

X is G-contractible G-complex if and only if X^H is contractible for all $H \le G$. Therefore, if X is G-contractible, X^G is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, \mathbb{Q} -acyclic, etc), is $X^G \neq \emptyset$?

- Brouwer fixed-point theorem. A cyclic group acting on a disc Dⁿ has a fixed point.
- But obviously "no" in general: $X = \mathbb{R}$ and $G = \mathbb{Z}$.
- At least acyclic over some ring is necessary: $X = S^n$ and $G = \mathbb{Z}_2$.
- If $G \neq 1$ is finite, it acts freely on the total space EG, which is contractible and always infinite-dimensional.

Assume from now on that G is a **finite** group.

Kevin Piterman

$$x \in U, y \leq x \quad \Rightarrow \quad y \in U.$$

• A finite poset is the same as a finite T_0 topological space with open sets the downward-closed sets:

$$x \in U, y \leq x \quad \Rightarrow \quad y \in U.$$

• Continuous maps = order-preserving maps.

$$x \in U, y \leq x \Rightarrow y \in U.$$

- Continuous maps = order-preserving maps.
- A finite poset X is weak-equivalent to its order-complex ΔX :

$$|\Delta X| \rightarrow X, \quad \sum_i t_i x_i \mapsto \max\{x_i : t_i \neq 0\}.$$

• A finite poset is the same as a finite T_0 topological space with open sets the downward-closed sets:

$$x \in U, y \leq x \Rightarrow y \in U.$$

- Continuous maps = order-preserving maps.
- A finite poset X is weak-equivalent to its order-complex ΔX :

$$|\Delta X| \rightarrow X, \quad \sum_i t_i x_i \mapsto \max\{x_i \ : \ t_i \neq 0\}.$$

• X could be weakly contractible but non-contractible!

$$x \in U, y \leq x \Rightarrow y \in U.$$

- Continuous maps = order-preserving maps.
- A finite poset X is weak-equivalent to its order-complex ΔX :

$$|\Delta X| \rightarrow X, \quad \sum_i t_i x_i \mapsto \max\{x_i \ : \ t_i \neq 0\}.$$

- X could be weakly contractible but non-contractible!
- (Stong) Algorithm to describe the homotopy type.

$$x \in U, y \leq x \Rightarrow y \in U.$$

- Continuous maps = order-preserving maps.
- A finite poset X is weak-equivalent to its order-complex ΔX :

$$|\Delta X| \rightarrow X, \quad \sum_i t_i x_i \mapsto \max\{x_i \ : \ t_i \neq 0\}.$$

- X could be weakly contractible but non-contractible!
- (Stong) Algorithm to describe the homotopy type.
- (Stong) X a finite G-poset, then X is G-contractible if and only if it is contractible.

$$x \in U, y \leq x \Rightarrow y \in U.$$

- Continuous maps = order-preserving maps.
- A finite poset X is weak-equivalent to its order-complex ΔX :

$$|\Delta X| \rightarrow X, \quad \sum_i t_i x_i \mapsto \max\{x_i : t_i \neq 0\}.$$

- X could be weakly contractible but non-contractible!
- (Stong) Algorithm to describe the homotopy type.
- (Stong) X a finite G-poset, then X is G-contractible if and only if it is contractible. Thus, if X is contractible then X^G ≠ Ø.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

• Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_{p}(G)^{G} \Rightarrow \forall P \in \mathcal{S}_{p}(G), P \leq PN \geq N.$$

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \Rightarrow \forall P \in \mathcal{S}_p(G), P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \quad \Rightarrow \quad \forall P \in \mathcal{S}_p(G), \ P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Quillen's conjecture is still open.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \Rightarrow \forall P \in \mathcal{S}_p(G), P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Quillen's conjecture is still open.

• We usually try to prove the \mathbb{Q} -acyclic version:

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \quad \Rightarrow \quad \forall P \in \mathcal{S}_p(G), \ P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Quillen's conjecture is still open.

• We usually try to prove the \mathbb{Q} -acyclic version:

$$\widetilde{H}_*(\mathcal{S}_p(G),\mathbb{Q})=0 \quad \Rightarrow \quad \mathcal{S}_p(G)^G \neq \emptyset.$$

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \Rightarrow \forall P \in \mathcal{S}_p(G), P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Quillen's conjecture is still open.

• We usually try to prove the \mathbb{Q} -acyclic version:

$$\widetilde{H}_*(\mathcal{S}_p(G),\mathbb{Q})=0 \quad \Rightarrow \quad \mathcal{S}_p(G)^G \neq \emptyset.$$

 (Aschbacher-Smith '92, P.-Smith '22) For odd p, it reduces to study certain homology groups of Sp for PSUn(q) and some of its extensions.

Let p be a prime and $S_p(G)$ the poset of non-trivial p-subgroups of G.

- Quillen's conjecture: if $\Delta S_p(G)$ is contractible, then $S_p(G)^G \neq \emptyset$.
- (Stong) $S_p(G)^G \neq \emptyset$ if and only if $S_p(G)$ is a contractible finite space.

$$N \in \mathcal{S}_p(G)^G \Rightarrow \forall P \in \mathcal{S}_p(G), P \leq PN \geq N.$$

QC: If $S_p(G)$ is weakly contractible, then it is contractible as a finite space.

Quillen's conjecture is still open.

• We usually try to prove the \mathbb{Q} -acyclic version:

$$\widetilde{H}_*(\mathcal{S}_p(G),\mathbb{Q})=0 \quad \Rightarrow \quad \mathcal{S}_p(G)^G \neq \emptyset.$$

- (Aschbacher-Smith '92, P.-Smith '22) For odd p, it reduces to study certain homology groups of Sp for PSUn(q) and some of its extensions.
- (P.-Smith '22, P. '23) For *p* = 2, idem but for the linear, unitary, symplectic and orthogonal groups.

Brief sketch of the reduction

Assume G is a minimal counterexample, so $\mathcal{S}_{\rho}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{\rho}(G), \mathbb{Q}) = 0$.

Assume G is a minimal counterexample, so $\mathcal{S}_{\rho}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{\rho}(G), \mathbb{Q}) = 0$.

• (Quillen '78) It holds for solvable groups.

Assume G is a minimal counterexample, so $S_p(G)^G = \emptyset$ and $\widetilde{H}_*(S_p(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.

Assume G is a minimal counterexample, so $\mathcal{S}_{\rho}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{\rho}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.

Assume G is a minimal counterexample, so $\mathcal{S}_{p}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{p}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus *F*(*G*) = 1.

Assume G is a minimal counterexample, so $\mathcal{S}_{p}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{p}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus F(G) = 1.
- $F^*(G) = L_1 \times \ldots \times L_n$ direct product of non-abelian simple groups.

Assume G is a minimal counterexample, so $\mathcal{S}_{p}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{p}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus F(G) = 1.
- $F^*(G) = L_1 \times \ldots \times L_n$ direct product of non-abelian simple groups.
- For suitable L_i ⋊ B = L_iB ≤ G, the subposet S_p(L_iBC_G(L_iB)) has a non-zero cycle that is non-zero in H̃_{*}(S_p(G), Q).

Assume G is a minimal counterexample, so $\mathcal{S}_{p}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{p}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus F(G) = 1.
- $F^*(G) = L_1 \times \ldots \times L_n$ direct product of non-abelian simple groups.
- For suitable $L_i \rtimes B = L_i B \leq G$, the subposet $S_p(L_i B C_G(L_i B))$ has a non-zero cycle that is non-zero in $\widetilde{H}_*(S_p(G), \mathbb{Q})$.
- By suitable we mean a homological condition on $S_p(L_iB)$.

Assume G is a minimal counterexample, so $\mathcal{S}_{\rho}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{\rho}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus F(G) = 1.
- $F^*(G) = L_1 \times \ldots \times L_n$ direct product of non-abelian simple groups.
- For suitable $L_i \rtimes B = L_i B \leq G$, the subposet $S_p(L_i B C_G(L_i B))$ has a non-zero cycle that is non-zero in $\widetilde{H}_*(S_p(G), \mathbb{Q})$.
- By suitable we mean a homological condition on $S_p(L_iB)$.
- Use the CFSG to detect which simple groups L_i can be eliminated in this way.

Assume G is a minimal counterexample, so $\mathcal{S}_{\rho}(G)^{G} = \emptyset$ and $\widetilde{H}_{*}(\mathcal{S}_{\rho}(G), \mathbb{Q}) = 0$.

- (Quillen '78) It holds for solvable groups.
- (Aschbacher-Kleidman '90) It holds for almost simple groups.
- (P. '20) Z(G) = 1, and $F(G) \neq 1$ would imply $\widetilde{H}_*(\mathcal{S}_p(G), \mathbb{Q}) \neq 0$.
- Thus F(G) = 1.
- $F^*(G) = L_1 \times \ldots \times L_n$ direct product of non-abelian simple groups.
- For suitable $L_i \rtimes B = L_i B \leq G$, the subposet $S_p(L_i B C_G(L_i B))$ has a non-zero cycle that is non-zero in $\widetilde{H}_*(S_p(G), \mathbb{Q})$.
- By suitable we mean a homological condition on $S_p(L_iB)$.
- Use the CFSG to detect which simple groups L_i can be eliminated in this way.
- This yields the lists of the previous theorems.

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p)=\widetilde{H}_*(S^n,\mathbb{F}_p).$$

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p)=\widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p) = \widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

• If X is mod-p acyclic then X^G is mod-p acyclic and in particular non-empty:

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p)=\widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

• If X is mod-p acyclic then X^G is mod-p acyclic and in particular non-empty:

G is a p-group and $\widetilde{H}_*(X, \mathbb{F}_p) = 0 \quad \Rightarrow \quad X^G \neq \emptyset.$

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p) = \widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

• If X is mod-p acyclic then X^G is mod-p acyclic and in particular non-empty:

G is a p-group and
$$\widetilde{H}_*(X, \mathbb{F}_p) = 0 \quad \Rightarrow \quad X^G \neq \emptyset.$$

Oliver classified the finite groups that can act without fixed points on a disc.

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p)=\widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

• If X is mod-p acyclic then X^G is mod-p acyclic and in particular non-empty:

G is a p-group and
$$\widetilde{H}_*(X, \mathbb{F}_p) = 0 \quad \Rightarrow \quad X^G \neq \emptyset.$$

Oliver classified the finite groups that can act without fixed points on a disc.

$$\mathcal{G} := \{ G : \exists P \leq H \leq G \text{ s.t. } P \text{ is a } p \text{-group, } G/H \text{ is a } q \text{-group, } H/P \text{ is cyclic} \}.$$

Smith theory ('42). Let G be a p-group acting on a finite-dimensional *regular* simplicial complex X.

• If X has the mod-p homology of an n-sphere

$$\widetilde{H}_*(X,\mathbb{F}_p)=\widetilde{H}_*(S^n,\mathbb{F}_p).$$

then X^G is a mod-p homology r-sphere for $-1 \le r \le n$.

• If X is mod-p acyclic then X^G is mod-p acyclic and in particular non-empty:

G is a p-group and
$$\widetilde{H}_*(X, \mathbb{F}_p) = 0 \implies X^G \neq \emptyset.$$

Oliver classified the finite groups that can act without fixed points on a disc.

 $\mathcal{G} := \{ G : \exists P \trianglelefteq H \trianglelefteq G \text{ s.t. } P \text{ is a } p \text{-group, } G/H \text{ is a } q \text{-group, } H/P \text{ is cyclic} \}.$

Theorem (Oliver '75)

A group G admits a fixed point free action on a disc if and only if $G \notin G$.

Every action of a finite group on a tree has a fixed point.

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

The above result cannot be extended to any dimension \geq 3 for compact contractible complexes by Floyd-Richardson '59:

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

The above result cannot be extended to any dimension \geq 3 for compact contractible complexes by Floyd-Richardson '59:

• The group A₅ acts without fixed points on the 2-skeleton X_P of the Poincaré homology 3-sphere, which is an acyclic 2-complex.

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

The above result cannot be extended to any dimension \geq 3 for compact contractible complexes by Floyd-Richardson '59:

- The group A₅ acts without fixed points on the 2-skeleton X_P of the Poincaré homology 3-sphere, which is an acyclic 2-complex.
- Thus A₅ acts without fixed points on A₅ * X_P, which is a compact contractible 3-dimensional (simplicial) complex.

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

The above result cannot be extended to any dimension \geq 3 for compact contractible complexes by Floyd-Richardson '59:

- The group A₅ acts without fixed points on the 2-skeleton X_P of the Poincaré homology 3-sphere, which is an acyclic 2-complex.
- Thus A₅ acts without fixed points on A₅ * X_P, which is a compact contractible 3-dimensional (simplicial) complex.

Conjecture (Casacuberta-Dicks '92, Aschbacher-Segev '93)

A finite group G acting on a compact contractible 2-complex has a fixed point.

A finite group G acting on a compact contractible 2-complex has a fixed point.

A finite group G acting on a compact contractible 2-complex has a fixed point.

A finite group G acting on a compact contractible 2-complex has a fixed point.

The above conjecture was established for the following families of groups (assume *admissible action*):

• (Casacuberta-Dicks '92) Solvable groups (Smith theory).

A finite group G acting on a compact contractible 2-complex has a fixed point.

- (Casacuberta-Dicks '92) Solvable groups (Smith theory).
- (Segev '93) Solvable groups and alternating groups A_n with $n \ge 6$.

A finite group G acting on a compact contractible 2-complex has a fixed point.

- (Casacuberta-Dicks '92) Solvable groups (Smith theory).
- (Segev '93) Solvable groups and alternating groups A_n with $n \ge 6$.
- (Aschbacher-Segev '93) *G* has no composition factor of type J_1 , PSL₂(q), PSU₃(q), Sz(2^{2n+1}), Ree(3^{2n+1}).

A finite group G acting on a compact contractible 2-complex has a fixed point.

- (Casacuberta-Dicks '92) Solvable groups (Smith theory).
- (Segev '93) Solvable groups and alternating groups A_n with $n \ge 6$.
- (Aschbacher-Segev '93) *G* has no composition factor of type J_1 , PSL₂(q), PSU₃(q), Sz(2^{2n+1}), Ree(3^{2n+1}).
- (Segev '94) If X is collapsible then X^{G} is collapsible and hence non-empty.

A finite group G acting on a compact contractible 2-complex has a fixed point.

The above conjecture was established for the following families of groups (assume *admissible action*):

- (Casacuberta-Dicks '92) Solvable groups (Smith theory).
- (Segev '93) Solvable groups and alternating groups A_n with $n \ge 6$.
- (Aschbacher-Segev '93) *G* has no composition factor of type J_1 , PSL₂(q), PSU₃(q), Sz(2^{2n+1}), Ree(3^{2n+1}).
- (Segev '94) If X is collapsible then X^{G} is collapsible and hence non-empty.

A major work by Oliver-Segev '02 completely classifies the groups that can act without fixed points on acyclic 2-dimensional complexes.

Oliver-Segev's Theorem A ("Minimal configuration")

For a finite group G, there exists an essential fixed point free action on a finite acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

Oliver-Segev's Theorem A ("Minimal configuration")

For a finite group G, there exists an essential fixed point free action on a finite acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

 $\mathsf{PSL}_2(q)$ with $q \ge 4$ and $q = 2^k$ or $q \equiv \pm 3 \pmod{8}$, $\mathsf{Sz}(2^{2n+1})$ with $n \ge 1$.

Oliver-Segev's Theorem A ("Minimal configuration")

For a finite group G, there exists an essential fixed point free action on a finite acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

 $\mathsf{PSL}_2(q)$ with $q \ge 4$ and $q = 2^k$ or $q \equiv \pm 3 \pmod{8}$, $\mathsf{Sz}(2^{2n+1})$ with $n \ge 1$.

Oliver-Segev's Theorem B ("Reduction step")

Let G be a finite group acting on an acyclic 2-complex X.

Oliver-Segev's Theorem A ("Minimal configuration")

For a finite group G, there exists an essential fixed point free action on a finite acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

 $\mathsf{PSL}_2(q)$ with $q \ge 4$ and $q = 2^k$ or $q \equiv \pm 3 \pmod{8}$, $\mathsf{Sz}(2^{2n+1})$ with $n \ge 1$.

Oliver-Segev's Theorem B ("Reduction step")

Let G be a finite group acting on an acyclic 2-complex X. Let N be the subgroup generated by normal subgroups $N' \triangleleft G$ such that $X^{N'} \neq \emptyset$.

Oliver-Segev's Theorem A ("Minimal configuration")

For a finite group G, there exists an essential fixed point free action on a finite acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

 $\mathsf{PSL}_2(q)$ with $q \ge 4$ and $q = 2^k$ or $q \equiv \pm 3 \pmod{8}$, $\mathsf{Sz}(2^{2n+1})$ with $n \ge 1$.

Oliver-Segev's Theorem B ("Reduction step")

Let G be a finite group acting on an acyclic 2-complex X. Let N be the subgroup generated by normal subgroups $N' \triangleleft G$ such that $X^{N'} \neq \emptyset$. Then X^N is acyclic and the action of G/N on X^N is essential.

An action of a finite group on a compact contractible 2-complex has a fixed point.

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

Theorem^{*} (P.-Sadofschi Costa, '21)

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

There are two important reductions due to previous work by Sadofschi Costa on the A_5 case.

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

There are two important reductions due to previous work by Sadofschi Costa on the A_5 case.

First reduction

It is enough to establish Theorem* for the simple groups of Theorem A.

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

There are two important reductions due to previous work by Sadofschi Costa on the A_5 case.

First reduction

It is enough to establish Theorem* for the simple groups of Theorem A.

Second reduction

Let G be one of the simple groups of Theorem A and X a fixed point free compact acyclic 2-dimensional G-complex.

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

There are two important reductions due to previous work by Sadofschi Costa on the A_5 case.

First reduction

It is enough to establish Theorem* for the simple groups of Theorem A.

Second reduction

Let G be one of the simple groups of Theorem A and X a fixed point free compact acyclic 2-dimensional G-complex. Then there is an epimorphism $\pi_1(X) \to \pi_1(X')$,

An action of a finite group on a compact contractible 2-complex has a fixed point. Moreover, if G acts without fixed points on a compact acyclic 2-complex X then there is a nontrivial unitary representation $\pi_1(X) \to U(m)$.

There are two important reductions due to previous work by Sadofschi Costa on the A_5 case.

First reduction

It is enough to establish Theorem* for the simple groups of Theorem A.

Second reduction

Let G be one of the simple groups of Theorem A and X a fixed point free compact acyclic 2-dimensional G-complex. Then there is an epimorphism $\pi_1(X) \to \pi_1(X')$, where X' is compact acyclic fixed point free G-complex obtained from $X_1^{OS}(G)$ by attaching k free orbits of 1-cells and k + 1 free orbits of 2-cells.

The graph $X_1^{OS}(G)$

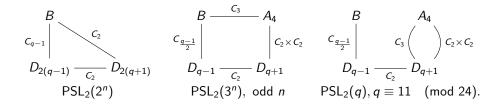
Assume $G = \mathsf{PSL}_2(q)$, $q \ge 4$, and $q = 2^n$ or $q \equiv \pm 3 \pmod{8}$, or $G = \mathsf{Sz}(2^{2n+1})$.

Assume $G = \mathsf{PSL}_2(q)$, $q \ge 4$, and $q = 2^n$ or $q \equiv \pm 3 \pmod{8}$, or $G = \mathsf{Sz}(2^{2n+1})$.

The graph $X_1^{OS}(G)$ has vertices the maximal solvable subgroups of G with edges connecting certain vertices of distinct conjugacy classes with nontrivial intersection.

Assume $G = \mathsf{PSL}_2(q)$, $q \ge 4$, and $q = 2^n$ or $q \equiv \pm 3 \pmod{8}$, or $G = \mathsf{Sz}(2^{2n+1})$.

The graph $X_1^{OS}(G)$ has vertices the maximal solvable subgroups of G with edges connecting certain vertices of distinct conjugacy classes with nontrivial intersection.



Similar diagrams for $PSL_2(q)$ with $q \equiv 5, 13, 19 \pmod{24}$ and $Sz(2^{2n+1})$.

Recall $X = X_1^{OS+k} \cup \bigcup^{k+1} Ge^2$.

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \xrightarrow{\phi} G \to 1.$$

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

•
$$N = U(m)^{k+1}$$
 and dim $N = \dim M$,

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

•
$$N = U(m)^{k+1}$$
 and dim $N = \dim M$,

2 A point of $f^{-1}(1)$ is a representation that factors through $\Gamma/\langle\langle w_0, \ldots, w_k\rangle\rangle$.

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

•
$$N = U(m)^{k+1}$$
 and dim $N = \dim M$,

2 A point of $f^{-1}(1)$ is a representation that factors through $\Gamma/\langle\langle w_0, \ldots, w_k \rangle\rangle$.

 φ ∘ ρ₀ ∈ f⁻¹(1) is a regular point and the unique representation in this set that factors through φ.

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

•
$$N = U(m)^{k+1}$$
 and dim $N = \dim M$,

2 A point of $f^{-1}(1)$ is a representation that factors through $\Gamma/\langle\langle w_0, \ldots, w_k \rangle\rangle$.

•
 •
 \(\rho\) \(\epsilon\) = \(f^{-1}(1)\)
 is a regular point and the unique representation in this set that factors through \(\phi\).

By item (4), we prove that $f^{-1}(1)$ contains more than one points (i.e. ρ_0):

Recall $X = X_1^{OS+k} \cup \bigcup_{k=1}^{k+1} Ge^2$. Let $\Gamma = \pi_1(X_1^{OS+k}(G)) : G$ be the lifting to the universal cover of X_1^{OS+k} of the maps induced by $g \in G$.

$$1 \to \pi_1(X, v_0) \to \Gamma/\langle \langle w_0, \ldots, w_k \rangle \rangle \stackrel{\phi}{\to} G \to 1.$$

We fix a *suitable* representation $\rho_0 : G \to U(m)$.

Then we produce a family of representations indexed in a compact connected orientable manifold M together with a differential map $f: M \to N$ such that:

•
$$N = U(m)^{k+1}$$
 and dim $N = \dim M$,

2 A point of $f^{-1}(1)$ is a representation that factors through $\Gamma/\langle\langle w_0, \ldots, w_k \rangle\rangle$.

φ ∘ ρ₀ ∈ f⁻¹(1) is a regular point and the unique representation in this set that factors through φ.

By item (4), we prove that $f^{-1}(1)$ contains more than one points (i.e. ρ_0):

Goal

Show that f is homotopic to a non-surjective map, so deg f = 0.

Thank you very much!