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Motivation

Let G be a group and X a topological space with a continuous G -action (usually
a G -CW-complex).

Theorem (Equivariant Whitehead)

X is G -contractible G -complex if and only if XH is contractible for all H ≤ G .
Therefore, if X is G -contractible, XG is contractible and thus non-empty.

Question. If X is just contractible (or acyclic, Q-acyclic, etc), is XG ̸= ∅?

Brouwer fixed-point theorem. A cyclic group acting on a disc Dn has a
fixed point.

But obviously “no” in general: X = R and G = Z.
At least acyclic over some ring is necessary: X = Sn and G = Z2.

If G ̸= 1 is finite, it acts freely on the total space EG , which is contractible
and always infinite-dimensional.

Assume from now on that G is a finite group.
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Finite topological spaces

An interesting situation arises with finite T0-spaces.

A finite poset is the same as a finite T0 topological space with open sets the
downward-closed sets:

x ∈ U, y ≤ x ⇒ y ∈ U.

Continuous maps = order-preserving maps.

A finite poset X is weak-equivalent to its order-complex ∆X :

|∆X | → X ,
∑
i

tixi 7→ max{xi : ti ̸= 0}.

X could be weakly contractible but non-contractible!

(Stong) Algorithm to describe the homotopy type.

(Stong) X a finite G -poset, then X is G -contractible if and only if it is
contractible. Thus, if X is contractible then XG ̸= ∅.
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Finite T0-spaces and a related conjecture by D. Quillen

Let p be a prime and Sp(G ) the poset of non-trivial p-subgroups of G .

Quillen’s conjecture: if ∆Sp(G ) is contractible, then Sp(G )G ̸= ∅.
(Stong) Sp(G )G ̸= ∅ if and only if Sp(G ) is a contractible finite space.

N ∈ Sp(G )G ⇒ ∀P ∈ Sp(G ), P ≤ PN ≥ N.

QC: If Sp(G ) is weakly contractible, then it is contractible as a finite space.

Quillen’s conjecture is still open.

We usually try to prove the Q-acyclic version:

H̃∗(Sp(G ),Q) = 0 ⇒ Sp(G )G ̸= ∅.

(Aschbacher-Smith ’92, P.-Smith ’22) For odd p, it reduces to study certain
homology groups of Sp for PSUn(q) and some of its extensions.

(P.-Smith ’22, P. ’23) For p = 2, idem but for the linear, unitary, symplectic
and orthogonal groups.
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Brief sketch of the reduction

Assume G is a minimal counterexample, so Sp(G )G = ∅ and H̃∗(Sp(G ),Q) = 0.

(Quillen ’78) It holds for solvable groups.

(Aschbacher-Kleidman ’90) It holds for almost simple groups.

(P. ’20) Z (G ) = 1, and F (G ) ̸= 1 would imply H̃∗(Sp(G ),Q) ̸= 0.

Thus F (G ) = 1.

F ∗(G ) = L1 × . . .× Ln direct product of non-abelian simple groups.

For suitable Li ⋊ B = LiB ≤ G , the subposet Sp(LiBCG (LiB)) has a

non-zero cycle that is non-zero in H̃∗(Sp(G ),Q).

By suitable we mean a homological condition on Sp(LiB).

Use the CFSG to detect which simple groups Li can be eliminated in this way.

This yields the lists of the previous theorems.
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Back to discs: Smith theory and Oliver’s classification

Smith theory (’42). Let G be a p-group acting on a finite-dimensional regular
simplicial complex X .

If X has the mod-p homology of an n-sphere

H̃∗(X ,Fp) = H̃∗(S
n,Fp).

then XG is a mod-p homology r -sphere for −1 ≤ r ≤ n.

If X is mod-p acyclic then XG is mod-p acyclic and in particular non-empty:

G is a p-group and H̃∗(X ,Fp) = 0 ⇒ XG ̸= ∅.

Oliver classified the finite groups that can act without fixed points on a disc.

G := {G : ∃P ⊴ H ⊴ G s.t. P is a p-group, G/H is a q-group, H/P is cyclic}.

Theorem (Oliver ’75)

A group G admits a fixed point free action on a disc if and only if G /∈ G.
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Fixed points free actions on contractible complexes

Theorem (Serre ’80)

Every action of a finite group on a tree has a fixed point.

Question. How far can we extend this result?

The above result cannot be extended to any dimension ≥ 3 for compact
contractible complexes by Floyd-Richardson ’59:

The group A5 acts without fixed points on the 2-skeleton XP of the
Poincaré homology 3-sphere, which is an acyclic 2-complex.

Thus A5 acts without fixed points on A5 ∗ XP , which is a compact
contractible 3-dimensional (simplicial) complex.

Conjecture (Casacuberta-Dicks ’92, Aschbacher-Segev ’93)

A finite group G acting on a compact contractible 2-complex has a fixed point.
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On the Casacuberta-Dicks/Aschbacher-Segev conjecture

Conjecture (Casacuberta-Dicks ’92, Aschbacher-Segev ’93)

A finite group G acting on a compact contractible 2-complex has a fixed point.

The above conjecture was established for the following families of groups (assume
admissible action):

(Casacuberta-Dicks ’92) Solvable groups (Smith theory).

(Segev ’93) Solvable groups and alternating groups An with n ≥ 6.

(Aschbacher-Segev ’93) G has no composition factor of type
J1,PSL2(q),PSU3(q),Sz(2

2n+1),Ree(32n+1).

(Segev ’94) If X is collapsible then XG is collapsible and hence non-empty.

A major work by Oliver-Segev ’02 completely classifies the groups that can act
without fixed points on acyclic 2-dimensional complexes.
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(Segev ’93) Solvable groups and alternating groups An with n ≥ 6.

(Aschbacher-Segev ’93) G has no composition factor of type
J1,PSL2(q),PSU3(q),Sz(2

2n+1),Ree(32n+1).

(Segev ’94) If X is collapsible then XG is collapsible and hence non-empty.

A major work by Oliver-Segev ’02 completely classifies the groups that can act
without fixed points on acyclic 2-dimensional complexes.
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On the Oliver-Segev classification

The action of G on X is essential if there is no 1 ̸= N ◁ G such that for all
H ≤ G , the inclusion XHN ↪→ XH is an isomorphism in homology.

Oliver-Segev’s Theorem A (“Minimal configuration”)

For a finite group G , there exists an essential fixed point free action on a finite
acyclic 2-complex if and only if G is isomorphic to one of the simple groups:

PSL2(q) with q ≥ 4 and q = 2k or q ≡ ±3 (mod 8), Sz(22n+1) with n ≥ 1.

Oliver-Segev’s Theorem B (“Reduction step”)

Let G be a finite group acting on an acyclic 2-complex X . Let N be the subgroup
generated by normal subgroups N ′ ◁ G such that XN′ ̸= ∅.
Then XN is acyclic and the action of G/N on XN is essential.
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Fixed points and compact contractible 2-complexes

Theorem* (P.-Sadofschi Costa, ’21)

An action of a finite group on a compact contractible 2-complex has a fixed point.
Moreover, if G acts without fixed points on a compact acyclic 2-complex X then
there is a nontrivial unitary representation π1(X ) → U(m).

There are two important reductions due to previous work by Sadofschi Costa on
the A5 case.

First reduction

It is enough to establish Theorem* for the simple groups of Theorem A.

Second reduction

Let G be one of the simple groups of Theorem A and X a fixed point free compact
acyclic 2-dimensional G -complex. Then there is an epimorphism π1(X ) → π1(X

′),
where X ′ is compact acyclic fixed point free G -complex obtained from XOS

1 (G ) by
attaching k free orbits of 1-cells and k + 1 free orbits of 2-cells.
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The graph XOS
1 (G )

Assume G = PSL2(q), q ≥ 4, and q = 2n or q ≡ ±3 (mod 8), or G = Sz(22n+1).

The graph XOS
1 (G ) has vertices the maximal solvable subgroups of G with edges

connecting certain vertices of distinct conjugacy classes with nontrivial
intersection.

B

Cq−1

C2

D2(q−1)
C2

D2(q+1)

B

C q−1
2

C3
A4

C2×C2

Dq−1
C2

Dq+1

B

C q−1
2

A4

C2×C2C3

Dq−1
C2

Dq+1

PSL2(2
n) PSL2(3

n), odd n PSL2(q), q ≡ 11 (mod 24).

Similar diagrams for PSL2(q) with q ≡ 5, 13, 19 (mod 24) and Sz(22n+1).

Kevin Piterman Fixed points on contractible spaces December 12, 2023 11 / 13



The graph XOS
1 (G )

Assume G = PSL2(q), q ≥ 4, and q = 2n or q ≡ ±3 (mod 8), or G = Sz(22n+1).

The graph XOS
1 (G ) has vertices the maximal solvable subgroups of G with edges

connecting certain vertices of distinct conjugacy classes with nontrivial
intersection.

B

Cq−1

C2

D2(q−1)
C2

D2(q+1)

B

C q−1
2

C3
A4

C2×C2

Dq−1
C2

Dq+1

B

C q−1
2

A4

C2×C2C3

Dq−1
C2

Dq+1

PSL2(2
n) PSL2(3

n), odd n PSL2(q), q ≡ 11 (mod 24).

Similar diagrams for PSL2(q) with q ≡ 5, 13, 19 (mod 24) and Sz(22n+1).

Kevin Piterman Fixed points on contractible spaces December 12, 2023 11 / 13



The graph XOS
1 (G )

Assume G = PSL2(q), q ≥ 4, and q = 2n or q ≡ ±3 (mod 8), or G = Sz(22n+1).

The graph XOS
1 (G ) has vertices the maximal solvable subgroups of G with edges

connecting certain vertices of distinct conjugacy classes with nontrivial
intersection.

B

Cq−1

C2

D2(q−1)
C2

D2(q+1)

B

C q−1
2

C3
A4

C2×C2

Dq−1
C2

Dq+1

B

C q−1
2

A4

C2×C2C3

Dq−1
C2

Dq+1

PSL2(2
n) PSL2(3

n), odd n PSL2(q), q ≡ 11 (mod 24).

Similar diagrams for PSL2(q) with q ≡ 5, 13, 19 (mod 24) and Sz(22n+1).

Kevin Piterman Fixed points on contractible spaces December 12, 2023 11 / 13



A manifold of representations

Recall X = XOS+k
1 ∪

⋃k+1 Ge2.

Let Γ = π1(X
OS+k
1 (G )) : G be the lifting to the

universal cover of XOS+k
1 of the maps induced by g ∈ G .

1 → π1(X , v0) → Γ/⟨⟨w0, . . . ,wk⟩⟩
ϕ→ G → 1.

We fix a suitable representation ρ0 : G → U(m).

Then we produce a family of representations indexed in a compact connected
orientable manifold M together with a differential map f : M → N such that:

1 N = U(m)k+1 and dimN = dimM,

2 A point of f −1(1) is a representation that factors through Γ/⟨⟨w0, . . . ,wk⟩⟩.
3 ϕ ◦ ρ0 ∈ f −1(1) is a regular point and the unique representation in this set

that factors through ϕ.

By item (4), we prove that f −1(1) contains more than one points (i.e. ρ0):

Goal

Show that f is homotopic to a non-surjective map, so deg f = 0.
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Thank you very much!
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