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Basic preliminaries

A simplicial complex K on a vertex set V , is a subset K ⊆ 2V such that
σ ∈ K and τ ⊆ σ implies τ ∈ K .

The simplices are the elements of K .

Topology of K = topology of its geometric realisation.

A topological space Y is a wedge of spheres if

Y ≃ Sn1 ∨ Sn2 ∨ . . . ∨ Snk ,

where Sj is the sphere of dimension j .
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Basic preliminaries

Let X be a poset.

1 The order-complex of X is the simplicial complex K(X ) with vertex
set X and simplices the finite chains

x0 < x1 < . . . < xn

of elements of X .

2 Topology of X = topology of K(X ).

3 We say that X is a wedge of spheres if K(X ) is.
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Sphericity and Cohen-Macaulay property

At the “homotopy” level (i.e. vanishing of homotopy groups πm(X , x0)):

1 A complex K of dimension d is spherical if it is (d − 1)-connected.
Equivalently, K is a wedge of spheres of dimension d

K ≃
∨
i∈I

Sd .

2 A complex K is Cohen-Macaulay if for all σ ∈ K (including σ = ∅),
the link LkK (σ) is spherical of the correct dimension (namely d − |σ|).

If R is a ring, and we replace (d − 1)-connected above by H̃m(K ,R) = 0
for all m ≤ d − 1, then we can define spherical over R and
Cohen-Macaulay over R.
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Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field K.

T(V ) = poset of subspaces of V ordered by inclusion,

T̊(V ) = T(V ) \ {0,V }.

1 T(V ) is the lattice of flats of a matroid.

2 Therefore, T̊(V ) is shellable.

3 In particular, T̊(V ) is Cohen-Macaulay and hence a wedge of spheres
of dimension n − 2.

4 H̃n−2(T̊(V ),Z) gives rise to the “Steinberg module” of GLn(K).
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Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :

1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Beyond the linear case

Let V be a vector space of finite dimension n over a field K.

τ ∈ Aut(K) an automorphism of order ≤ 2 and ϵ ∈ {1,−1}.

Ψ a ϵ-Hermitian form over V :
1 Ψ(−, v) is K-linear for all v ∈ V ;

2 Ψ(v ,w) = ϵτ(Ψ(w , v)) for all v ,w ∈ V ;

3 if char(K) = 2, we additionally require Ψ(v , v) = 0 for all v ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 6 / 22



Classical forms

τ ϵ Geometry Isometry group

1 −1 Symplectic Spn(K,Ψ)
1 1 Orthogonal On(K,Ψ)

̸= 1 ±1 Unitary GUn(K,Ψ)

Finite fields

1 Symplectic forms are unique: Ψ(v ,w) =
∑n/2

i=1 viwn−i − vn−iwi .

2 Orthogonal forms are basically two (char(K) ̸= 2):

Ψ(v ,w) =
n−1∑
i=1

viwi + dvnwn.

3 Unitary forms are unique: |K| = q2, τ(x) = xq and

Ψ(v ,w) =
n∑

i=1

viw
q
i .

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 7 / 22



Classical forms

τ ϵ Geometry Isometry group

1 −1 Symplectic Spn(K,Ψ)
1 1 Orthogonal On(K,Ψ)

̸= 1 ±1 Unitary GUn(K,Ψ)

Finite fields

1 Symplectic forms are unique: Ψ(v ,w) =
∑n/2

i=1 viwn−i − vn−iwi .

2 Orthogonal forms are basically two (char(K) ̸= 2):

Ψ(v ,w) =
n−1∑
i=1

viwi + dvnwn.

3 Unitary forms are unique: |K| = q2, τ(x) = xq and

Ψ(v ,w) =
n∑

i=1

viw
q
i .

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 7 / 22



Classical forms

τ ϵ Geometry Isometry group

1 −1 Symplectic Spn(K,Ψ)
1 1 Orthogonal On(K,Ψ)

̸= 1 ±1 Unitary GUn(K,Ψ)

Finite fields

1 Symplectic forms are unique: Ψ(v ,w) =
∑n/2

i=1 viwn−i − vn−iwi .

2 Orthogonal forms are basically two (char(K) ̸= 2):

Ψ(v ,w) =
n−1∑
i=1

viwi + dvnwn.

3 Unitary forms are unique: |K| = q2, τ(x) = xq and

Ψ(v ,w) =
n∑

i=1

viw
q
i .

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 7 / 22



Classical forms

τ ϵ Geometry Isometry group

1 −1 Symplectic Spn(K,Ψ)
1 1 Orthogonal On(K,Ψ)

̸= 1 ±1 Unitary GUn(K,Ψ)

Finite fields

1 Symplectic forms are unique: Ψ(v ,w) =
∑n/2

i=1 viwn−i − vn−iwi .

2 Orthogonal forms are basically two (char(K) ̸= 2):

Ψ(v ,w) =
n−1∑
i=1

viwi + dvnwn.

3 Unitary forms are unique: |K| = q2, τ(x) = xq and

Ψ(v ,w) =
n∑

i=1

viw
q
i .

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 7 / 22



Classical forms

τ ϵ Geometry Isometry group

1 −1 Symplectic Spn(K,Ψ)
1 1 Orthogonal On(K,Ψ)

̸= 1 ±1 Unitary GUn(K,Ψ)

Finite fields

1 Symplectic forms are unique: Ψ(v ,w) =
∑n/2

i=1 viwn−i − vn−iwi .

2 Orthogonal forms are basically two (char(K) ̸= 2):

Ψ(v ,w) =
n−1∑
i=1

viwi + dvnwn.

3 Unitary forms are unique: |K| = q2, τ(x) = xq and

Ψ(v ,w) =
n∑

i=1

viw
q
i .

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms April 5, 2023 7 / 22



Associated complexes and posets

Let (V ,Ψ) be non-degenerate of dimension n over K.

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

D(V ) = poset of proper orthogonal decompositions
V = V1 ⊥ . . . ⊥ Vr , r ≥ 2, ordered by refinement.

We want to understand the Cohen-Macaulay property on these posets.
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Totally isotropic subspaces

Let (V ,Ψ) be non-degenerate of dimension n over K.

Theorem

1 If K is finite, TI(V ) is Cohen-Macaulay. Moreover, the number of
spheres is the order of a Sylow p-subgroup of the isometry group,
where p = char(K).

2 If K = C and Ψ is the usual inner product, then TI(V ) = ∅ and
T̊(V ) = S(V ).

Question

For which fields and forms Ψ is TI(V ) Cohen-Macaulay?
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Non-degenerate subspaces and orthogonal decompositions

We would like to know more about S(V ) and D(V ).

Proposition

1 All minimal elements of S(V ) have the same dimension, which is 1 or
2 (the latter in the symplectic case).

2 If V = V1 ⊥ . . . ⊥ Vr = W1 ⊥ . . . ⊥ Ws are maximal orthogonal
decompositions, then r = s.

3 dim(S(V )) = dim(D(V )). Moreover, they are pure posets.

We have a homotopy equivalence:

S(V ) ≃ D(V ) ∨
∨

π∈D(V )

S|π|−2 ∗ D(V )<π.

Corollary

S(V ) is Cohen-Macaulay (over R) ⇔ D(V ) is Cohen-Macaulay (over R).
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Frame complex

Definition

Let (V ,Ψ) be non-degenerate of dimension n over K.

G(V ) graph with vertices the minimal elements of S(V ), and edges
(S ,T ) ∈ G(V ) iff S ⊥ T ;

Frame complex F(V ) = clique complex of G(V ).
That is, a simplex is a set {V1, . . . ,Vr} with the Vi minimal
non-degenerate and pairwise orthogonal.

Note that

dim(F(V )) = dim(D(V ))+1 = dim(S(V ))+1.
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Some properties

1 F(V ) collapses 1-dimension:

If σ = {V1, . . . ,Vs} is a face of codimension 1, then

⟨σ⟩⊥ = (V1 ⊕ . . .⊕ Vr )
⊥ ∈ S(V )

is a minimal element. Hence F(V ) collapses to a dim(F(V ))− 1
dimensional subcomplex.

2 To avoid non-canonical choices, we work with the face-poset:

F̂(V ) = F(V ) \ {codimensional 1 faces, ∅}.

3 Then F(V ) ≃ F̂(V ) and dim(F̂(V )) = dim(S(V )) = dim(D(V )).

Proposition

If F̂(V ) is Cohen-Macaulay (over R) then S(V ) and D(V ) are too.
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Unitary spaces

From now on, we assume that |τ | = 2, so (V ,Ψ) is a unitary space of
dimension n and

dim(F̂(V )) = dim(S(V )) = dim(D(V )) = n − 2.

Theorem

Suppose that dimV = n ≥ 2.

1 F(V ) is connected if and only if (n,K) = (2,F22) or (n,K) ̸= (3,F22).

2 If n = 3, K ̸= F22 , then F(V ) is homotopy equivalent to a wedge of
spheres of dimension 1.

3 If n ≥ 5 and (n,K) ̸= (6,F22), then F(V ) is simply connected.

4 If (n,K) = (6,F22) then π1
(
F(V )

)
= C2 × C2.
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More on π1 in dimension n = 4

Example: case (n,K) = (4,F22)

F(V ) ≃
∨81

i=1 S
1.

π1(S(V )) = F (201), H2(S(V ),Z) = Z40.

Example: case (n,K) = (4,F32)

H1(F(V ),Z) = Z70, H2(F(V ),Z) = Z9114.
π1(S(V )) = C3 × C3, H2(S(V ),Z) = Z108809.

If K = Fq2 , q ≥ 4 and n = 4, S(V ) and D(V ) are simply connected.

Question

If |K| ≥ 42, n = 4, is F(V ) simply connected?
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Garland’s method

We want to apply the following theorem in order to decide if (the free part
of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let i ≥ 0. Suppose that for every
simplex σ of size i the following two conditions hold:

1 LkK (σ) is connected of dimension ≥ 1;

2 The smallest non-zero eigenvalue of the normalised Laplacian of
LkK (σ)

1 is > i
i+1 .

Then H̃i (K ,Q) = 0.

Normalised Laplacian of a graph G :

A = adjacency matrix;

D = diagonal matrix with the degrees of the vertices;

L(G ) = Id−D−1A is the normalised Laplacian.
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Eigenvalues of G(V )

We apply Garland’s method to the frame complex F(V ) when K = Fq2 is
a finite field:

1 If σ ∈ F(V ) then LkF(V )(σ) = F(⟨σ⟩⊥).
2 F(V )1 = G(V ).

3 Moreover, G(V ) is regular of degree

dn :=
|GU(n − 1, q)|

(q + 1)|GU(n − 2, q)|
=

qn−2(qn−1 − (−1)n−1)

q + 1
.

Key idea

We show that there are at most 4 eigenvalues by proving that the minimal
polynomial has degree at most 4.

Compute the powers A,A2,A3,A4 of the adjacency matrix
A = A(n, q) of G(V ).
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Eigenvalues of G(V ) (continued)

Theorem (Eigenvalues of G(V ))

Let V be a unitary space of dimension n ≥ 2 over Fq2 . Let

µ1 := dn, µ2 := qn−2, µ3 := (−1)nqn−3, µ4 := −qn−2.

The eigenvalues of the adjacency matrix of the graph G(V ) are as follows.

(i) If n = 2, the eigenvalues are µ1 and µ4.

(ii) If n ≥ 3 and q ̸= 2, the eigenvalues are µ1, µ2, µ3 and µ4.

(iii) If n = 3 and q = 2, the eigenvalues are µ1 and µ3.

(iv) If n > 3 and q = 2, the eigenvalues are µ1, µ3 and (−1)nµ4.
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(i) If n = 2, the eigenvalues are µ1 and µ4.

(ii) If n ≥ 3 and q ̸= 2, the eigenvalues are µ1, µ2, µ3 and µ4.

(iii) If n = 3 and q = 2, the eigenvalues are µ1 and µ3.

(iv) If n > 3 and q = 2, the eigenvalues are µ1, µ3 and (−1)nµ4.
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Application of Garland’s method

We check the bound of Garland’s method for i = n − j . This is a
polynomial in q with degree depending on j : for 3 ≤ j ≤ n, let

Pj(q) =

{
qj−1−(−1)j−1

q+1 + j − 1 j odd if q = 2,
qj+q
q+1 + j − 1 q = 2 and j even.

Corollary

If n < Pj(q) then H̃i (F(V ),Q) = 0 for all i ≤ n − j .
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Higher connectivity for H∗(F(V ),Q).

Recall that F(V ) ≃ F̂(V ), of dimension n − 2.

Corollary

Let X = F̂(V ), S(V ) or D(V ), and k a field of characteristic 0.

1 If n < q + 1 then H̃i (X ,k) = 0 for all i ≤ n − 3.

2 If q ̸= 2, n ≥ 7, H̃i (X ,k) = 0 for all i ≤ n
2 .

3 In fact, if q ≥ 11 and n ≥ 8, then H̃i (X ,k) = 0 for all i ≤ 3
4n − 1.

Corollary

If n < q + 1 then F̂(V ), S(V ) and D(V ) are Cohen-Macaulay over k.
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Important remarks

Example

If q = 2, n = 6 and j = 4 then Pj(q) = 9 > n. By Garland’s theorem

H2(F(V ),k) = H1(F(V ),k) = 0,

but
H1(F(V ),Z) = Z2 ⊕ Z2.

Failure of Cohen-Macaulayness

If q(q − 1) + 1 ≤ n ≤ q(q(q − 1) + 1) then

H̃n−3(F̂(V ),Q) ̸= 0 and χ̃(F̂(V ))(−1)n−2 < 0.

Thus F̂(V ) is not Cohen-Macaulay (not even over some ring R) if
n ≥ q(q − 1) + 1.
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More open questions

Let X = F̂(V ), S(V ) or D(V ).

1 Is X homotopically Cohen-Macaulay if n < q + 1?

2 Is X [n/2]-connected?

3 As an exponential structure, from the linear case we deduce

χ̃(D(V )) =
(−1)n

n
·
n−1∏
i=1

((−q)i − 1) · fn(−q),

where fn is a polynomial of degree
(n
2

)
with positive integer

coefficients.

4 Does χ̃(D(V )) always have the correct sign? Moreover, it seems that
the largest real root of fn(−q) converges to a number 2.49... < 2.5.

5 If |K| ≥ 42, is D(V ) Cohen-Macaulay?
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Thank you very much for your attention!
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