Posets associated to vector spaces with non-degenerate forms

Kevin I. Piterman Volkmar Welker
Philipps-Universität Marburg, Germany

KTH - April 5, 2023

Basic preliminaries

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^{V}$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

Basic preliminaries

> A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^{V}$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.

Basic preliminaries

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^{V}$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.
Topology of $K=$ topology of its geometric realisation.

Basic preliminaries

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^{V}$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.
Topology of $K=$ topology of its geometric realisation.

Basic preliminaries

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^{V}$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.
Topology of $K=$ topology of its geometric realisation.

A topological space Y is a wedge of spheres if

$$
Y \simeq \mathbb{S}^{n_{1}} \vee \mathbb{S}^{n_{2}} \vee \ldots \vee \mathbb{S}^{n_{k}}
$$

where \mathbb{S}^{j} is the sphere of dimension j.

Basic preliminaries

Let X be a poset.

Basic preliminaries

Let X be a poset.
(1) The order-complex of X is the simplicial complex $\mathcal{K}(X)$ with vertex set X and simplices the finite chains

$$
x_{0}<x_{1}<\ldots<x_{n}
$$

of elements of X.

Basic preliminaries

Let X be a poset.
(1) The order-complex of X is the simplicial complex $\mathcal{K}(X)$ with vertex set X and simplices the finite chains

$$
x_{0}<x_{1}<\ldots<x_{n}
$$

of elements of X.

Basic preliminaries

Let X be a poset.
(1) The order-complex of X is the simplicial complex $\mathcal{K}(X)$ with vertex set X and simplices the finite chains

$$
x_{0}<x_{1}<\ldots<x_{n}
$$

of elements of X.

(2) Topology of $X=$ topology of $\mathcal{K}(X)$.

Basic preliminaries

Let X be a poset.
(1) The order-complex of X is the simplicial complex $\mathcal{K}(X)$ with vertex set X and simplices the finite chains

$$
x_{0}<x_{1}<\ldots<x_{n}
$$

of elements of X.

(2) Topology of $X=$ topology of $\mathcal{K}(X)$.
(3) We say that X is a wedge of spheres if $\mathcal{K}(X)$ is.

Sphericity and Cohen-Macaulay property

Sphericity and Cohen-Macaulay property

At the "homotopy" level (i.e. vanishing of homotopy groups $\left.\pi_{m}\left(X, x_{0}\right)\right)$:

Sphericity and Cohen-Macaulay property

At the "homotopy" level (i.e. vanishing of homotopy groups $\left.\pi_{m}\left(X, x_{0}\right)\right)$:
(1) A complex K of dimension d is spherical if it is $(d-1)$-connected.

Sphericity and Cohen-Macaulay property

At the "homotopy" level (i.e. vanishing of homotopy groups $\left.\pi_{m}\left(X, x_{0}\right)\right)$:
(1) A complex K of dimension d is spherical if it is $(d-1)$-connected. Equivalently, K is a wedge of spheres of dimension d

$$
K \simeq \bigvee_{i \in I} \mathbb{S}^{d}
$$

Sphericity and Cohen-Macaulay property

At the "homotopy" level (i.e. vanishing of homotopy groups $\left.\pi_{m}\left(X, x_{0}\right)\right)$:
(1) A complex K of dimension d is spherical if it is $(d-1)$-connected. Equivalently, K is a wedge of spheres of dimension d

$$
K \simeq \bigvee_{i \in I} \mathbb{S}^{d}
$$

(2) A complex K is Cohen-Macaulay if for all $\sigma \in K$ (including $\sigma=\emptyset$), the link $\operatorname{Lk}_{K}(\sigma)$ is spherical of the correct dimension (namely $d-|\sigma|$).

Sphericity and Cohen-Macaulay property

At the "homotopy" level (i.e. vanishing of homotopy groups $\left.\pi_{m}\left(X, x_{0}\right)\right)$:
(1) A complex K of dimension d is spherical if it is $(d-1)$-connected. Equivalently, K is a wedge of spheres of dimension d

$$
K \simeq \bigvee_{i \in I} \mathbb{S}^{d}
$$

(2) A complex K is Cohen-Macaulay if for all $\sigma \in K$ (including $\sigma=\emptyset$), the link $\operatorname{Lk}_{K}(\sigma)$ is spherical of the correct dimension (namely $d-|\sigma|$).

If R is a ring, and we replace $(d-1)$-connected above by $\widetilde{H}_{m}(K, R)=0$ for all $m \leq d-1$, then we can define spherical over R and Cohen-Macaulay over R.

Motivating example: the linear case

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.
$T(V)=$ poset of subspaces of V ordered by inclusion,

$$
\stackrel{\circ}{\mathrm{T}}(V)=\mathrm{T}(V) \backslash\{0, V\} .
$$

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.

$$
\begin{aligned}
& \mathrm{T}(V)=\text { poset of subspaces of } V \text { ordered by inclusion, } \\
& \qquad \stackrel{\circ}{\top}(V)=\mathrm{T}(V) \backslash\{0, V\}
\end{aligned}
$$

(1) $\mathrm{T}(V)$ is the lattice of flats of a matroid.

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.

$$
\begin{aligned}
& \mathrm{T}(V)=\text { poset of subspaces of } V \text { ordered by inclusion, } \\
& \qquad \stackrel{\circ}{\mathrm{T}}(V)=\mathrm{T}(V) \backslash\{0, V\}
\end{aligned}
$$

(1) $\mathrm{T}(V)$ is the lattice of flats of a matroid.
(2) Therefore, ${ }^{\circ}(V)$ is shellable.

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.

$$
\begin{aligned}
& \mathrm{T}(V)=\text { poset of subspaces of } V \text { ordered by inclusion, } \\
& \qquad \stackrel{\circ}{\mathrm{T}}(V)=\mathrm{T}(V) \backslash\{0, V\}
\end{aligned}
$$

(1) $\mathrm{T}(V)$ is the lattice of flats of a matroid.
(2) Therefore, ${ }^{\circ}(V)$ is shellable.
(3) In particular, ${ }_{\top}^{\circ}(V)$ is Cohen-Macaulay and hence a wedge of spheres of dimension $n-2$.

Motivating example: the linear case

Assume that V is a vector space of finite dimension n over a field \mathbb{K}.

$$
\begin{aligned}
& \mathrm{T}(V)=\text { poset of subspaces of } V \text { ordered by inclusion, } \\
& \qquad \stackrel{\circ}{\top}(V)=\mathrm{T}(V) \backslash\{0, V\}
\end{aligned}
$$

(1) $\mathrm{T}(V)$ is the lattice of flats of a matroid.
(2) Therefore, ${ }^{\circ}(V)$ is shellable.
(3) In particular, ${ }_{\top}^{\circ}(V)$ is Cohen-Macaulay and hence a wedge of spheres of dimension $n-2$.
(4) $\widetilde{H}_{n-2}\left({ }^{\circ}(V), \mathbb{Z}\right)$ gives rise to the "Steinberg module" of $G L_{n}(\mathbb{K})$.

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.
- Ψ a ϵ-Hermitian form over V :

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.
- Ψ a ϵ-Hermitian form over V :
(1) $\Psi(-, v)$ is \mathbb{K}-linear for all $v \in V$;

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.
- Ψ a ϵ-Hermitian form over V :
(1) $\Psi(-, v)$ is \mathbb{K}-linear for all $v \in V$;
(2) $\Psi(v, w)=\epsilon \tau(\Psi(w, v))$ for all $v, w \in V$;

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.
- Ψ a ϵ-Hermitian form over V :
(1) $\Psi(-, v)$ is \mathbb{K}-linear for all $v \in V$;
(2) $\Psi(v, w)=\epsilon \tau(\Psi(w, v))$ for all $v, w \in V$;
(3) if $\operatorname{char}(\mathbb{K})=2$, we additionally require $\Psi(v, v)=0$ for all $v \in V$.

Beyond the linear case

- Let V be a vector space of finite dimension n over a field \mathbb{K}.
- $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in\{1,-1\}$.
- Ψ a ϵ-Hermitian form over V :
(1) $\Psi(-, v)$ is \mathbb{K}-linear for all $v \in V$;
(2) $\Psi(v, w)=\epsilon \tau(\Psi(w, v))$ for all $v, w \in V$;
(3) if $\operatorname{char}(\mathbb{K})=2$, we additionally require $\Psi(v, v)=0$ for all $v \in V$.
- Moreover, we assume that Ψ is non-degenerate:

$$
V^{\perp}=\operatorname{Rad}(V, \Psi)=\{v \in V: \Psi(v, w)=0 \text { for all } w \in V\}=0
$$

Classical forms

τ	ϵ	Geometry	Isometry group
1	-1	Symplectic	$\mathrm{Sp}_{n}(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_{n}(\mathbb{K}, \Psi)$
$\neq 1$	± 1	Unitary	$\mathrm{GU}_{n}(\mathbb{K}, \Psi)$

Classical forms

τ	ϵ	Geometry	Isometry group
1	-1	Symplectic	$\mathrm{Sp}_{n}(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_{n}(\mathbb{K}, \Psi)$
$\neq 1$	± 1	Unitary	$\mathrm{GU}_{n}(\mathbb{K}, \Psi)$

Finite fields

Classical forms

τ	ϵ	Geometry	Isometry group
1	-1	Symplectic	$\mathrm{Sp}_{n}(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_{n}(\mathbb{K}, \Psi)$
$\neq 1$	± 1	Unitary	$\mathrm{GU}_{n}(\mathbb{K}, \Psi)$

Finite fields

(1) Symplectic forms are unique: $\Psi(v, w)=\sum_{i=1}^{n / 2} v_{i} w_{n-i}-v_{n-i} w_{i}$.

Classical forms

τ	ϵ	Geometry	Isometry group
1	-1	Symplectic	$\mathrm{Sp}_{n}(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_{n}(\mathbb{K}, \Psi)$
$\neq 1$	± 1	Unitary	$\mathrm{GU}_{n}(\mathbb{K}, \Psi)$

Finite fields

(1) Symplectic forms are unique: $\Psi(v, w)=\sum_{i=1}^{n / 2} v_{i} w_{n-i}-v_{n-i} w_{i}$.
(2) Orthogonal forms are basically two $(\operatorname{char}(\mathbb{K}) \neq 2)$:

$$
\Psi(v, w)=\sum_{i=1}^{n-1} v_{i} w_{i}+d v_{n} w_{n}
$$

Classical forms

τ	ϵ	Geometry	Isometry group
1	-1	Symplectic	$\mathrm{Sp}_{n}(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_{n}(\mathbb{K}, \Psi)$
$\neq 1$	± 1	Unitary	$\mathrm{GU}_{n}(\mathbb{K}, \Psi)$

Finite fields

(1) Symplectic forms are unique: $\Psi(v, w)=\sum_{i=1}^{n / 2} v_{i} w_{n-i}-v_{n-i} w_{i}$.
(2) Orthogonal forms are basically two $(\operatorname{char}(\mathbb{K}) \neq 2)$:

$$
\Psi(v, w)=\sum_{i=1}^{n-1} v_{i} w_{i}+d v_{n} w_{n}
$$

(3) Unitary forms are unique: $|\mathbb{K}|=q^{2}, \tau(x)=x^{q}$ and

$$
\Psi(v, w)=\sum_{i=1}^{n} v_{i} w_{i}^{q}
$$

Associated complexes and posets

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

We define the following posets:

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

We define the following posets:

- $\operatorname{TI}(V)=$ poset of totally isotropic subspaces $\neq 0$;

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

We define the following posets:

- $\operatorname{TI}(V)=$ poset of totally isotropic subspaces $\neq 0$;
- $\mathcal{S}(V)=$ poset of non-degenerate subspaces $\neq 0, V$;

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

We define the following posets:

- $\operatorname{TI}(V)=$ poset of totally isotropic subspaces $\neq 0$;
- $\mathcal{S}(V)=$ poset of non-degenerate subspaces $\neq 0, V$;
- $\mathcal{D}(V)=$ poset of proper orthogonal decompositions

$$
V=V_{1} \perp \ldots \perp V_{r}, r \geq 2, \text { ordered by refinement. }
$$

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S)=S \cap S^{\perp}=0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\left.\Psi\right|_{S}=0$).

We define the following posets:

- $\mathrm{TI}(V)=$ poset of totally isotropic subspaces $\neq 0$;
- $\mathcal{S}(V)=$ poset of non-degenerate subspaces $\neq 0, V$;
- $\mathcal{D}(V)=$ poset of proper orthogonal decompositions $V=V_{1} \perp \ldots \perp V_{r}, r \geq 2$, ordered by refinement.

We want to understand the Cohen-Macaulay property on these posets.

Totally isotropic subspaces

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.
Theorem

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.
Theorem
(1) If \mathbb{K} is finite, $\mathrm{TI}(V)$ is Cohen-Macaulay.

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Theorem

(1) If \mathbb{K} is finite, $\mathrm{TI}(V)$ is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow p-subgroup of the isometry group, where $p=\operatorname{char}(\mathbb{K})$.

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Theorem

(1) If \mathbb{K} is finite, $\operatorname{TI}(V)$ is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow p-subgroup of the isometry group, where $p=\operatorname{char}(\mathbb{K})$.
(2) If $\mathbb{K}=\mathbb{C}$ and Ψ is the usual inner product, then $\mathrm{TI}(V)=\emptyset$ and $\div(V)=\mathcal{S}(V)$.

Totally isotropic subspaces

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Theorem

(1) If \mathbb{K} is finite, $\mathrm{TI}(V)$ is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow p-subgroup of the isometry group, where $p=\operatorname{char}(\mathbb{K})$.
(2) If $\mathbb{K}=\mathbb{C}$ and Ψ is the usual inner product, then $\mathrm{TI}(V)=\emptyset$ and $\stackrel{\circ}{\top}(V)=\mathcal{S}(V)$.

Question

For which fields and forms Ψ is $\mathrm{TI}(V)$ Cohen-Macaulay?

Non-degenerate subspaces and orthogonal decompositions

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).
(2) If $V=V_{1} \perp \ldots \perp V_{r}=W_{1} \perp \ldots \perp W_{s}$ are maximal orthogonal decompositions, then $r=s$.

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).
(2) If $V=V_{1} \perp \ldots \perp V_{r}=W_{1} \perp \ldots \perp W_{s}$ are maximal orthogonal decompositions, then $r=s$.
(3) $\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$.

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).
(2) If $V=V_{1} \perp \ldots \perp V_{r}=W_{1} \perp \ldots \perp W_{s}$ are maximal orthogonal decompositions, then $r=s$.
(3) $\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$. Moreover, they are pure posets.

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).
(2) If $V=V_{1} \perp \ldots \perp V_{r}=W_{1} \perp \ldots \perp W_{s}$ are maximal orthogonal decompositions, then $r=s$.
(3) $\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$. Moreover, they are pure posets.

We have a homotopy equivalence:

$$
\mathcal{S}(V) \simeq \mathcal{D}(V) \vee \bigvee_{\pi \in \mathcal{D}(V)} \mathbb{S}^{|\pi|-2} * \mathcal{D}(V)_{<\pi}
$$

Non-degenerate subspaces and orthogonal decompositions

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

(1) All minimal elements of $\mathcal{S}(V)$ have the same dimension, which is 1 or 2 (the latter in the symplectic case).
(2) If $V=V_{1} \perp \ldots \perp V_{r}=W_{1} \perp \ldots \perp W_{s}$ are maximal orthogonal decompositions, then $r=s$.
(3) $\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$. Moreover, they are pure posets.

We have a homotopy equivalence:

$$
\mathcal{S}(V) \simeq \mathcal{D}(V) \vee \bigvee_{\pi \in \mathcal{D}(V)} \mathbb{S}^{|\pi|-2} * \mathcal{D}(V)_{<\pi}
$$

Corollary

$\mathcal{S}(V)$ is Cohen-Macaulay (over $R) \Leftrightarrow \mathcal{D}(V)$ is Cohen-Macaulay (over R).

Frame complex

Definition

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

Frame complex

Definition

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

- $\mathcal{G}(V)$ graph with vertices the minimal elements of $\mathcal{S}(V)$, and edges $(S, T) \in \mathcal{G}(V)$ iff $S \perp T$;

Frame complex

Definition

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

- $\mathcal{G}(V)$ graph with vertices the minimal elements of $\mathcal{S}(V)$, and edges $(S, T) \in \mathcal{G}(V)$ iff $S \perp T$;
- Frame complex $\mathcal{F}(V)=$ clique complex of $\mathcal{G}(V)$.

Frame complex

Definition

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

- $\mathcal{G}(V)$ graph with vertices the minimal elements of $\mathcal{S}(V)$, and edges $(S, T) \in \mathcal{G}(V)$ iff $S \perp T$;
- Frame complex $\mathcal{F}(V)=$ clique complex of $\mathcal{G}(V)$. That is, a simplex is a set $\left\{V_{1}, \ldots, V_{r}\right\}$ with the V_{i} minimal non-degenerate and pairwise orthogonal.

Frame complex

Definition

Let (V, Ψ) be non-degenerate of dimension n over \mathbb{K}.

- $\mathcal{G}(V)$ graph with vertices the minimal elements of $\mathcal{S}(V)$, and edges $(S, T) \in \mathcal{G}(V)$ iff $S \perp T$;
- Frame complex $\mathcal{F}(V)=$ clique complex of $\mathcal{G}(V)$. That is, a simplex is a set $\left\{V_{1}, \ldots, V_{r}\right\}$ with the V_{i} minimal non-degenerate and pairwise orthogonal.

Note that

$$
\operatorname{dim}(\mathcal{F}(V))=\operatorname{dim}(\mathcal{D}(V))+1=\operatorname{dim}(\mathcal{S}(V))+1
$$

Some properties

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

- If $\sigma=\left\{V_{1}, \ldots, V_{s}\right\}$ is a face of codimension 1 , then

$$
\langle\sigma\rangle^{\perp}=\left(V_{1} \oplus \ldots \oplus V_{r}\right)^{\perp} \in \mathcal{S}(V)
$$

is a minimal element.

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

- If $\sigma=\left\{V_{1}, \ldots, V_{s}\right\}$ is a face of codimension 1 , then

$$
\langle\sigma\rangle^{\perp}=\left(V_{1} \oplus \ldots \oplus V_{r}\right)^{\perp} \in \mathcal{S}(V)
$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a $\operatorname{dim}(\mathcal{F}(V))-1$ dimensional subcomplex.

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

- If $\sigma=\left\{V_{1}, \ldots, V_{s}\right\}$ is a face of codimension 1 , then

$$
\langle\sigma\rangle^{\perp}=\left(V_{1} \oplus \ldots \oplus V_{r}\right)^{\perp} \in \mathcal{S}(V)
$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a $\operatorname{dim}(\mathcal{F}(V))-1$ dimensional subcomplex.
(2) To avoid non-canonical choices, we work with the face-poset:

$$
\hat{\mathcal{F}}(V)=\mathcal{F}(V) \backslash\{\text { codimensional } 1 \text { faces, } \emptyset\}
$$

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

- If $\sigma=\left\{V_{1}, \ldots, V_{s}\right\}$ is a face of codimension 1 , then

$$
\langle\sigma\rangle^{\perp}=\left(V_{1} \oplus \ldots \oplus V_{r}\right)^{\perp} \in \mathcal{S}(V)
$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a $\operatorname{dim}(\mathcal{F}(V))-1$ dimensional subcomplex.
(2) To avoid non-canonical choices, we work with the face-poset:

$$
\hat{\mathcal{F}}(V)=\mathcal{F}(V) \backslash\{\text { codimensional } 1 \text { faces, } \emptyset\}
$$

(3) Then $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$ and $\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$.

Some properties

(1) $\mathcal{F}(V)$ collapses 1-dimension:

- If $\sigma=\left\{V_{1}, \ldots, V_{s}\right\}$ is a face of codimension 1 , then

$$
\langle\sigma\rangle^{\perp}=\left(V_{1} \oplus \ldots \oplus V_{r}\right)^{\perp} \in \mathcal{S}(V)
$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a $\operatorname{dim}(\mathcal{F}(V))-1$ dimensional subcomplex.
(2) To avoid non-canonical choices, we work with the face-poset:

$$
\hat{\mathcal{F}}(V)=\mathcal{F}(V) \backslash\{\text { codimensional } 1 \text { faces, } \emptyset\}
$$

(3) Then $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$ and $\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))$.

Proposition

If $\hat{\mathcal{F}}(V)$ is Cohen-Macaulay (over R) then $\mathcal{S}(V)$ and $\mathcal{D}(V)$ are too.

Unitary spaces

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Theorem

Suppose that $\operatorname{dim} V=n \geq 2$.

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Theorem

Suppose that $\operatorname{dim} V=n \geq 2$.
(1) $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K})=\left(2, \mathbb{F}_{2^{2}}\right)$ or $(n, \mathbb{K}) \neq\left(3, \mathbb{F}_{2^{2}}\right)$.

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Theorem

Suppose that $\operatorname{dim} V=n \geq 2$.
(1) $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K})=\left(2, \mathbb{F}_{2^{2}}\right)$ or $(n, \mathbb{K}) \neq\left(3, \mathbb{F}_{2^{2}}\right)$.
(2) If $n=3, \mathbb{K} \neq \mathbb{F}_{2^{2}}$, then $\mathcal{F}(V)$ is homotopy equivalent to a wedge of spheres of dimension 1.

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Theorem

Suppose that $\operatorname{dim} V=n \geq 2$.
(1) $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K})=\left(2, \mathbb{F}_{2^{2}}\right)$ or $(n, \mathbb{K}) \neq\left(3, \mathbb{F}_{2^{2}}\right)$.
(2) If $n=3, \mathbb{K} \neq \mathbb{F}_{2^{2}}$, then $\mathcal{F}(V)$ is homotopy equivalent to a wedge of spheres of dimension 1.
(3) If $n \geq 5$ and $(n, \mathbb{K}) \neq\left(6, \mathbb{F}_{2^{2}}\right)$, then $\mathcal{F}(V)$ is simply connected.

Unitary spaces

From now on, we assume that $|\tau|=2$, so (V, Ψ) is a unitary space of dimension n and

$$
\operatorname{dim}(\hat{\mathcal{F}}(V))=\operatorname{dim}(\mathcal{S}(V))=\operatorname{dim}(\mathcal{D}(V))=n-2
$$

Theorem

Suppose that $\operatorname{dim} V=n \geq 2$.
(1) $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K})=\left(2, \mathbb{F}_{2^{2}}\right)$ or $(n, \mathbb{K}) \neq\left(3, \mathbb{F}_{2^{2}}\right)$.
(2) If $n=3, \mathbb{K} \neq \mathbb{F}_{2^{2}}$, then $\mathcal{F}(V)$ is homotopy equivalent to a wedge of spheres of dimension 1.
(3) If $n \geq 5$ and $(n, \mathbb{K}) \neq\left(6, \mathbb{F}_{2^{2}}\right)$, then $\mathcal{F}(V)$ is simply connected.
(4) If $(n, \mathbb{K})=\left(6, \mathbb{F}_{2^{2}}\right)$ then $\pi_{1}(\mathcal{F}(V))=C_{2} \times C_{2}$.

More on π_{1} in dimension $n=4$

More on π_{1} in dimension $n=4$

$$
\text { Example: case }(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)
$$

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$
$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$. $\pi_{1}(\mathcal{S}(V))=F(201)$,

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$$
\begin{aligned}
& \mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1} . \\
& \pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40} .
\end{aligned}
$$

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$
$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.
Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$
$H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}$,

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$
$H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}, H_{2}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{9114}$.

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$

$H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}, H_{2}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{9114}$. $\pi_{1}(\mathcal{S}(V))=C_{3} \times C_{3}$,

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$

$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$

$$
\begin{aligned}
& H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}, H_{2}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{9114} \\
& \pi_{1}(\mathcal{S}(V))=C_{3} \times C_{3}, H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{108809}
\end{aligned}
$$

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$
$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$
$H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}, H_{2}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{9114}$.
$\pi_{1}(\mathcal{S}(V))=C_{3} \times C_{3}, H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{108809}$.
If $\mathbb{K}=\mathbb{F}_{q^{2}}, q \geq 4$ and $n=4, \mathcal{S}(V)$ and $\mathcal{D}(V)$ are simply connected.

More on π_{1} in dimension $n=4$

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{2^{2}}\right)$
$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^{1}$.
$\pi_{1}(\mathcal{S}(V))=F(201), H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{40}$.

Example: case $(n, \mathbb{K})=\left(4, \mathbb{F}_{3^{2}}\right)$

$$
\begin{aligned}
& H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{70}, H_{2}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}^{9114} \\
& \pi_{1}(\mathcal{S}(V))=C_{3} \times C_{3}, H_{2}(\mathcal{S}(V), \mathbb{Z})=\mathbb{Z}^{108809}
\end{aligned}
$$

If $\mathbb{K}=\mathbb{F}_{q^{2}}, q \geq 4$ and $n=4, \mathcal{S}(V)$ and $\mathcal{D}(V)$ are simply connected.

Question

If $|\mathbb{K}| \geq 4^{2}, n=4$, is $\mathcal{F}(V)$ simply connected?

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$.

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.
Then $\widetilde{H}_{i}(K, \mathbb{Q})=0$.

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.
Then $\widetilde{H}_{i}(K, \mathbb{Q})=0$.
Normalised Laplacian of a graph G :

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.
Then $\widetilde{H}_{i}(K, \mathbb{Q})=0$.
Normalised Laplacian of a graph G :

- $A=$ adjacency matrix;

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.
Then $\widetilde{H}_{i}(K, \mathbb{Q})=0$.
Normalised Laplacian of a graph G:

- $A=$ adjacency matrix;
- $D=$ diagonal matrix with the degrees of the vertices;

Garland's method

We want to apply the following theorem in order to decide if (the free part of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \geq 0$. Suppose that for every simplex σ of size i the following two conditions hold:
(1) $\mathrm{Lk}_{K}(\sigma)$ is connected of dimension ≥ 1;
(2) The smallest non-zero eigenvalue of the normalised Laplacian of $\operatorname{Lk}_{K}(\sigma)^{1}$ is $>\frac{i}{i+1}$.
Then $\widetilde{H}_{i}(K, \mathbb{Q})=0$.
Normalised Laplacian of a graph G:

- $A=$ adjacency matrix;
- $D=$ diagonal matrix with the degrees of the vertices;
- $L(G)=\operatorname{ld}-D^{-1} A$ is the normalised Laplacian.

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:
(1) If $\sigma \in \mathcal{F}(V)$ then $\operatorname{Lk}_{\mathcal{F}(V)}(\sigma)=\mathcal{F}\left(\langle\sigma\rangle^{\perp}\right)$.

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:
(1) If $\sigma \in \mathcal{F}(V)$ then $\operatorname{Lk}_{\mathcal{F}(V)}(\sigma)=\mathcal{F}\left(\langle\sigma\rangle^{\perp}\right)$.
(2) $\mathcal{F}(V)^{1}=\mathcal{G}(V)$.

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:
(1) If $\sigma \in \mathcal{F}(V)$ then $\operatorname{Lk}_{\mathcal{F}(V)}(\sigma)=\mathcal{F}\left(\langle\sigma\rangle^{\perp}\right)$.
(2) $\mathcal{F}(V)^{1}=\mathcal{G}(V)$.
(3) Moreover, $\mathcal{G}(V)$ is regular of degree

$$
d_{n}:=\frac{|\operatorname{GU}(n-1, q)|}{(q+1)|\operatorname{GU}(n-2, q)|}=\frac{q^{n-2}\left(q^{n-1}-(-1)^{n-1}\right)}{q+1}
$$

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:
(1) If $\sigma \in \mathcal{F}(V)$ then $\operatorname{Lk}_{\mathcal{F}(V)}(\sigma)=\mathcal{F}\left(\langle\sigma\rangle^{\perp}\right)$.
(2) $\mathcal{F}(V)^{1}=\mathcal{G}(V)$.
(3) Moreover, $\mathcal{G}(V)$ is regular of degree

$$
d_{n}:=\frac{|\mathrm{GU}(n-1, q)|}{(q+1)|\mathrm{GU}(n-2, q)|}=\frac{q^{n-2}\left(q^{n-1}-(-1)^{n-1}\right)}{q+1}
$$

Key idea

We show that there are at most 4 eigenvalues by proving that the minimal polynomial has degree at most 4 .

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K}=\mathbb{F}_{q^{2}}$ is a finite field:
(1) If $\sigma \in \mathcal{F}(V)$ then $\operatorname{Lk}_{\mathcal{F}(V)}(\sigma)=\mathcal{F}\left(\langle\sigma\rangle^{\perp}\right)$.
(2) $\mathcal{F}(V)^{1}=\mathcal{G}(V)$.
(3) Moreover, $\mathcal{G}(V)$ is regular of degree

$$
d_{n}:=\frac{|\mathrm{GU}(n-1, q)|}{(q+1)|\mathrm{GU}(n-2, q)|}=\frac{q^{n-2}\left(q^{n-1}-(-1)^{n-1}\right)}{q+1}
$$

Key idea

We show that there are at most 4 eigenvalues by proving that the minimal polynomial has degree at most 4.

- Compute the powers A, A^{2}, A^{3}, A^{4} of the adjacency matrix $A=A(n, q)$ of $\mathcal{G}(V)$.

Eigenvalues of $\mathcal{G}(V)$ (continued)

Eigenvalues of $\mathcal{G}(V)$ (continued)

Theorem (Eigenvalues of $\mathcal{G}(V)$)

Let V be a unitary space of dimension $n \geq 2$ over $\mathbb{F}_{q^{2}}$. Let

$$
\mu_{1}:=d_{n}, \quad \mu_{2}:=q^{n-2}, \quad \mu_{3}:=(-1)^{n} q^{n-3}, \quad \mu_{4}:=-q^{n-2} .
$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.

Eigenvalues of $\mathcal{G}(V)$ (continued)

Theorem (Eigenvalues of $\mathcal{G}(V)$)

Let V be a unitary space of dimension $n \geq 2$ over $\mathbb{F}_{q^{2}}$. Let

$$
\mu_{1}:=d_{n}, \quad \mu_{2}:=q^{n-2}, \quad \mu_{3}:=(-1)^{n} q^{n-3}, \quad \mu_{4}:=-q^{n-2} .
$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.
(i) If $n=2$, the eigenvalues are μ_{1} and μ_{4}.

Eigenvalues of $\mathcal{G}(V)$ (continued)

Theorem (Eigenvalues of $\mathcal{G}(V)$)

Let V be a unitary space of dimension $n \geq 2$ over $\mathbb{F}_{q^{2}}$. Let

$$
\mu_{1}:=d_{n}, \quad \mu_{2}:=q^{n-2}, \quad \mu_{3}:=(-1)^{n} q^{n-3}, \quad \mu_{4}:=-q^{n-2} .
$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.
(i) If $n=2$, the eigenvalues are μ_{1} and μ_{4}.
(ii) If $n \geq 3$ and $q \neq 2$, the eigenvalues are $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4}.

Eigenvalues of $\mathcal{G}(V)$ (continued)

Theorem (Eigenvalues of $\mathcal{G}(V)$)

Let V be a unitary space of dimension $n \geq 2$ over $\mathbb{F}_{q^{2}}$. Let

$$
\mu_{1}:=d_{n}, \quad \mu_{2}:=q^{n-2}, \quad \mu_{3}:=(-1)^{n} q^{n-3}, \quad \mu_{4}:=-q^{n-2} .
$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.
(i) If $n=2$, the eigenvalues are μ_{1} and μ_{4}.
(ii) If $n \geq 3$ and $q \neq 2$, the eigenvalues are $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4}.
(iii) If $n=3$ and $q=2$, the eigenvalues are μ_{1} and μ_{3}.

Eigenvalues of $\mathcal{G}(V)$ (continued)

Theorem (Eigenvalues of $\mathcal{G}(V)$)

Let V be a unitary space of dimension $n \geq 2$ over $\mathbb{F}_{q^{2}}$. Let

$$
\mu_{1}:=d_{n}, \quad \mu_{2}:=q^{n-2}, \quad \mu_{3}:=(-1)^{n} q^{n-3}, \quad \mu_{4}:=-q^{n-2} .
$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.
(i) If $n=2$, the eigenvalues are μ_{1} and μ_{4}.
(ii) If $n \geq 3$ and $q \neq 2$, the eigenvalues are $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4}.
(iii) If $n=3$ and $q=2$, the eigenvalues are μ_{1} and μ_{3}.
(iv) If $n>3$ and $q=2$, the eigenvalues are μ_{1}, μ_{3} and $(-1)^{n} \mu_{4}$.

Application of Garland's method

Application of Garland's method

We check the bound of Garland's method for $i=n-j$.

Application of Garland's method

We check the bound of Garland's method for $i=n-j$. This is a polynomial in q with degree depending on j : for $3 \leq j \leq n$, let

$$
P_{j}(q)= \begin{cases}\frac{q^{j-1}-(-1)^{j-1}}{q+1}+j-1 & j \text { odd if } q=2 \\ \frac{q^{j}+q}{q+1}+j-1 & q=2 \text { and } j \text { even. }\end{cases}
$$

Application of Garland's method

We check the bound of Garland's method for $i=n-j$. This is a polynomial in q with degree depending on j : for $3 \leq j \leq n$, let

$$
P_{j}(q)= \begin{cases}\frac{q^{j-1}-(-1)^{i-1}}{q+1}+j-1 & j \text { odd if } q=2 \\ \frac{q^{j}+q}{q+1}+j-1 & q=2 \text { and } j \text { even }\end{cases}
$$

Corollary

If $n<P_{j}(q)$ then $\widetilde{H}_{i}(\mathcal{F}(V), \mathbb{Q})=0$ for all $i \leq n-j$.

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Corollary

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0 .

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Corollary

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0 .
(1) If $n<q+1$ then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq n-3$.

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Corollary

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0 .
(1) If $n<q+1$ then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq n-3$.
(2) If $q \neq 2, n \geq 7, \widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq \frac{n}{2}$.

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Corollary

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0 .
(1) If $n<q+1$ then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq n-3$.
(2) If $q \neq 2, n \geq 7, \widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq \frac{n}{2}$.
(3) In fact, if $q \geq 11$ and $n \geq 8$, then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq \frac{3}{4} n-1$.

Higher connectivity for $H_{*}(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension $n-2$.

Corollary

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0 .
(1) If $n<q+1$ then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq n-3$.
(2) If $q \neq 2, n \geq 7, \widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq \frac{n}{2}$.
(3) In fact, if $q \geq 11$ and $n \geq 8$, then $\widetilde{H}_{i}(X, \mathbb{k})=0$ for all $i \leq \frac{3}{4} n-1$.

Corollary

If $n<q+1$ then $\hat{\mathcal{F}}(V), \mathcal{S}(V)$ and $\mathcal{D}(V)$ are Cohen-Macaulay over \mathbb{k}.

Important remarks

Important remarks

Example

If $q=2, n=6$ and $j=4$ then $P_{j}(q)=9>n$.

Important remarks

Example

If $q=2, n=6$ and $j=4$ then $P_{j}(q)=9>n$. By Garland's theorem

$$
H_{2}(\mathcal{F}(V), \mathbb{k})=H_{1}(\mathcal{F}(V), \mathbb{k})=0
$$

but

$$
H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

Important remarks

Example

If $q=2, n=6$ and $j=4$ then $P_{j}(q)=9>n$. By Garland's theorem

$$
H_{2}(\mathcal{F}(V), \mathbb{k})=H_{1}(\mathcal{F}(V), \mathbb{k})=0
$$

but

$$
H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

Failure of Cohen-Macaulayness

Important remarks

Example

If $q=2, n=6$ and $j=4$ then $P_{j}(q)=9>n$. By Garland's theorem

$$
H_{2}(\mathcal{F}(V), \mathbb{k})=H_{1}(\mathcal{F}(V), \mathbb{k})=0
$$

but

$$
H_{1}(\mathcal{F}(V), \mathbb{Z})=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

Failure of Cohen-Macaulayness

If $q(q-1)+1 \leq n \leq q(q(q-1)+1)$ then

$$
\widetilde{H}_{n-3}(\hat{\mathcal{F}}(V), \mathbb{Q}) \neq 0 \quad \text { and } \quad \tilde{\chi}(\hat{\mathcal{F}}(V))(-1)^{n-2}<0
$$

Thus $\hat{\mathcal{F}}(V)$ is not Cohen-Macaulay (not even over some ring R) if $n \geq q(q-1)+1$.

More open questions

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?
(2) Is $X[n / 2]$-connected?

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?
(2) Is $X[n / 2]$-connected?
(3) As an exponential structure, from the linear case we deduce

$$
\tilde{\chi}(\mathcal{D}(V))=\frac{(-1)^{n}}{n} \cdot \prod_{i=1}^{n-1}\left((-q)^{i}-1\right) \cdot f_{n}(-q)
$$

where f_{n} is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?
(2) Is $X[n / 2]$-connected?
(3) As an exponential structure, from the linear case we deduce

$$
\tilde{\chi}(\mathcal{D}(V))=\frac{(-1)^{n}}{n} \cdot \prod_{i=1}^{n-1}\left((-q)^{i}-1\right) \cdot f_{n}(-q)
$$

where f_{n} is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.
(9) Does $\tilde{\chi}(\mathcal{D}(V))$ always have the correct sign?

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?
(2) Is $X[n / 2]$-connected?
(3) As an exponential structure, from the linear case we deduce

$$
\tilde{\chi}(\mathcal{D}(V))=\frac{(-1)^{n}}{n} \cdot \prod_{i=1}^{n-1}\left((-q)^{i}-1\right) \cdot f_{n}(-q)
$$

where f_{n} is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.
(9) Does $\tilde{\chi}(\mathcal{D}(V))$ always have the correct sign? Moreover, it seems that the largest real root of $f_{n}(-q)$ converges to a number $2.49 \ldots<2.5$.

More open questions

Let $X=\hat{\mathcal{F}}(V), \mathcal{S}(V)$ or $\mathcal{D}(V)$.
(1) Is X homotopically Cohen-Macaulay if $n<q+1$?
(2) Is $X[n / 2]$-connected?
(3) As an exponential structure, from the linear case we deduce

$$
\tilde{\chi}(\mathcal{D}(V))=\frac{(-1)^{n}}{n} \cdot \prod_{i=1}^{n-1}\left((-q)^{i}-1\right) \cdot f_{n}(-q)
$$

where f_{n} is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.
(9) Does $\tilde{\chi}(\mathcal{D}(V))$ always have the correct sign? Moreover, it seems that the largest real root of $f_{n}(-q)$ converges to a number $2.49 \ldots<2.5$.
(3) If $|\mathbb{K}| \geq 4^{2}$, is $\mathcal{D}(V)$ Cohen-Macaulay?

Thank you very much for your attention!

