Posets associated to vector spaces with non-degenerate forms

Kevin I. Piterman Volkmar Welker

Philipps-Universität Marburg, Germany

KTH - April 5, 2023

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^V$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^V$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^V$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.

Topology of K = topology of its geometric realisation.

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^V$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.

Topology of K = topology of its geometric realisation.

A simplicial complex K on a vertex set V, is a subset $K \subseteq 2^V$ such that $\sigma \in K$ and $\tau \subseteq \sigma$ implies $\tau \in K$.

The simplices are the elements of K.

Topology of K = topology of its geometric realisation.

A topological space Y is a wedge of spheres if

$$Y\simeq \mathbb{S}^{n_1}\vee \mathbb{S}^{n_2}\vee \ldots \vee \mathbb{S}^{n_k},$$

where \mathbb{S}^{j} is the sphere of dimension j.

The order-complex of X is the simplicial complex K(X) with vertex set X and simplices the finite chains

$$x_0 < x_1 < \ldots < x_n$$

of elements of X.

The order-complex of X is the simplicial complex K(X) with vertex set X and simplices the finite chains

$$x_0 < x_1 < \ldots < x_n$$

of elements of X.

The order-complex of X is the simplicial complex K(X) with vertex set X and simplices the finite chains

$$x_0 < x_1 < \ldots < x_n$$

of elements of X.

2 Topology of X = topology of $\mathcal{K}(X)$.

The order-complex of X is the simplicial complex K(X) with vertex set X and simplices the finite chains

$$x_0 < x_1 < \ldots < x_n$$

of elements of X.

2 Topology of X = topology of $\mathcal{K}(X)$.

③ We say that X is a wedge of spheres if $\mathcal{K}(X)$ is.

At the "homotopy" level (i.e. vanishing of homotopy groups $\pi_m(X, x_0)$): A complex K of dimension d is spherical if it is (d - 1)-connected.

A complex K of dimension d is spherical if it is (d - 1)-connected.
 Equivalently, K is a wedge of spheres of dimension d

$$K\simeq\bigvee_{i\in I}\mathbb{S}^d.$$

A complex K of dimension d is spherical if it is (d - 1)-connected. Equivalently, K is a wedge of spheres of dimension d

$$K\simeq\bigvee_{i\in I}\mathbb{S}^d.$$

② A complex K is Cohen-Macaulay if for all σ ∈ K (including σ = Ø), the link Lk_K(σ) is spherical of the *correct* dimension (namely d − |σ|).

A complex K of dimension d is spherical if it is (d - 1)-connected.
 Equivalently, K is a wedge of spheres of dimension d

$$K\simeq \bigvee_{i\in I}\mathbb{S}^d.$$

② A complex K is Cohen-Macaulay if for all σ ∈ K (including σ = Ø), the link Lk_K(σ) is spherical of the *correct* dimension (namely d − |σ|).

If *R* is a ring, and we replace (d - 1)-connected above by $\widetilde{H}_m(K, R) = 0$ for all $m \le d - 1$, then we can define spherical over *R* and Cohen-Macaulay over *R*.

T(V) = poset of subspaces of V ordered by inclusion,

 $\mathring{\mathsf{T}}(V) = \mathsf{T}(V) \setminus \{0, V\}.$

T(V) = poset of subspaces of V ordered by inclusion, $\mathring{T}(V) = T(V) \setminus \{0, V\}.$

1 T(V) is the lattice of flats of a matroid.

T(V) = poset of subspaces of V ordered by inclusion,

$$\mathring{\mathsf{T}}(V) = \mathsf{T}(V) \setminus \{0, V\}.$$

T(V) is the lattice of flats of a matroid.
Therefore, T(V) is shellable.

T(V) = poset of subspaces of V ordered by inclusion,

$$\mathring{\mathsf{T}}(V) = \mathsf{T}(V) \setminus \{0, V\}.$$

- **1** $\mathsf{T}(V)$ is the lattice of flats of a matroid.
- 2 Therefore, $\mathring{T}(V)$ is shellable.
- In particular, $\mathring{T}(V)$ is Cohen-Macaulay and hence a wedge of spheres of dimension n 2.

T(V) = poset of subspaces of V ordered by inclusion,

$$\mathring{\mathsf{T}}(V) = \mathsf{T}(V) \setminus \{0, V\}.$$

- **1** T(V) is the lattice of flats of a matroid.
- **2** Therefore, $\mathring{\mathsf{T}}(V)$ is shellable.
- In particular, $\mathring{T}(V)$ is Cohen-Macaulay and hence a wedge of spheres of dimension n 2.
- $\widetilde{H}_{n-2}(\mathring{T}(V),\mathbb{Z})$ gives rise to the "Steinberg module" of $GL_n(\mathbb{K})$.

• Let V be a vector space of finite dimension n over a field \mathbb{K} .

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.
- Ψ a ϵ -Hermitian form over V:

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.
- Ψ a ϵ -Hermitian form over V:
 - **1** $\Psi(-, v)$ is \mathbb{K} -linear for all $v \in V$;

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.
- Ψ a ϵ -Hermitian form over V:
 - **1** $\Psi(-, v)$ is \mathbb{K} -linear for all $v \in V$;

2
$$\Psi(v,w) = \epsilon \tau(\Psi(w,v))$$
 for all $v,w \in V$;

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.
- Ψ a ϵ -Hermitian form over V:
 - **1** $\Psi(-, v)$ is \mathbb{K} -linear for all $v \in V$;
 - 2 $\Psi(v, w) = \epsilon \tau(\Psi(w, v))$ for all $v, w \in V$;
 - **3** if char(\mathbb{K}) = 2, we additionally require $\Psi(v, v) = 0$ for all $v \in V$.

- Let V be a vector space of finite dimension n over a field \mathbb{K} .
- $\tau \in Aut(\mathbb{K})$ an automorphism of order ≤ 2 and $\epsilon \in \{1, -1\}$.
- Ψ a ϵ -Hermitian form over V:
 - **1** $\Psi(-, v)$ is \mathbb{K} -linear for all $v \in V$;

2
$$\Psi(v, w) = \epsilon \tau(\Psi(w, v))$$
 for all $v, w \in V$;

3 if char(\mathbb{K}) = 2, we additionally require $\Psi(v, v) = 0$ for all $v \in V$.

• Moreover, we assume that Ψ is non-degenerate:

$$V^{\perp}=\mathsf{Rad}(V,\Psi)=\{v\in V:\Psi(v,w)=0 ext{ for all }w\in V\}=0.$$

Classical forms

au	ϵ	Geometry	Isometry group
1	-1	Symplectic	$Sp_n(\mathbb{K},\Psi)$
1	1	Orthogonal	$O_n(\mathbb{K},\Psi)$
$ \neq 1 $	± 1	Unitary	$GU_n(\mathbb{K},\Psi)$

au	ϵ	Geometry	Isometry group
1	-1	Symplectic	$Sp_n(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_n(\mathbb{K},\Psi)$
eq 1	± 1	Unitary	$GU_n(\mathbb{K},\Psi)$

au	ϵ	Geometry	Isometry group
1	-1	Symplectic	$Sp_n(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_n(\mathbb{K},\Psi)$
eq 1	± 1	Unitary	$GU_n(\mathbb{K},\Psi)$

• Symplectic forms are unique: $\Psi(v, w) = \sum_{i=1}^{n/2} v_i w_{n-i} - v_{n-i} w_i$.

au	ϵ	Geometry	Isometry group
1	-1	Symplectic	$Sp_n(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_n(\mathbb{K},\Psi)$
eq 1	± 1	Unitary	$GU_n(\mathbb{K},\Psi)$

- Symplectic forms are unique: $\Psi(v, w) = \sum_{i=1}^{n/2} v_i w_{n-i} v_{n-i} w_i$.
- **②** Orthogonal forms are basically two $(char(\mathbb{K}) \neq 2)$:

$$\Psi(v,w)=\sum_{i=1}^{n-1}v_iw_i+dv_nw_n.$$

au	ϵ	Geometry	Isometry group
1	-1	Symplectic	$Sp_n(\mathbb{K}, \Psi)$
1	1	Orthogonal	$O_n(\mathbb{K},\Psi)$
eq 1	± 1	Unitary	$GU_n(\mathbb{K},\Psi)$

- Symplectic forms are unique: $\Psi(v, w) = \sum_{i=1}^{n/2} v_i w_{n-i} v_{n-i} w_i$.
- **②** Orthogonal forms are basically two $(char(\mathbb{K}) \neq 2)$:

$$\Psi(v,w)=\sum_{i=1}^{n-1}v_iw_i+dv_nw_n.$$

③ Unitary forms are unique: $|\mathbb{K}| = q^2$, $\tau(x) = x^q$ and

$$\Psi(v,w)=\sum_{i=1}^n v_i w_i^q.$$

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

Definitions

A subspace $S \leq V$ is said to be:

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

Definitions

- A subspace $S \leq V$ is said to be:
 - non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;

Associated complexes and posets

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

• $TI(V) = poset of totally isotropic subspaces \neq 0;$

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

- $TI(V) = poset of totally isotropic subspaces \neq 0;$
- $S(V) = \text{poset of non-degenerate subspaces} \neq 0, V;$

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

- $TI(V) = poset of totally isotropic subspaces \neq 0;$
- $S(V) = \text{poset of non-degenerate subspaces} \neq 0, V;$
- *D*(*V*) = poset of proper orthogonal decompositions
 V = *V*₁ ⊥ ... ⊥ *V_r*, *r* ≥ 2, ordered by *refinement*.

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

- $TI(V) = poset of totally isotropic subspaces \neq 0;$
- $S(V) = \text{poset of non-degenerate subspaces} \neq 0, V;$
- D(V) = poset of proper orthogonal decompositions
 V = V₁ ⊥ ... ⊥ V_r, r ≥ 2, ordered by refinement.

We want to understand the Cohen-Macaulay property on these posets.

Totally isotropic subspaces

Theorem

Theorem

1 If \mathbb{K} is finite, $\mathsf{TI}(V)$ is Cohen-Macaulay.

Theorem

If K is finite, TI(V) is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow *p*-subgroup of the isometry group, where *p* = char(K).

Theorem

- If K is finite, TI(V) is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow *p*-subgroup of the isometry group, where *p* = char(K).
- ② If $\mathbb{K} = \mathbb{C}$ and Ψ is the usual inner product, then TI(V) = Ø and $\mathring{\mathsf{T}}(V) = \mathcal{S}(V)$.

Theorem

- If K is finite, TI(V) is Cohen-Macaulay. Moreover, the number of spheres is the order of a Sylow *p*-subgroup of the isometry group, where *p* = char(K).
- ② If $\mathbb{K} = \mathbb{C}$ and Ψ is the usual inner product, then TI(V) = Ø and $\mathring{\mathsf{T}}(V) = \mathcal{S}(V)$.

Question

For which fields and forms Ψ is TI(V) Cohen-Macaulay?

Kevin Piterman (Philipps-Universität) Posets and non-degenerate forms

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

- All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).
- If V = V₁ ⊥ ... ⊥ V_r = W₁ ⊥ ... ⊥ W_s are maximal orthogonal decompositions, then r = s.

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

- All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).
- If V = V₁ ⊥ ... ⊥ V_r = W₁ ⊥ ... ⊥ W_s are maximal orthogonal decompositions, then r = s.

$$im(\mathcal{S}(V)) = dim(\mathcal{D}(V)).$$

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

- All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).
- If V = V₁ ⊥ ... ⊥ V_r = W₁ ⊥ ... ⊥ W_s are maximal orthogonal decompositions, then r = s.
- dim $(\mathcal{S}(V)) = \dim(\mathcal{D}(V))$. Moreover, they are pure posets.

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

- All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).
- 2 If $V = V_1 \perp \ldots \perp V_r = W_1 \perp \ldots \perp W_s$ are maximal orthogonal decompositions, then r = s.
- dim $(\mathcal{S}(V)) = \dim(\mathcal{D}(V))$. Moreover, they are pure posets.

We have a homotopy equivalence:

$$\mathcal{S}(V)\simeq \mathcal{D}(V)ee \bigvee_{\pi\in\mathcal{D}(V)}\mathbb{S}^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

We would like to know more about $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

Proposition

- All minimal elements of S(V) have the same dimension, which is 1 or 2 (the latter in the symplectic case).
- 2 If $V = V_1 \perp \ldots \perp V_r = W_1 \perp \ldots \perp W_s$ are maximal orthogonal decompositions, then r = s.
- dim $(\mathcal{S}(V)) =$ dim $(\mathcal{D}(V))$. Moreover, they are pure posets.

We have a homotopy equivalence:

$$\mathcal{S}(V)\simeq \mathcal{D}(V)ee \bigvee_{\pi\in\mathcal{D}(V)}\mathbb{S}^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

Corollary

 $\mathcal{S}(V)$ is Cohen-Macaulay (over R) $\Leftrightarrow \mathcal{D}(V)$ is Cohen-Macaulay (over R).

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

G(V) graph with vertices the minimal elements of S(V), and edges
 (S, T) ∈ G(V) iff S ⊥ T;

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

- G(V) graph with vertices the minimal elements of S(V), and edges
 (S, T) ∈ G(V) iff S ⊥ T;
- Frame complex $\mathcal{F}(V) = \text{clique complex of } \mathcal{G}(V)$.

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

- G(V) graph with vertices the minimal elements of S(V), and edges
 (S, T) ∈ G(V) iff S ⊥ T;
- Frame complex \$\mathcal{F}(V)\$ = clique complex of \$\mathcal{G}(V)\$.
 That is, a simplex is a set {\$V_1, \ldots, V_r\$} with the \$V_i\$ minimal non-degenerate and pairwise orthogonal.

Let (V, Ψ) be non-degenerate of dimension *n* over \mathbb{K} .

- G(V) graph with vertices the minimal elements of S(V), and edges
 (S, T) ∈ G(V) iff S ⊥ T;
- Frame complex \$\mathcal{F}(V)\$ = clique complex of \$\mathcal{G}(V)\$.
 That is, a simplex is a set {\$V_1, \ldots, V_r\$} with the \$V_i\$ minimal non-degenerate and pairwise orthogonal.

Note that

$$\dim(\mathcal{F}(V)) = \dim(\mathcal{D}(V)) + 1 = \dim(\mathcal{S}(V)) + 1.$$

• $\mathcal{F}(V)$ collapses 1-dimension:

• $\mathcal{F}(V)$ collapses 1-dimension:

• If $\sigma = \{V_1, \dots, V_s\}$ is a face of codimension 1, then

$$\langle \sigma \rangle^{\perp} = (V_1 \oplus \ldots \oplus V_r)^{\perp} \in \mathcal{S}(V)$$

is a minimal element.

1 $\mathcal{F}(V)$ collapses 1-dimension:

• If $\sigma = \{V_1, \ldots, V_s\}$ is a face of codimension 1, then

$$\langle \sigma \rangle^{\perp} = (V_1 \oplus \ldots \oplus V_r)^{\perp} \in \mathcal{S}(V)$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a dim $(\mathcal{F}(V)) - 1$ dimensional subcomplex.

1 $\mathcal{F}(V)$ collapses 1-dimension:

• If $\sigma = \{V_1, \ldots, V_s\}$ is a face of codimension 1, then

$$\langle \sigma \rangle^{\perp} = (V_1 \oplus \ldots \oplus V_r)^{\perp} \in \mathcal{S}(V)$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a dim $(\mathcal{F}(V)) - 1$ dimensional subcomplex.

It avoid non-canonical choices, we work with the face-poset:

 $\hat{\mathcal{F}}(V) = \mathcal{F}(V) \setminus \{ \text{codimensional 1 faces, } \emptyset \}.$

• $\mathcal{F}(V)$ collapses 1-dimension:

• If $\sigma = \{V_1, \ldots, V_s\}$ is a face of codimension 1, then

$$\langle \sigma \rangle^{\perp} = (V_1 \oplus \ldots \oplus V_r)^{\perp} \in \mathcal{S}(V)$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a dim $(\mathcal{F}(V)) - 1$ dimensional subcomplex.

It avoid non-canonical choices, we work with the face-poset:

 $\hat{\mathcal{F}}(V) = \mathcal{F}(V) \setminus \{ \text{codimensional 1 faces, } \emptyset \}.$

• Then $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$ and $\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V))$.

12 / 22

Some properties

• $\mathcal{F}(V)$ collapses 1-dimension:

• If $\sigma = \{V_1, \ldots, V_s\}$ is a face of codimension 1, then

$$\langle \sigma \rangle^{\perp} = (V_1 \oplus \ldots \oplus V_r)^{\perp} \in \mathcal{S}(V)$$

is a minimal element. Hence $\mathcal{F}(V)$ collapses to a dim $(\mathcal{F}(V)) - 1$ dimensional subcomplex.

It avoid non-canonical choices, we work with the face-poset:

 $\hat{\mathcal{F}}(V) = \mathcal{F}(V) \setminus \{ \text{codimensional 1 faces, } \emptyset \}.$

• Then $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$ and $\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V))$.

Proposition

If $\hat{\mathcal{F}}(V)$ is Cohen-Macaulay (over R) then $\mathcal{S}(V)$ and $\mathcal{D}(V)$ are too.

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

Theorem

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

Theorem

Suppose that dim $V = n \ge 2$.

• $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K}) = (2, \mathbb{F}_{2^2})$ or $(n, \mathbb{K}) \neq (3, \mathbb{F}_{2^2})$.

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

Theorem

- $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K}) = (2, \mathbb{F}_{2^2})$ or $(n, \mathbb{K}) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ F_{2²}, then F(V) is homotopy equivalent to a wedge of spheres of dimension 1.

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

Theorem

- $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K}) = (2, \mathbb{F}_{2^2})$ or $(n, \mathbb{K}) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ F_{2²}, then F(V) is homotopy equivalent to a wedge of spheres of dimension 1.
- **③** If *n* ≥ 5 and $(n, \mathbb{K}) \neq (6, \mathbb{F}_{2^2})$, then $\mathcal{F}(V)$ is simply connected.

$$\dim(\hat{\mathcal{F}}(V)) = \dim(\mathcal{S}(V)) = \dim(\mathcal{D}(V)) = n-2.$$

Theorem

- $\mathcal{F}(V)$ is connected if and only if $(n, \mathbb{K}) = (2, \mathbb{F}_{2^2})$ or $(n, \mathbb{K}) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ F_{2²}, then F(V) is homotopy equivalent to a wedge of spheres of dimension 1.
- 3 If $n \ge 5$ and $(n, \mathbb{K}) \ne (6, \mathbb{F}_{2^2})$, then $\mathcal{F}(V)$ is simply connected.

• If
$$(n, \mathbb{K}) = (6, \mathbb{F}_{2^2})$$
 then $\pi_1(\mathcal{F}(V)) = C_2 \times C_2$.

$$\mathcal{F}(V)\simeq\bigvee_{i=1}^{81}S^1.$$

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1. \\ \pi_1(\mathcal{S}(V)) = F(201),$

$$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$$

 $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

$$\mathcal{F}(\mathcal{V})\simeq igvee_{i=1}^{81}\mathcal{S}^1. \ \pi_1(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_2(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n,\mathbb{K})=(4,\overline{\mathbb{F}_{3^2}})$

$$\mathcal{F}(\mathcal{V})\simeq igvee_{i=1}^{81}\mathcal{S}^1. \ \pi_1(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_2(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, \mathbb{K}) = \overline{(4, \mathbb{F}_{3^2})}$

$$H_1(\mathcal{F}(V),\mathbb{Z})=\mathbb{Z}^{70}$$
,

$$\mathcal{F}(\mathcal{V})\simeq igvee_{i=1}^{81}\mathcal{S}^1. \ \pi_1(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_2(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, \mathbb{K}) = (4, \mathbb{F}_{3^2})$

$$H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}.$$

$$\mathcal{F}(V)\simeq\bigvee_{i=1}^{81}\mathcal{S}^{1}.\ \pi_{1}(\mathcal{S}(V))=\mathcal{F}(201),\ \mathcal{H}_{2}(\mathcal{S}(V),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, \mathbb{K}) = (4, \mathbb{F}_{3^2})$

$$\begin{aligned} & H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}, \\ & \pi_1(\mathcal{S}(V)) = C_3 \times C_3, \end{aligned}$$

$$\mathcal{F}(V)\simeq\bigvee_{i=1}^{81}\mathcal{S}^{1}.\ \pi_{1}(\mathcal{S}(V))=\mathcal{F}(201),\ \mathcal{H}_{2}(\mathcal{S}(V),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, \mathbb{K}) = (4, \mathbb{F}_{3^2})$

 $H_1(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{9114}.$ $\pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{108809}.$

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$ $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

Example: case $(n, \mathbb{K}) = (4, \mathbb{F}_{3^2})$

 $H_1(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{9114}.$ $\pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{108809}.$

If $\mathbb{K} = \mathbb{F}_{q^2}$, $q \ge 4$ and n = 4, $\mathcal{S}(V)$ and $\mathcal{D}(V)$ are simply connected.

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$ $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

Example: case $(n, \mathbb{K}) = (4, \mathbb{F}_{3^2})$

 $H_1(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{9114}.$ $\pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{108809}.$

If $\mathbb{K} = \mathbb{F}_{q^2}$, $q \ge 4$ and n = 4, $\mathcal{S}(V)$ and $\mathcal{D}(V)$ are simply connected.

Question

If
$$|\mathbb{K}| \ge 4^2$$
, $n = 4$, is $\mathcal{F}(V)$ simply connected?

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

• Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- $\mathsf{Lk}_{\mathcal{K}}(\sigma)$ is connected of dimension ≥ 1 ;
- 2 The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- $\mathsf{Lk}_{\mathcal{K}}(\sigma)$ is connected of dimension ≥ 1 ;
- 2 The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Then $\widetilde{H}_i(K, \mathbb{Q}) = 0$.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Then $H_i(K, \mathbb{Q}) = 0$.

Normalised Laplacian of a graph G:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of
 Lk_K(σ)¹ is > $\frac{i}{i+1}$.
 ∼

Then $H_i(K, \mathbb{Q}) = 0$.

Normalised Laplacian of a graph G:

• A = adjacency matrix;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.
 Then H̃_i(K, Ω) = 0.

Normalised Laplacian of a graph G:

- A = adjacency matrix;
- D = diagonal matrix with the degrees of the vertices;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.
 Then H_i(K, ℚ) = 0.

Normalised Laplacian of a graph G:

- A = adjacency matrix;
- D = diagonal matrix with the degrees of the vertices;
- $L(G) = \operatorname{Id} D^{-1}A$ is the normalised Laplacian.

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K} = \mathbb{F}_{q^2}$ is a finite field:

• If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

Eigenvalues of $\mathcal{G}(V)$

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathbb{K} = \mathbb{F}_{q^2}$ is a finite field:

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

3 Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := \frac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = \frac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}$$

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

3 Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := \frac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = \frac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}$$

Key idea

We show that there are at most 4 eigenvalues by proving that the minimal polynomial has degree at most 4.

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

3 Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := \frac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = \frac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}$$

Key idea

We show that there are at most 4 eigenvalues by proving that the minimal polynomial has degree at most 4.

• Compute the powers A, A^2, A^3, A^4 of the adjacency matrix A = A(n, q) of $\mathcal{G}(V)$.

Let V be a unitary space of dimension $n \ge 2$ over \mathbb{F}_{q^2} . Let

$$\mu_1 := d_n, \quad \mu_2 := q^{n-2}, \quad \mu_3 := (-1)^n q^{n-3}, \quad \mu_4 := -q^{n-2}.$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows.

Let V be a unitary space of dimension $n \ge 2$ over \mathbb{F}_{q^2} . Let

$$\mu_1 := d_n, \quad \mu_2 := q^{n-2}, \quad \mu_3 := (-1)^n q^{n-3}, \quad \mu_4 := -q^{n-2}.$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows. (i) If n = 2, the eigenvalues are μ_1 and μ_4 .

Let V be a unitary space of dimension $n \ge 2$ over \mathbb{F}_{q^2} . Let

$$\mu_1 := d_n, \quad \mu_2 := q^{n-2}, \quad \mu_3 := (-1)^n q^{n-3}, \quad \mu_4 := -q^{n-2}.$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows. (i) If n = 2, the eigenvalues are μ_1 and μ_4 . (ii) If $n \ge 3$ and $q \ne 2$, the eigenvalues are μ_1 , μ_2 , μ_3 and μ_4 .

Let V be a unitary space of dimension $n \ge 2$ over \mathbb{F}_{q^2} . Let

$$\mu_1 := d_n, \quad \mu_2 := q^{n-2}, \quad \mu_3 := (-1)^n q^{n-3}, \quad \mu_4 := -q^{n-2}.$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows. (i) If n = 2, the eigenvalues are μ_1 and μ_4 . (ii) If $n \ge 3$ and $q \ne 2$, the eigenvalues are μ_1 , μ_2 , μ_3 and μ_4 . (iii) If n = 3 and q = 2, the eigenvalues are μ_1 and μ_3 .

Let V be a unitary space of dimension $n \ge 2$ over \mathbb{F}_{q^2} . Let

$$\mu_1 := d_n, \quad \mu_2 := q^{n-2}, \quad \mu_3 := (-1)^n q^{n-3}, \quad \mu_4 := -q^{n-2}.$$

The eigenvalues of the adjacency matrix of the graph $\mathcal{G}(V)$ are as follows. (i) If n = 2, the eigenvalues are μ_1 and μ_4 . (ii) If $n \ge 3$ and $q \ne 2$, the eigenvalues are μ_1 , μ_2 , μ_3 and μ_4 . (iii) If n = 3 and q = 2, the eigenvalues are μ_1 and μ_3 . (iv) If n > 3 and q = 2, the eigenvalues are μ_1 , μ_3 and $(-1)^n \mu_4$. We check the bound of Garland's method for i = n - j.

We check the bound of Garland's method for i = n - j. This is a polynomial in q with degree depending on j: for $3 \le j \le n$, let

$$P_j(q) = \begin{cases} \frac{q^{j-1} - (-1)^{j-1}}{q+1} + j - 1 & j \text{ odd if } q = 2, \\ \frac{q^j + q}{q+1} + j - 1 & q = 2 \text{ and } j \text{ even.} \end{cases}$$

We check the bound of Garland's method for i = n - j. This is a polynomial in q with degree depending on j: for $3 \le j \le n$, let

$$P_j(q) = \begin{cases} \frac{q^{j-1} - (-1)^{j-1}}{q+1} + j - 1 & j \text{ odd if } q = 2, \\ \frac{q^j + q}{q+1} + j - 1 & q = 2 \text{ and } j \text{ even.} \end{cases}$$

Corollary

If
$$n < P_j(q)$$
 then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \leq n - j$.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$, and \Bbbk a field of characteristic 0.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$, and \Bbbk a field of characteristic 0. If n < q + 1 then $\widetilde{H}_i(X, \Bbbk) = 0$ for all $i \le n - 3$.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Let
$$X = \hat{\mathcal{F}}(V)$$
, $\mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0.
If $n < q + 1$ then $\widetilde{H}_i(X, \mathbb{k}) = 0$ for all $i \le n - 3$.
If $q \ne 2$, $n \ge 7$, $\widetilde{H}_i(X, \mathbb{k}) = 0$ for all $i \le \frac{n}{2}$.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Let
$$X = \hat{\mathcal{F}}(V)$$
, $\mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0.
If $n < q + 1$ then $\widetilde{H}_i(X, \mathbb{k}) = 0$ for all $i \le n - 3$.
If $q \ne 2$, $n \ge 7$, $\widetilde{H}_i(X, \mathbb{k}) = 0$ for all $i \le \frac{n}{2}$.

3 In fact, if $q \ge 11$ and $n \ge 8$, then $H_i(X, \mathbb{k}) = 0$ for all $i \le \frac{3}{4}n - 1$.

Recall that
$$\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$$
, of dimension $n-2$.

Let
$$X = \hat{\mathcal{F}}(V)$$
, $\mathcal{S}(V)$ or $\mathcal{D}(V)$, and \mathbb{k} a field of characteristic 0.

• If
$$n < q+1$$
 then $H_i(X, \mathbb{k}) = 0$ for all $i \le n-3$.

2 If
$$q \neq 2$$
, $n \geq 7$, $H_i(X, \mathbb{k}) = 0$ for all $i \leq \frac{n}{2}$.

3 In fact, if
$$q \ge 11$$
 and $n \ge 8$, then $\widetilde{H}_i(X, \Bbbk) = 0$ for all $i \le \frac{3}{4}n - 1$.

Corollary

If n < q + 1 then $\hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ and $\mathcal{D}(V)$ are Cohen-Macaulay over \Bbbk .

If
$$q = 2$$
, $n = 6$ and $j = 4$ then $P_j(q) = 9 > n$.

If q = 2, n = 6 and j = 4 then $P_j(q) = 9 > n$. By Garland's theorem

$$H_2(\mathcal{F}(V), \mathbb{k}) = H_1(\mathcal{F}(V), \mathbb{k}) = 0,$$

but

$$H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

If
$$q = 2$$
, $n = 6$ and $j = 4$ then $P_j(q) = 9 > n$. By Garland's theorem

$$H_2(\mathcal{F}(V), \mathbb{k}) = H_1(\mathcal{F}(V), \mathbb{k}) = 0,$$

but

$$H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

Failure of Cohen-Macaulayness

If
$$q = 2$$
, $n = 6$ and $j = 4$ then $P_j(q) = 9 > n$. By Garland's theorem

$$H_2(\mathcal{F}(V), \mathbb{k}) = H_1(\mathcal{F}(V), \mathbb{k}) = 0,$$

but

$$H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2.$$

Failure of Cohen-Macaulayness

If
$$q(q-1)+1 \leq n \leq q(q(q-1)+1)$$
 then

$$\widetilde{\mathcal{H}}_{n-3}(\hat{\mathcal{F}}(V),\mathbb{Q})
eq 0 \quad ext{ and } \quad \widetilde{\chi}(\hat{\mathcal{F}}(V))(-1)^{n-2} < 0.$$

Thus $\hat{\mathcal{F}}(V)$ is not Cohen-Macaulay (not even over some ring *R*) if $n \ge q(q-1) + 1$.

Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.

Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.

• Is X homotopically Cohen-Macaulay if n < q + 1?

- Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.
 - Is X homotopically Cohen-Macaulay if n < q + 1?
 - **2** Is X [n/2]-connected?

- Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.
 - Is X homotopically Cohen-Macaulay if n < q + 1?
 - **2** Is X [n/2]-connected?
 - 3 As an exponential structure, from the linear case we deduce

$$\tilde{\chi}(\mathcal{D}(V)) = \frac{(-1)^n}{n} \cdot \prod_{i=1}^{n-1} ((-q)^i - 1) \cdot f_n(-q),$$

where f_n is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.

- Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.
 - Is X homotopically Cohen-Macaulay if n < q + 1?
 - **2** Is X [n/2]-connected?
 - 3 As an exponential structure, from the linear case we deduce

$$\tilde{\chi}(\mathcal{D}(V)) = \frac{(-1)^n}{n} \cdot \prod_{i=1}^{n-1} ((-q)^i - 1) \cdot f_n(-q),$$

where f_n is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.

• Does $\tilde{\chi}(\mathcal{D}(V))$ always have the correct sign?

- Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.
 - Is X homotopically Cohen-Macaulay if n < q + 1?
 - **2** Is X [n/2]-connected?
 - 3 As an exponential structure, from the linear case we deduce

$$\tilde{\chi}(\mathcal{D}(V)) = \frac{(-1)^n}{n} \cdot \prod_{i=1}^{n-1} ((-q)^i - 1) \cdot f_n(-q),$$

where f_n is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.

Ooes *x̃*(*D*(*V*)) always have the correct sign? Moreover, it seems that the largest real root of *f_n*(−*q*) converges to a number 2.49... < 2.5.</p>

- Let $X = \hat{\mathcal{F}}(V)$, $\mathcal{S}(V)$ or $\mathcal{D}(V)$.
 - Is X homotopically Cohen-Macaulay if n < q + 1?
 - **2** Is X [n/2]-connected?
 - 3 As an exponential structure, from the linear case we deduce

$$\tilde{\chi}(\mathcal{D}(V)) = \frac{(-1)^n}{n} \cdot \prod_{i=1}^{n-1} ((-q)^i - 1) \cdot f_n(-q),$$

where f_n is a polynomial of degree $\binom{n}{2}$ with positive integer coefficients.

Ooes *x̃*(*D*(*V*)) always have the correct sign? Moreover, it seems that the largest real root of *f_n*(−*q*) converges to a number 2.49... < 2.5.</p>

• If
$$|\mathbb{K}| \ge 4^2$$
, is $\mathcal{D}(V)$ Cohen-Macaulay?

21/22

Thank you very much for your attention!