The frame complex of a vector space with a Hermitian form

Kevin I. Piterman Volkmar Welker

Philipps-Universität Marburg, Germany

II Encuentro RSME-UMA, Ronda 2022

• Let V be a vector space of finite dimension n over a field K.

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.
- Ψ a Hermitian form over V:

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.
- Ψ a Hermitian form over V:

1 $\Psi(-, v)$ is *K*-lineal for all $v \in V$;

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.
- Ψ a Hermitian form over V:
 - **1** $\Psi(-, v)$ is *K*-lineal for all $v \in V$;

2
$$\Psi(v,w) = \sigma(\Psi(w,v))$$
 for all $v,w \in V$.

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.
- Ψ a Hermitian form over V:
 - **1** $\Psi(-, v)$ is *K*-lineal for all $v \in V$;

2
$$\Psi(v,w) = \sigma(\Psi(w,v))$$
 for all $v,w \in V$.

• Moreover, we assume that Ψ is non-degenerate:

$$V^{\perp} = \operatorname{\mathsf{Rad}}(V, \Psi) = \{v \in V : \Psi(v, w) = 0 \text{ for all } w \in V\} = 0.$$

- Let V be a vector space of finite dimension n over a field K.
- $\sigma \in Aut(K)$ an automorphism of order 2.
- Ψ a Hermitian form over V:

1 $\Psi(-, v)$ is *K*-lineal for all $v \in V$;

2
$$\Psi(v,w) = \sigma(\Psi(w,v))$$
 for all $v,w \in V$.

• Moreover, we assume that Ψ is non-degenerate:

$$V^{\perp} = \operatorname{\mathsf{Rad}}(V, \Psi) = \{v \in V : \Psi(v, w) = 0 \text{ for all } w \in V\} = 0.$$

Definition

Under these conditions, we say that (V, Ψ) is a unitary space of dimension *n* over *K*.

Complex numbers

If
$$K = \mathbb{C}$$
, then $\sigma(z) = \overline{z}$.

Complex numbers

If $K = \mathbb{C}$, then $\sigma(z) = \overline{z}$. Thus (V, Ψ) is determined by its *signature*:

$$\Psi(\mathbf{v},\mathbf{w}) = \sum_{i=1}^{s} v_i \overline{w_i} + \sum_{j=s+1}^{n} - v_j \overline{w_j}.$$

Complex numbers

If $K = \mathbb{C}$, then $\sigma(z) = \overline{z}$. Thus (V, Ψ) is determined by its *signature*:

$$\Psi(v,w) = \sum_{i=1}^{s} v_i \overline{w_i} + \sum_{j=s+1}^{n} - v_j \overline{w_j}.$$

Real numbers

If $K = \mathbb{R}$, such σ does not exist.

Complex numbers

If $K = \mathbb{C}$, then $\sigma(z) = \overline{z}$. Thus (V, Ψ) is determined by its *signature*:

$$\Psi(v,w) = \sum_{i=1}^{s} v_i \overline{w_i} + \sum_{j=s+1}^{n} - v_j \overline{w_j}.$$

Real numbers

If $K = \mathbb{R}$, such σ does not exist.

Finite fields

If
$$K = \mathbb{F}_r$$
, then $r = q^2$ is a square and $\sigma(x) = x^q$.

Complex numbers

If $K = \mathbb{C}$, then $\sigma(z) = \overline{z}$. Thus (V, Ψ) is determined by its signature:

$$\Psi(v,w) = \sum_{i=1}^{s} v_i \overline{w_i} + \sum_{j=s+1}^{n} - v_j \overline{w_j}.$$

Real numbers

If $K = \mathbb{R}$, such σ does not exist.

Finite fields

If $K = \mathbb{F}_r$, then $r = q^2$ is a square and $\sigma(x) = x^q$. Moreover, (V, Ψ) is uniquely determined:

$$\Psi(v,w)=\sum_{i=1}^n v_i w_i^q.$$

Definitions

A subspace $S \leq V$ is said to be:

Definitions

A subspace $S \leq V$ is said to be:

• non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $Rad(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

•
$$T(V) = poset of subspaces \neq 0, V;$$

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

•
$$T(V) = poset of subspaces \neq 0, V;$$

• $TI(V) = poset of totally isotropic subspaces \neq 0;$

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

•
$$T(V) = poset of subspaces \neq 0, V;$$

• $TI(V) = poset of totally isotropic subspaces \neq 0;$

•
$$S(V) = \text{poset of non-degenerate subspaces} \neq 0, V;$$

Definitions

A subspace $S \leq V$ is said to be:

- non-degenerate if $\operatorname{Rad}(S) = S \cap S^{\perp} = 0$;
- totally isotropic if $S \leq S^{\perp}$ (that is, $\Psi|_S = 0$).

We define the following posets:

•
$$T(V) = poset of subspaces \neq 0, V;$$

• $TI(V) = poset of totally isotropic subspaces \neq 0;$

• $S(V) = \text{poset of non-degenerate subspaces} \neq 0, V$; We work with the topology of their order complexes.

• T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.

- T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.
- If $K = \mathbb{F}_{q^2}$ is finite, TI(V) is homotopy equivalent to a wedge of $q^{\binom{n}{2}}$ spheres of dimension [n/2] 1.

- T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.
- If K = 𝔽_{q²} is finite, TI(V) is homotopy equivalent to a wedge of q^(ⁿ₂) spheres of dimension [n/2] − 1.
- **3** If $K = \mathbb{C}$ and Ψ is the usual inner product, then $\mathsf{TI}(V) = \emptyset$ and $\mathsf{T}(V) = \mathcal{S}(V)$.

- T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.
- If K = 𝔽_{q²} is finite, TI(V) is homotopy equivalent to a wedge of $q^{\binom{n}{2}}$ spheres of dimension [n/2] − 1.
- **3** If $K = \mathbb{C}$ and Ψ is the usual inner product, then $\mathsf{TI}(V) = \emptyset$ and $\mathsf{T}(V) = \mathcal{S}(V)$.

Question

What is known about $\mathcal{S}(V)$?

- T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.
- If K = 𝔽_{q²} is finite, TI(V) is homotopy equivalent to a wedge of q^(ⁿ₂) spheres of dimension [n/2] − 1.
- **3** If $K = \mathbb{C}$ and Ψ is the usual inner product, then $\mathsf{TI}(V) = \emptyset$ and $\mathsf{T}(V) = \mathcal{S}(V)$.

Question

What is known about $\mathcal{S}(V)$?

Answer?

Not too much.

Kevin Piterman (Philipps-Universität)

- T(V) is homotopy equivalent to a wedge of spheres of dimension n-2.
- If K = 𝔽_{q²} is finite, TI(V) is homotopy equivalent to a wedge of q^(ⁿ₂) spheres of dimension [n/2] − 1.
- **③** If $K = \mathbb{C}$ and Ψ is the usual inner product, then $TI(V) = \emptyset$ and T(V) = S(V).

Question

What is known about $\mathcal{S}(V)$?

Answer?

Not too much. Indeed, $\mathcal{S}(V) \cup \{0, V\}$ is not even a lattice in general!

Let V be a unitary space of dimension n over K.

 G(V) graph with vertices the non-degenerate 1-dimensional subspaces of V, and with edges corresponding to the orthogonality relation: (S, T) ∈ G(V) iff S ⊥ T;

- G(V) graph with vertices the non-degenerate 1-dimensional subspaces of V, and with edges corresponding to the orthogonality relation: (S, T) ∈ G(V) iff S ⊥ T;
- Frame-complex $\mathcal{F}(V) = \text{clique complex of } \mathcal{G}(V)$.

- G(V) graph with vertices the non-degenerate 1-dimensional subspaces of V, and with edges corresponding to the orthogonality relation: (S, T) ∈ G(V) iff S ⊥ T;
- Frame-complex $\mathcal{F}(V) = \text{clique complex of } \mathcal{G}(V)$. That is, a simplex is a set $\{V_1, \ldots, V_r\}$ with the V_i 1-dimensional, non-degenerates and pairwise orthogonal;

- G(V) graph with vertices the non-degenerate 1-dimensional subspaces of V, and with edges corresponding to the orthogonality relation: (S, T) ∈ G(V) iff S ⊥ T;
- Frame-complex \$\mathcal{F}(V)\$ = clique complex of \$\mathcal{G}(V)\$. That is, a simplex is a set \$\{V_1, \ldots, V_r\}\$ with the \$V_i\$ 1-dimensional, non-degenerates and pairwise orthogonal;
- $\mathcal{D}(V) = \text{poset of non-trivial orthogonal decompositions of } V$.
Definition

Let V be a unitary space of dimension n over K.

- G(V) graph with vertices the non-degenerate 1-dimensional subspaces of V, and with edges corresponding to the orthogonality relation: (S, T) ∈ G(V) iff S ⊥ T;
- Frame-complex $\mathcal{F}(V) = \text{clique complex of } \mathcal{G}(V)$. That is, a simplex is a set $\{V_1, \ldots, V_r\}$ with the V_i 1-dimensional, non-degenerates and pairwise orthogonal;
- D(V) = poset of non-trivial orthogonal decompositions of V.
 Order given by refinement: π ≤ π' if π is finer than π'.

Kevin Piterman (Philipps-Universität)

$$I \quad \text{dim}\,\mathcal{S}(V) = n - 2 = \dim \mathcal{D}(V).$$

$$I \quad \dim \mathcal{S}(V) = n - 2 = \dim \mathcal{D}(V).$$

$$\mathcal{S}(V)\simeq \mathcal{D}(V) ee igvee_{\pi\in\mathcal{D}(V)} S^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

$$I \quad \dim \mathcal{S}(V) = n - 2 = \dim \mathcal{D}(V).$$

$$\mathcal{S}(V)\simeq \mathcal{D}(V) ee igvee_{\pi\in\mathcal{D}(V)} S^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

$$I \quad \text{dim} \ \mathcal{F}(V) = n - 1.$$

$$I \quad \dim \mathcal{S}(V) = n - 2 = \dim \mathcal{D}(V).$$

$$\mathcal{S}(V)\simeq \mathcal{D}(V) \vee igvee_{\pi\in\mathcal{D}(V)} S^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

1) dim
$$\mathcal{F}(V) = n - 1$$
.

2 If $\sigma \in \mathcal{F}(V)$ has size $|\sigma| = n - 1$, then $\mathcal{F}(V)_{>\sigma} = \{ \sigma \cup \{ \langle \sigma \rangle^{\perp} \} \}.$

$$I \quad \text{dim}\,\mathcal{S}(V) = n - 2 = \dim \mathcal{D}(V).$$

1

$$\mathcal{S}(V)\simeq \mathcal{D}(V) \vee igvee_{\pi\in\mathcal{D}(V)} S^{|\pi|-2}*\mathcal{D}(V)_{<\pi}.$$

1 dim
$$\mathcal{F}(V) = n - 1$$
.

3 If
$$\sigma \in \mathcal{F}(V)$$
 has size $|\sigma| = n - 1$, then $\mathcal{F}(V)_{>\sigma} = \{ \sigma \cup \{ \langle \sigma \rangle^{\perp} \} \}.$

③ Then the face-poset of $\mathcal{F}(V)$ is homotopy equivalent to

$$\hat{\mathcal{F}}(V) = \{ \text{ frames of size } \neq n-1 \},$$

with dim $\hat{\mathcal{F}}(V) = n - 2$.

Suppose that dim $V = n \ge 2$.

Q $\mathcal{G}(V)$ is connected if and only if $(n, K) = (2, \mathbb{F}_{2^2})$ or $(n, K) \neq (3, \mathbb{F}_{2^2})$.

- **1** $\mathcal{G}(V)$ is connected if and only if $(n, K) = (2, \mathbb{F}_{2^2})$ or $(n, K) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ 𝔽_{2²}, then 𝓕(V) is homotopy equivalent to a wedge of spheres of dimension 1.

- **1** $\mathcal{G}(V)$ is connected if and only if $(n, K) = (2, \mathbb{F}_{2^2})$ or $(n, K) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ 𝔽_{2²}, then 𝓕(V) is homotopy equivalent to a wedge of spheres of dimension 1.
- **③** If *n* ≥ 5 and $(n, K) \neq (6, \mathbb{F}_{2^2})$, then $\mathcal{F}(V)$ is simply connected.

- **1** $\mathcal{G}(V)$ is connected if and only if $(n, K) = (2, \mathbb{F}_{2^2})$ or $(n, K) \neq (3, \mathbb{F}_{2^2})$.
- If n = 3, K ≠ 𝔽_{2²}, then 𝒯(V) is homotopy equivalent to a wedge of spheres of dimension 1.
- 3 If $n \ge 5$ and $(n, K) \ne (6, \mathbb{F}_{2^2})$, then $\mathcal{F}(V)$ is simply connected.
- If $(n, K) = (6, \mathbb{F}_{2^2})$ then $\pi_1(\mathcal{F}(V)) = C_2 \times C_2$.

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1. \\ \pi_1(\mathcal{S}(V)) = F(201),$

$$\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$$

 $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$ $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

$$\mathcal{F}(\mathcal{V})\simeq igvee_{i=1}^{81}\mathcal{S}^1. \ \pi_1(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_2(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

 $H_1(\mathcal{F}(V),\mathbb{Z})=\mathbb{Z}^{70}$,

$$\mathcal{F}(\mathcal{V})\simeq igvee_{i=1}^{81}\mathcal{S}^1. \ \pi_1(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_2(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, \overline{K}) = (4, \overline{\mathbb{F}_{3^2}})$

$$H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}.$$

$$\mathcal{F}(V)\simeq\bigvee_{i=1}^{81}\mathcal{S}^{1}.\ \pi_{1}(\mathcal{S}(V))=\mathcal{F}(201),\ \mathcal{H}_{2}(\mathcal{S}(V),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

$$\begin{aligned} & H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}, \\ & \pi_1(\mathcal{S}(V)) = C_3 \times C_3, \end{aligned}$$

9/13

$$\mathcal{F}(V)\simeq\bigvee_{i=1}^{81}\mathcal{S}^{1}.\ \pi_{1}(\mathcal{S}(V))=\mathcal{F}(201),\ \mathcal{H}_{2}(\mathcal{S}(V),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

 $H_1(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V), \mathbb{Z}) = \mathbb{Z}^{9114}.$ $\pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{108809}.$

 $\mathcal{F}(V) \simeq \bigvee_{i=1}^{81} S^1.$ $\pi_1(\mathcal{S}(V)) = F(201), \ H_2(\mathcal{S}(V), \mathbb{Z}) = \mathbb{Z}^{40}.$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

 $\begin{array}{l} H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}. \\ \pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V),\mathbb{Z}) = \mathbb{Z}^{108809}. \end{array}$

If $K = \mathbb{F}_{q^2}$, $q \ge 4$ and n = 4, $\mathcal{S}(V)$ is simply connected.

9/13

$$\mathcal{F}(\mathcal{V})\simeq\bigvee_{i=1}^{81}\mathcal{S}^{1}.\ \pi_{1}(\mathcal{S}(\mathcal{V}))=\mathcal{F}(201),\ \mathcal{H}_{2}(\mathcal{S}(\mathcal{V}),\mathbb{Z})=\mathbb{Z}^{40}.$$

Example: case $(n, K) = (4, \mathbb{F}_{3^2})$

 $\begin{array}{l} H_1(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{70}, \ H_2(\mathcal{F}(V),\mathbb{Z}) = \mathbb{Z}^{9114}. \\ \pi_1(\mathcal{S}(V)) = C_3 \times C_3, \ H_2(\mathcal{S}(V),\mathbb{Z}) = \mathbb{Z}^{108809}. \end{array}$

If $K = \mathbb{F}_{q^2}$, $q \ge 4$ and n = 4, $\mathcal{S}(V)$ is simply connected.

Question

If $|K| \ge 4^2$, n = 4, is $\mathcal{F}(V)$ simply connected?

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

• Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- $\mathsf{Lk}_{\mathcal{K}}(\sigma)$ is connected of dimension ≥ 1 ;
- 2 The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- $\mathsf{Lk}_{\mathcal{K}}(\sigma)$ is connected of dimension ≥ 1 ;
- 2 The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Then $\widetilde{H}_i(K, \mathbb{Q}) = 0$.

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.

Then $\widetilde{H}_i(K, \mathbb{Q}) = 0$.

Normalised Laplacian of a graph G:

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of
 Lk_K(σ)¹ is > $\frac{i}{i+1}$.
 ∼

Then $H_i(K, \mathbb{Q}) = 0$.

Normalised Laplacian of a graph G:

• A = adjacency matrix;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.
 Then H̃_i(K, Ω) = 0.

Normalised Laplacian of a graph G:

- A = adjacency matrix;
- D = diagonal matrix with the degrees of the vertices;

Theorem (Garland)

Let K be a finite simplicial complex and let $i \ge 0$. Suppose that for every simplex σ of size *i* the following two conditions hold:

- Lk_{\mathcal{K}}(σ) is connected of dimension ≥ 1 ;
- The smallest non-zero eigenvalue of the normalised Laplacian of Lk_K(σ)¹ is > ⁱ/_{i+1}.
 Then H̃_i(K, Ω) = 0.

Normalised Laplacian of a graph G:

- A = adjacency matrix;
- D = diagonal matrix with the degrees of the vertices;
- $L(G) = \operatorname{Id} D^{-1}A$ is the normalised Laplacian.

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathcal{K} = \mathbb{F}_{q^2}$ is a finite field:

We apply Garland's method to the frame complex $\mathcal{F}(V)$ when $\mathcal{K} = \mathbb{F}_{q^2}$ is a finite field:

• If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

11/13
- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

③ Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := rac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = rac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}.$$

11/13

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

3 Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := rac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = rac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}$$

Theorem

If $q \neq 2$ and $n \geq 3$, the eigenvalues of $\mathcal{G}(V)$ are:

$$d_n; q^{n-2}; (-1)^n q^{n-3}; -q^{n-2}.$$

- If $\sigma \in \mathcal{F}(V)$ then $Lk_{\mathcal{F}(V)}(\sigma) = \mathcal{F}(\langle \sigma \rangle^{\perp})$.

3 Moreover, $\mathcal{G}(V)$ is regular of degree

$$d_n := rac{|\operatorname{GU}(n-1,q)|}{(q+1)|\operatorname{GU}(n-2,q)|} = rac{q^{n-2}(q^{n-1}-(-1)^{n-1})}{q+1}$$

Theorem

If $q \neq 2$ and $n \geq 3$, the eigenvalues of $\mathcal{G}(V)$ are:

$$d_n; q^{n-2}; (-1)^n q^{n-3}; -q^{n-2}.$$

In particular, the smallest non-zero eigenvalue of $L(\mathcal{G}(V))$ is $1 - d_n^{-1}q^{n-2}$.

Higher connectivity for $H_*(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension n-2.

Higher connectivity for $H_*(\mathcal{F}(V), \mathbb{Q})$.

Recall that $\mathcal{F}(V) \simeq \hat{\mathcal{F}}(V)$, of dimension n-2.

Corollary

Suppose that $q \neq 2$.

Corollary

Suppose that $q \neq 2$.

• If n < q + 1 then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le n - 3$.

Corollary

Suppose that $q \neq 2$.

• If
$$n < q+1$$
 then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le n-3$.

2 If $n \ge 7$, $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le \frac{n}{2}$.

12/13

Corollary

Suppose that $q \neq 2$.

- If n < q+1 then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le n-3$.
- **2** If $n \ge 7$, $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le \frac{n}{2}$.
- 3 In fact, if $q \ge 11$ and $n \ge 8$, then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le \frac{3}{4}n 1$.

12/13

Corollary

Suppose that $q \neq 2$.

- If n < q + 1 then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le n 3$.
- **2** If $n \ge 7$, $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le \frac{n}{2}$.
- 3 In fact, if $q \ge 11$ and $n \ge 8$, then $\widetilde{H}_i(\mathcal{F}(V), \mathbb{Q}) = 0$ for all $i \le \frac{3}{4}n 1$.

Corollary

Similar results are transferred to $\mathcal{S}(V)$ and $\mathcal{D}(V)$ via the poset map

$$\mathcal{F}(V)^{n-2} \longrightarrow \mathcal{S}(V), \quad \{V_1, V_2, \dots, V_r\} \mapsto V_1 \oplus V_2 \oplus \dots \oplus V_r,$$

and the wedge relation between $\mathcal{S}(V)$ and $\mathcal{D}(V)$.

¡Muchas gracias!