
The frame complex of a vector space with a
Hermitian form

Kevin I. Piterman Volkmar Welker

Philipps-Universität Marburg, Germany

II Encuentro RSME-UMA, Ronda 2022

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 1 / 13



Definitions

Let V be a vector space of finite dimension n over a field K .

σ ∈ Aut(K ) an automorphism of order 2.

Ψ a Hermitian form over V :
1 Ψ(−, v) is K -lineal for all v ∈ V ;

2 Ψ(v ,w) = σ(Ψ(w , v)) for all v ,w ∈ V .

Moreover, we assume that Ψ is non-degenerate:

V⊥ = Rad(V ,Ψ) = {v ∈ V : Ψ(v ,w) = 0 for all w ∈ V } = 0.

Definition

Under these conditions, we say that (V ,Ψ) is a unitary space of dimension
n over K .
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Examples

Complex numbers

If K = C, then σ(z) = z . Thus (V ,Ψ) is determined by its signature:

Ψ(v ,w) =
s∑

i=1

viwi +
n∑

j=s+1

−vjwj .

Real numbers

If K = R, such σ does not exist.

Finite fields

If K = Fr , then r = q2 is a square and σ(x) = xq. Moreover, (V ,Ψ) is
uniquely determined:

Ψ(v ,w) =
n∑

i=1

viw
q
i .
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Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Associated complexes and posets

Let (V ,Ψ) be a unitary space of dimension n over K .

Definitions

A subspace S ≤ V is said to be:

non-degenerate if Rad(S) = S ∩ S⊥ = 0;

totally isotropic if S ≤ S⊥ (that is, Ψ|S = 0).

We define the following posets:

T(V ) = poset of subspaces ̸= 0,V ;

TI(V ) = poset of totally isotropic subspaces ̸= 0;

S(V ) = poset of non-degenerate subspaces ̸= 0,V ;

We work with the topology of their order complexes.

Kevin Piterman (Philipps-Universität) The frame complex RSME-UMA 2022 4 / 13



Known results

Theorem

1 T(V ) is homotopy equivalent to a wedge of spheres of dimension
n − 2.

2 If K = Fq2 is finite, TI(V ) is homotopy equivalent to a wedge of q(
n
2)

spheres of dimension [n/2]− 1.

3 If K = C and Ψ is the usual inner product, then TI(V ) = ∅ and
T(V ) = S(V ).

Question

What is known about S(V )?

Answer?

Not too much. Indeed, S(V ) ∪ {0,V } is not even a lattice in general!
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Orthogonal decompositions

Definition

Let V be a unitary space of dimension n over K .

G(V ) graph with vertices the non-degenerate 1-dimensional subspaces
of V , and with edges corresponding to the orthogonality relation:
(S ,T ) ∈ G(V ) iff S ⊥ T ;

Frame-complex F(V ) = clique complex of G(V ). That is, a simplex
is a set {V1, . . . ,Vr} with the Vi 1-dimensional, non-degenerates and
pairwise orthogonal;

D(V ) = poset of non-trivial orthogonal decompositions of V .
Order given by refinement: π ≤ π′ if π is finer than π′.
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Some properties

1 dimS(V ) = n − 2 = dimD(V ).

Proposition

S(V ) ≃ D(V ) ∨
∨

π∈D(V ) S
|π|−2 ∗ D(V )<π.

1 dimF(V ) = n − 1.

2 If σ ∈ F(V ) has size |σ| = n − 1, then F(V )>σ = {σ ∪ {⟨σ⟩⊥} }.
3 Then the face-poset of F(V ) is homotopy equivalent to

F̂(V ) =
{
frames of size ̸= n − 1

}
,

with dim F̂(V ) = n − 2.
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Frame-complex F(V )

Theorem

Suppose that dimV = n ≥ 2.

1 G(V ) is connected if and only if (n,K ) = (2,F22) or (n,K ) ̸= (3,F22).

2 If n = 3, K ̸= F22 , then F(V ) is homotopy equivalent to a wedge of
spheres of dimension 1.

3 If n ≥ 5 and (n,K ) ̸= (6,F22), then F(V ) is simply connected.

4 If (n,K ) = (6,F22) then π1
(
F(V )

)
= C2 × C2.
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More on π1 in dimension n = 4

Example: case (n,K ) = (4,F22)

F(V ) ≃
∨81

i=1 S
1.

π1(S(V )) = F (201), H2(S(V ),Z) = Z40.

Example: case (n,K ) = (4,F32)

H1(F(V ),Z) = Z70, H2(F(V ),Z) = Z9114.
π1(S(V )) = C3 × C3, H2(S(V ),Z) = Z108809.

If K = Fq2 , q ≥ 4 and n = 4, S(V ) is simply connected.

Question

If |K | ≥ 42, n = 4, is F(V ) simply connected?
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Garland’s method

We want to apply the following theorem in order to decide if (the free part
of) a homology group vanishes:

Theorem (Garland)

Let K be a finite simplicial complex and let i ≥ 0. Suppose that for every
simplex σ of size i the following two conditions hold:

1 LkK (σ) is connected of dimension ≥ 1;

2 The smallest non-zero eigenvalue of the normalised Laplacian of
LkK (σ)

1 is > i
i+1 .

Then H̃i (K ,Q) = 0.

Normalised Laplacian of a graph G :

A = adjacency matrix;

D = diagonal matrix with the degrees of the vertices;

L(G ) = Id−D−1A is the normalised Laplacian.
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Eigenvalues of G(V )

We apply Garland’s method to the frame complex F(V ) when K = Fq2 is
a finite field:

1 If σ ∈ F(V ) then LkF(V )(σ) = F(⟨σ⟩⊥).
2 F(V )1 = G(V ).

3 Moreover, G(V ) is regular of degree

dn :=
|GU(n − 1, q)|

(q + 1)|GU(n − 2, q)|
=

qn−2(qn−1 − (−1)n−1)

q + 1
.

Theorem

If q ̸= 2 and n ≥ 3, the eigenvalues of G(V ) are:

dn; qn−2; (−1)nqn−3; −qn−2.

In particular, the smallest non-zero eigenvalue of L(G(V )) is 1− d−1
n qn−2.
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Higher connectivity for H∗(F(V ),Q).

Recall that F(V ) ≃ F̂(V ), of dimension n − 2.

Corollary

Suppose that q ̸= 2.

1 If n < q + 1 then H̃i (F(V ),Q) = 0 for all i ≤ n − 3.

2 If n ≥ 7, H̃i (F(V ),Q) = 0 for all i ≤ n
2 .

3 In fact, if q ≥ 11 and n ≥ 8, then H̃i (F(V ),Q) = 0 for all i ≤ 3
4n− 1.

Corollary

Similar results are transferred to S(V ) and D(V ) via the poset map

F(V )n−2 −→ S(V ), {V1,V2, . . . ,Vr} 7→ V1 ⊕ V2 ⊕ . . .⊕ Vr ,

and the wedge relation between S(V ) and D(V ).
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¡Muchas gracias!
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