A categorical approach to study posets of decompositions into subobjects

Kevin I. Piterman (joint with Volkmar Welker)

Philipps-Universität Marburg

March 19, 2024 University of Copenhagen

• $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.

- $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.

- $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.

- $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.

- $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S} =$ homotopy type of $\Delta(\mathcal{S})$.

- $\Delta(S) =$ order-complex of S, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S}).$
- If $n = h(S) < \infty$, we say that S is *spherical* if it is (n 1)-connected.

- $\Delta(S) = \text{order-complex of } S$, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S} =$ homotopy type of $\Delta(\mathcal{S})$.
- If $n = h(S) < \infty$, we say that S is *spherical* if it is (n 1)-connected.
- S is Cohen-Macaulay (CM) if S, S_{>x}, S_{<x} and S_{>x} ∩ S_{<y} (with x < y) are spherical of the correct dimension.

- $\Delta(S) = \text{order-complex of } S$, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S} =$ homotopy type of $\Delta(\mathcal{S})$.
- If $n = h(S) < \infty$, we say that S is *spherical* if it is (n 1)-connected.
- S is Cohen-Macaulay (CM) if S, S_{>x}, S_{<x} and S_{>x} ∩ S_{<y} (with x < y) are spherical of the correct dimension.
- \mathcal{S} is bounded if it has $0, 1 \in \mathcal{S}$.

- $\Delta(S) = \text{order-complex of } S$, where simplices are finite chains on S.
- Height of $S = h(S) = \dim \Delta(S)$.
- Height of $x \in S = h(S_{\leq x})$.
- Topology of $\mathcal{S} =$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S} =$ homotopy type of $\Delta(\mathcal{S})$.
- If n = h(S) < ∞, we say that S is spherical if it is (n − 1)-connected.
- S is Cohen-Macaulay (CM) if S, S_{>x}, S_{<x} and S_{>x} ∩ S_{<y} (with x < y) are spherical of the correct dimension.
- \mathcal{S} is bounded if it has $0, 1 \in \mathcal{S}$.

We will mainly work with bounded posets of finite height and look for *highly-connectedness* properties such as sphericity or the Cohen-Macaulayness.

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K} .

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K} . Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^* = \mathcal{S}(V) \setminus \{0, V\}$ (the proper part).

Motivation: group cohomology

Let V be a vector space of dimension n over a field K. Let S(V) be the poset of subspaces, and $S(V)^* = S(V) \setminus \{0, V\}$ (the proper part).

• (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n - 2.

- (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n 2.

- (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n-2.
- $St_n(\mathbb{K}) := \widetilde{H}_{n-2}(\mathcal{S}(V)^*)$ is the Steinberg module of $SL_n(\mathbb{K})$.
- **(Borel-Serre** '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

 $H^{\operatorname{vcd}-i}\big(\operatorname{SL}_n(\mathcal{O}),M\big)=H_i\big(\operatorname{SL}_n(\mathcal{O}),M\otimes\operatorname{St}_n(\mathbb{K})\big)\text{ for all }M\text{ and }i\leq\operatorname{vcd}.$

- (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n-2.
- **2** St_n(\mathbb{K}) := $\widetilde{H}_{n-2}(\mathcal{S}(V)^*)$ is the Steinberg module of SL_n(\mathbb{K}).
- **(Borel-Serre** '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

 $H^{\operatorname{vcd}-i}\big(\operatorname{SL}_n(\mathcal{O}),M\big)=H_i\big(\operatorname{SL}_n(\mathcal{O}),M\otimes\operatorname{St}_n(\mathbb{K})\big)\text{ for all }M\text{ and }i\leq\operatorname{vcd}.$

• (Quillen) Homological stability $(|\mathbb{K}| \neq 2)$:

$$H_m(\operatorname{GL}_n(\mathbb{K})) \stackrel{\cong}{\longrightarrow} H_m(\operatorname{GL}_{n+1}(\mathbb{K})) \quad \text{for } n \geq m+1.$$

- (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n-2.
- **2** St_n(\mathbb{K}) := $\widetilde{H}_{n-2}(\mathcal{S}(V)^*)$ is the Steinberg module of SL_n(\mathbb{K}).
- **(Borel-Serre** '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

 $H^{\operatorname{vcd}-i}\big(\operatorname{SL}_n(\mathcal{O}),M\big)=H_i\big(\operatorname{SL}_n(\mathcal{O}),M\otimes\operatorname{St}_n(\mathbb{K})\big)\text{ for all }M\text{ and }i\leq\operatorname{vcd}.$

• (Quillen) Homological stability
$$(|\mathbb{K}| \neq 2)$$
:

$$H_m(\operatorname{GL}_n(\mathbb{K})) \xrightarrow{\cong} H_m(\operatorname{GL}_{n+1}(\mathbb{K})) \text{ for } n \geq m+1.$$

General idea: construct a family of highly-connected complexes related to $\mathcal{S}(\mathbb{K}^n)$.

- (Solomon-Tits) $S(V)^*$ is the Tits building of $SL_n(\mathbb{K})$, so it is spherical (even CM) of dimension n-2.
- **2** St_n(\mathbb{K}) := $\widetilde{H}_{n-2}(\mathcal{S}(V)^*)$ is the Steinberg module of SL_n(\mathbb{K}).
- **(Borel-Serre** '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

 $H^{\operatorname{vcd}-i}\big(\operatorname{SL}_n(\mathcal{O}),M\big)=H_i\big(\operatorname{SL}_n(\mathcal{O}),M\otimes\operatorname{St}_n(\mathbb{K})\big)\text{ for all }M\text{ and }i\leq\operatorname{vcd}.$

• (Quillen) Homological stability
$$(|\mathbb{K}| \neq 2)$$
:

$$H_m(\operatorname{GL}_n(\mathbb{K})) \stackrel{\cong}{\longrightarrow} H_m(\operatorname{GL}_{n+1}(\mathbb{K})) \quad \text{for } n \geq m+1.$$

General idea: construct a family of highly-connected complexes related to $\mathcal{S}(\mathbb{K}^n)$.

Direct sum decompositions, partial basis complexes, frame complexes, etc.

Motivation: *q*-analogues

$\{1, \ldots, n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k}$ = subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$inom{n}{k_1,,k_r} = number \; of \; flags$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_q$ = number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

$\{1,\ldots,n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k}$ = subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$\binom{n}{k_1,,k_r} = number of flags$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_{q}$ = number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

Questions. Do we have "analogues" for other groups?

$\{1, \ldots, n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k} =$ subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$\binom{n}{k_1,,k_r} = number \; of \; flags$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_q = $ number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

$\{1,\ldots,n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k}$ = subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$\binom{n}{k_1,,k_r} = number of flags$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_q$ = number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

• Free group
$$F_n$$
 of rank n , $Aut(F_n)$, $Out(F_n)$,

$\{1, \ldots, n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k} =$ subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$\binom{n}{k_1,,k_r} = number \; of \; flags$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_q = $ number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

• Free group
$$F_n$$
 of rank n , $Aut(F_n)$, $Out(F_n)$,

2 Isometry groups Sp_n , SU_n , etc.,

$\{1, \ldots, n\}$ and Sym_n	\mathbb{F}_q^n and $GL_n(q)$
$\binom{n}{k} =$ subsets of size k	$\begin{bmatrix}n\\k\end{bmatrix}_q$ = number of subspaces of dimension k
$\binom{n}{k_1,,k_r} = number ext{ of flags}$	$\begin{bmatrix}n\\k_1,\ldots,k_r\end{bmatrix}_q = $ number of flags
$\emptyset = S_0 \subset S_1 \subset \ldots \subset S_r = [n]$	$0 = V_0 \subset V_1 \subset \ldots \subset V_r = \mathbb{F}_q^n$
with $ S_i - S_{i-1} = k_i$.	with dim $V_i/V_{i-1} = k_i$.
Partition lattice Π_n	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several <i>q</i> -analogues

- Free group F_n of rank n, $Aut(F_n)$, $Out(F_n)$,
- Isometry groups Sp_n, SU_n, etc.,
- Sinear groups SL_n over Dedekind domains, PIDs, local rings, etc.

Let S be a bounded poset (with 0 and 1) of finite height.

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type "A") of S is a subset σ such that:

• For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving,

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving,

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".
- Also $\Phi_{\sigma}(\sigma) = 1$ and $\Phi_{\sigma}(\emptyset) = 0$.
The general poset-approach

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A *decomposition* (of type "A") of S is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".

• Also
$$\Phi_{\sigma}(\sigma) = 1$$
 and $\Phi_{\sigma}(\emptyset) = 0$.

The condition on the heights is:

$$h(\Phi_{\sigma}(\tau)) = \sum_{x \in \tau} h(x).$$

The general poset-approach

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A *decomposition* (of type "A") of S is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".

• Also
$$\Phi_{\sigma}(\sigma) = 1$$
 and $\Phi_{\sigma}(\emptyset) = 0$.

The condition on the heights is:

$$h(\Phi_{\sigma}(\tau)) = \sum_{x \in \tau} h(x).$$

 $\mathcal{D}(\mathcal{S}) = \text{poset of decompositions ordered by refinement},$

The general poset-approach

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A *decomposition* (of type "A") of S is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \to S$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".

• Also
$$\Phi_{\sigma}(\sigma) = 1$$
 and $\Phi_{\sigma}(\emptyset) = 0$.

The condition on the heights is:

$$h(\Phi_{\sigma}(\tau)) = \sum_{x \in \tau} h(x).$$

 $\mathcal{D}(\mathcal{S}) = \text{poset of decompositions ordered by refinement},$

 $\mathcal{PD}(\mathcal{S}) = \text{poset of partial decompositions ordered by refinement}$ = { $\tau : \tau \subseteq \sigma, \sigma \in \mathcal{D}(\mathcal{S})$ }.

• S = S(V) is the poset of subspaces with V finite dimensional,

• S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

Partial goal: cover the following examples.

If $G = F_n$ is the free group of rank *n*, we would like to take $S = S(F_n)$ the poset of free factors and $\mathcal{D}(S(F_n))$ the poset of decompositions into free factors.

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

- If G = F_n is the free group of rank n, we would like to take S = S(F_n) the poset of free factors and D(S(F_n)) the poset of decompositions into free factors.
- If M is a f.g. free module over a PID, then S(M) should be the poset of direct summands and D(S(M)) the poset of direct sum decompositions of M.

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

- If $G = F_n$ is the free group of rank *n*, we would like to take $S = S(F_n)$ the poset of free factors and $\mathcal{D}(S(F_n))$ the poset of decompositions into free factors.
- If M is a f.g. free module over a PID, then S(M) should be the poset of direct summands and D(S(M)) the poset of direct sum decompositions of M.
- **(3)** If V is a vector space with a non-degenerate sesquilinear form Ψ ,

- S = S(V) is the poset of subspaces with V finite dimensional, then D(S(V)) = D(V) is the poset of direct sum decompositions.
- $S = 2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}(2^{[n]}) = \prod_n$ is the partition lattice.
- $S = \mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G)) = ?$

- If $G = F_n$ is the free group of rank *n*, we would like to take $S = S(F_n)$ the poset of free factors and $\mathcal{D}(S(F_n))$ the poset of decompositions into free factors.
- If M is a f.g. free module over a PID, then S(M) should be the poset of direct summands and D(S(M)) the poset of direct sum decompositions of M.
- If V is a vector space with a non-degenerate sesquilinear form Ψ, then S(V, Ψ) should be the poset of non-degenerate subspaces, and D(S(V, Ψ)) the poset of orthogonal decompositions of V.

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) .

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (C, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) . Let $\mathcal{S}(X)$ be the poset of subobjects of X: classes of monomorphisms $Y \to X$.

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) . Let $\mathcal{S}(X)$ be the poset of subobjects of X: classes of monomorphisms $Y \to X$. This is a bounded poset with 0 = initial object, and $1 = [(X, \mathrm{Id}_X)] = X$.

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (C, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) . Let $\mathcal{S}(X)$ be the poset of subobjects of X: classes of monomorphisms $Y \to X$. This is a bounded poset with 0 = initial object, and $1 = [(X, \mathrm{Id}_X)] = X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup -compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T} , and it is a subobject that coincides with the \sqcup -product of its elements +choice of representatives+compatibility:

$$[i_1: Y_1 \rightarrow X] \lor \ldots \lor [i_r: Y_r \rightarrow X] = [i: Y_1 \sqcup \ldots \sqcup Y_r \rightarrow X].$$

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) . Let $\mathcal{S}(X)$ be the poset of subobjects of X: classes of monomorphisms $Y \to X$. This is a bounded poset with 0 = initial object, and $1 = [(X, \mathrm{Id}_X)] = X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup -compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T} , and it is a subobject that coincides with the \sqcup -product of its elements +choice of representatives+compatibility:

$$[i_1: Y_1 \to X] \lor \ldots \lor [i_r: Y_r \to X] = [i: Y_1 \sqcup \ldots \sqcup Y_r \to X].$$

We say that $x \in S(X)$ is \Box -complemented if there is a poset complement $y \in S(X)$ such that $\{x, y\}$ is \Box -compatible in S(X).

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An *ISM-category* is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup .

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) . Let $\mathcal{S}(X)$ be the poset of subobjects of X: classes of monomorphisms $Y \to X$. This is a bounded poset with 0 = initial object, and $1 = [(X, \mathrm{Id}_X)] = X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup -compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T} , and it is a subobject that coincides with the \sqcup -product of its elements +choice of representatives+compatibility:

$$[i_1: Y_1 \to X] \lor \ldots \lor [i_r: Y_r \to X] = [i: Y_1 \sqcup \ldots \sqcup Y_r \to X].$$

We say that $x \in S(X)$ is \sqcup -complemented if there is a poset complement $y \in S(X)$ such that $\{x, y\}$ is \sqcup -compatible in S(X).

 $\mathcal{S}(X, \sqcup) =$ poset of \sqcup -complemented subobjects.

Definition (Decompositions)

A \sqcup -decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup -compatible in $\mathcal{S}(X, \sqcup)$.

Definition (Decompositions)

A \sqcup -decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup -compatible in $\mathcal{S}(X, \sqcup)$.

 $\mathcal{D}(X, \sqcup) =$ poset of \sqcup -decompositions,

Definition (Decompositions)

A \sqcup -decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup -compatible in $\mathcal{S}(X, \sqcup)$.

 $\mathcal{D}(X, \sqcup) =$ poset of \sqcup -decompositions,

 $\mathcal{PD}(X, \sqcup) = \text{poset of } \sqcup \text{-partial decompositions.}$

Definition (Decompositions)

A \sqcup -decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup -compatible in $\mathcal{S}(X, \sqcup)$.

 $\mathcal{D}(X, \sqcup) =$ poset of \sqcup -decompositions,

 $\mathcal{PD}(X, \sqcup) = \text{poset of } \sqcup \text{-partial decompositions.}$

Example. If S is a complemented lattice of finite height, regard S as an ISM-category with $\Box = \lor$.

Definition (Decompositions)

A \sqcup -decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup -compatible in $\mathcal{S}(X, \sqcup)$.

 $\mathcal{D}(X, \sqcup) =$ poset of \sqcup -decompositions,

 $\mathcal{PD}(X, \sqcup) = \text{poset of } \sqcup \text{-partial decompositions.}$

Example. If S is a complemented lattice of finite height, regard S as an ISM-category with $\Box = \lor$. Then $S(1, \lor) = S$ and $D(1, \lor) = D(S)$.

The following hold:

● \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

The following hold:

● \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

 $\ \textbf{0} \ \ \Phi(\tau) := \bigvee_{x \in \tau} x \text{ for } \tau \in \mathcal{PD}(X, \sqcup).$

- **●** \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
- $\ \textbf{0} \ \ \Phi(\tau) := \bigvee_{x \in \tau} x \text{ for } \tau \in \mathcal{PD}(X, \sqcup).$
- $\Phi : \mathcal{PD}(X, \sqcup) \to \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_h(X, \sqcup)$ the (\sqcup, h) -complemented subobjects.

- **●** \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
- $\ \textbf{0} \ \ \Phi(\tau) := \bigvee_{x \in \tau} x \text{ for } \tau \in \mathcal{PD}(X, \sqcup).$
- $\Phi : \mathcal{PD}(X, \sqcup) \to \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_h(X, \sqcup)$ the (\sqcup, h) -complemented subobjects.
- $\mathcal{PD}(X,\sqcup)^* \setminus \mathcal{D}(X,\sqcup) \simeq \mathcal{S}_h(X,\sqcup).$

- **9** \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
- $\Phi : \mathcal{PD}(X, \sqcup) \to \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_h(X, \sqcup)$ the (\sqcup, h) -complemented subobjects.
- $\mathcal{PD}(X,\sqcup)^* \setminus \mathcal{D}(X,\sqcup) \simeq \mathcal{S}_h(X,\sqcup).$
- If $S(X, \sqcup)$ is uniquely downward (\sqcup, h) -complemented then $\mathcal{PD}(X, \sqcup)^* \simeq \mathcal{D}(X, \sqcup)^\circ := \mathcal{D}(X, \sqcup) \setminus \{\{X\}\}.$
The following hold:

- **9** \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
- $\Phi : \mathcal{PD}(X, \sqcup) \to \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_h(X, \sqcup)$ the (\sqcup, h) -complemented subobjects.
- $\mathcal{PD}(X,\sqcup)^* \setminus \mathcal{D}(X,\sqcup) \simeq \mathcal{S}_h(X,\sqcup).$
- If $S(X, \sqcup)$ is uniquely downward (\sqcup, h) -complemented then $\mathcal{PD}(X, \sqcup)^* \simeq \mathcal{D}(X, \sqcup)^\circ := \mathcal{D}(X, \sqcup) \setminus \{\{X\}\}.$

Intervals:

The following hold:

● \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

$$\ \, \bullet(\tau):=\bigvee_{x\in\tau}x \text{ for }\tau\in\mathcal{PD}(X,\sqcup).$$

 ⊕ : PD(X, □) → S(X, □) is a poset map with image S_h(X, □) the (□, h)-complemented subobjects.

● If $S(X, \sqcup)$ is uniquely downward (\sqcup, h) -complemented then $\mathcal{PD}(X, \sqcup)^* \simeq \mathcal{D}(X, \sqcup)^\circ := \mathcal{D}(X, \sqcup) \setminus \{\{X\}\}.$

Intervals:

• $\mathcal{D}(X,\sqcup)_{\geq\sigma} \cong \Pi(\sigma)$ the partition lattice on σ .

The following hold:

1 \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

$$\ \, {\bf 0} \ \, \Phi(\tau):=\bigvee_{x\in\tau}x \text{ for }\tau\in\mathcal{PD}(X,\sqcup).$$

 ⊕ : PD(X, □) → S(X, □) is a poset map with image S_h(X, □) the (□, h)-complemented subobjects.

• If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h) -complemented then $\mathcal{PD}(X, \sqcup)^* \simeq \mathcal{D}(X, \sqcup)^\circ := \mathcal{D}(X, \sqcup) \setminus \{\{X\}\}.$

Intervals:

• $\mathcal{D}(X, \sqcup)_{\geq \sigma} \cong \Pi(\sigma)$ the partition lattice on σ .

2 In most examples we will also have:

$$\mathcal{PD}(X,\sqcup)_{\leq\sigma}\cong\prod_{y\in\sigma}\mathcal{PD}(Y,\sqcup).$$

The following hold:

9 \mathcal{PD} is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

$$\ \, \bullet(\tau):=\bigvee_{x\in\tau}x \text{ for }\tau\in\mathcal{PD}(X,\sqcup).$$

 ⊕ : PD(X, □) → S(X, □) is a poset map with image S_h(X, □) the (□, h)-complemented subobjects.

•
$$\mathcal{PD}(X,\sqcup)^* \setminus \mathcal{D}(X,\sqcup) \simeq \mathcal{S}_h(X,\sqcup).$$

● If $S(X, \sqcup)$ is uniquely downward (\sqcup, h) -complemented then $\mathcal{PD}(X, \sqcup)^* \simeq \mathcal{D}(X, \sqcup)^\circ := \mathcal{D}(X, \sqcup) \setminus \{\{X\}\}.$

Intervals:

• $\mathcal{D}(X, \sqcup)_{\geq \sigma} \cong \Pi(\sigma)$ the partition lattice on σ .

2 In most examples we will also have:

$$\mathcal{PD}(X,\sqcup)_{\leq\sigma}\cong\prod_{y\in\sigma}\mathcal{PD}(Y,\sqcup).$$

() Upper intervals $\mathcal{PD}(X, \sqcup)_{\geq \sigma}$ are harder to control.

Suppose $\mathcal{S}(X, \sqcup)$ has finite height *n*.

Suppose $\mathcal{S}(X, \sqcup)$ has finite height *n*.

F(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
 Suppose $\mathcal{S}(X, \sqcup)$ has finite height *n*.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
 - $\mathcal{OD}(X, \sqcup)$ = ordered decompositions = { (x_1, \ldots, x_r) : { x_1, \ldots, x_r } $\in \mathcal{D}(X, \sqcup)$ }.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
 - $\mathcal{OD}(X, \sqcup) = \text{ordered decompositions}$ = { (x_1, \ldots, x_r) : { x_1, \ldots, x_r } $\in \mathcal{D}(X, \sqcup)$ }.
 - $\mathcal{OPD}(X, \sqcup)$,

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
 - $\mathcal{OD}(X, \sqcup) =$ ordered decompositions
 - $= \{(x_1, \ldots, x_r) : \{x_1, \ldots, x_r\} \in \mathcal{D}(X, \sqcup)\}.$
 - $\mathcal{OPD}(X,\sqcup)$,
 - $\mathcal{OF}(X, \sqcup)$ and $\mathcal{OPB}(X, \sqcup)$.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
 - $\mathcal{OD}(X, \sqcup) =$ ordered decompositions
 - $=\{(x_1,\ldots,x_r) \ : \ \{x_1,\ldots,x_r\} \in \mathcal{D}(X,\sqcup)\}.$
 - $\mathcal{OPD}(X,\sqcup)$,
 - $\mathcal{OF}(X,\sqcup)$ and $\mathcal{OPB}(X,\sqcup)$.
- The unordered version is spherical if the ordered version is.

- *F*(X, ⊔) = frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{PB}(X, \sqcup, P) = \text{complex of partial bases:}$ For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_v , and \mathcal{PB} is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: \mathcal{PB} is Cohen-Macaulay of dimension n-1 if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
 - $\mathcal{OD}(X, \sqcup) =$ ordered decompositions
 - $=\{(x_1,\ldots,x_r) \ : \ \{x_1,\ldots,x_r\} \in \mathcal{D}(X,\sqcup)\}.$
 - $\mathcal{OPD}(X,\sqcup)$,
 - $\mathcal{OF}(X,\sqcup)$ and $\mathcal{OPB}(X,\sqcup)$.
- The unordered version is spherical if the ordered version is.
- If the unordered version is Cohen-Macaulay then the ordered version is (the converse also holds for $\mathcal{F}, \mathcal{PB}$).

Let F_n be the free group of rank n.

Let F_n be the free group of rank n.

• C = category of groups, and \sqcup = * the coproduct (free product).

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $\mathcal{S}(F_n, *) = FC_n = \text{poset of free factors:}$

 $\mathrm{FC}_n = \{ H \leq F_n : \exists K \leq F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $\mathcal{S}(F_n, *) = FC_n = \text{poset of free factors:}$

 $\mathrm{FC}_n = \{ H \leq F_n : \exists K \leq F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $S(F_n, *) = FC_n = poset of free factors:$

 $\mathrm{FC}_n = \{ H \leq F_n : \exists K \leq F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $\mathcal{S}(F_n, *) = FC_n = \text{poset of free factors:}$

 $FC_n = \{ H \le F_n : \exists K \le F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

(Hatcher-Vogtmann) FC_n is Cohen-Macaulay of dimension n.

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $S(F_n, *) = FC_n = poset of free factors:$

 $FC_n = \{ H \le F_n : \exists K \le F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

- (Hatcher-Vogtmann) FC_n is Cohen-Macaulay of dimension n.
- **2** (Hatcher-Vogtmann) $\mathcal{D}(F_n)$ is Cohen-Macaulay of dimension n-1.

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $S(F_n, *) = FC_n = \text{poset of free factors:}$

 $FC_n = \{ H \le F_n : \exists K \le F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

- (Hatcher-Vogtmann) FC_n is Cohen-Macaulay of dimension n.
- **2** (Hatcher-Vogtmann) $\mathcal{D}(F_n)$ is Cohen-Macaulay of dimension n-1.

• (Sadofschi Costa) $\mathcal{PB}(F_n)$, the complex of partial bases, is Cohen-Macaulay of dimension n-1.

Let F_n be the free group of rank n.

- C = category of groups, and \sqcup = * the coproduct (free product).
- $S(F_n, *) = FC_n = \text{poset of free factors:}$

 $FC_n = \{ H \le F_n : \exists K \le F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

- (Hatcher-Vogtmann) FC_n is Cohen-Macaulay of dimension n.
- **2** (Hatcher-Vogtmann) $\mathcal{D}(F_n)$ is Cohen-Macaulay of dimension n-1.
- (Sadofschi Costa) $\mathcal{PB}(F_n)$, the complex of partial bases, is Cohen-Macaulay of dimension n-1.

In particular, $\mathcal{OD}(F_n)$, $\mathcal{F}(F_n, *)$, $\mathcal{OF}(F_n, *)$ and $\mathcal{OPB}(F_n)$ are Cohen-Macaulay of dimension n-1.

Let F_n be the free group of rank n.

- $\mathcal{C} =$ category of groups, and $\sqcup = *$ the coproduct (free product).
- $S(F_n, *) = FC_n = poset of free factors:$

 $\mathrm{FC}_n = \{ H \leq F_n : \exists K \leq F_n \text{ s.t. } H * K \cong \langle H, K \rangle = F_n \}.$

• $\mathcal{D}(F_n, *) = \mathcal{D}(F_n) = \text{poset of decompositions of } F_n \text{ into free factors.}$

We have the following results:

- **(**Hatcher-Vogtmann) FC_n is Cohen-Macaulay of dimension n.
- **2** (Hatcher-Vogtmann) $\mathcal{D}(F_n)$ is Cohen-Macaulay of dimension n-1.

(Sadofschi Costa) $\mathcal{PB}(F_n)$, the complex of partial bases, is Cohen-Macaulay of dimension n-1.

In particular, $\mathcal{OD}(F_n)$, $\mathcal{F}(F_n, *)$, $\mathcal{OF}(F_n, *)$ and $\mathcal{OPB}(F_n)$ are Cohen-Macaulay of dimension n-1.

Question. What is the homotopy type of $\mathcal{PD}(F_n)^*$?

• C = category of vector spaces with forms and isometries (over \mathbb{K}),

- $\mathcal{C} =$ category of vector spaces with forms and isometries (over \mathbb{K}),
- \sqcup = orthogonal sum (this is not a coproduct!),

- $\mathcal{C} =$ category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

- $\mathcal{C} =$ category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

(Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2.

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

(Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2. Then S((V, Ψ), ⊔) is Cohen-Macaulay of dimension n + 1.
- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

- (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2. Then S((V, Ψ), ⊔) is Cohen-Macaulay of dimension n + 1.
- 2 (Das) If $\mathbb{K} = \mathbb{F}_q$, q > 2, and $V = \mathbb{F}_q^{2n}$ is symplectic,

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

- (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2. Then S((V, Ψ), ⊔) is Cohen-Macaulay of dimension n + 1.
- ② (Das) If $\mathbb{K} = \mathbb{F}_q$, q > 2, and $V = \mathbb{F}_q^{2n}$ is symplectic, then $S((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension *n*.

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

- (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2. Then S((V, Ψ), ⊔) is Cohen-Macaulay of dimension n + 1.
- ② (Das) If $\mathbb{K} = \mathbb{F}_q$, q > 2, and $V = \mathbb{F}_q^{2n}$ is symplectic, then $S((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension *n*.

Question 1. Is $S((V, \Psi), \sqcup)$ always CM for $n \ge 1$ and $q \ge 1$?

- C = category of vector spaces with forms and isometries (over \mathbb{K}),
- \Box = orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup) = \text{poset of non-degenerate subspaces,}$
- $\mathcal{D}((V, \Psi), \sqcup) = \text{poset of orthogonal decompositions of } V.$

We have only partial results on these posets:

- (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kⁿ⁺¹ and Ψ a non-degenerate σ-Hermitian form. If K = F_q then assume 2ⁿ < q if |σ| = 1, and 2ⁿ⁻¹ (√q + 1) < q if |σ| = 2. Then S((V, Ψ), ⊔) is Cohen-Macaulay of dimension n + 1.
- ② (Das) If $\mathbb{K} = \mathbb{F}_q$, q > 2, and $V = \mathbb{F}_q^{2n}$ is symplectic, then $S((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension *n*.

Question 1. Is $\mathcal{S}((V, \Psi), \sqcup)$ always CM for $n \ge 1$ and $q \ge 1$?

Question 2. What happens for arbitrary fields in the symplectic case?

• $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\mathrm{op}}.$

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\circ p}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\circ p}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup) = \text{frames of size} \neq n 1.$

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\mathrm{op}}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup) = \text{frames of size} \neq n-1.$
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\mathrm{op}}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup) = \text{frames of size} \neq n-1.$
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- *PB*(V, Ψ) := *PB*((V, Ψ), ⊔, P) with P_S the set of "unit" bases of a minimal non-degenerate subspace S.

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\mathrm{op}}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup) = \text{frames of size} \neq n-1.$
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- *PB*(V, Ψ) := *PB*((V, Ψ), ⊔, P) with P_S the set of "unit" bases of a minimal non-degenerate subspace S.

Moreover, if \mathbb{K} is a finite field, Ψ is unitary or symplectic, and *n* is large enough, then $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ is not Cohen-Macaulay.

- $\mathcal{PD}((V, \Psi), \sqcup)^* \simeq \mathcal{D}((V, \Psi), \sqcup)^\circ.$
- $\mathcal{OD}((V, \Psi), \sqcup)^{\circ} \cong \Delta(\mathcal{S}((V, \Psi), \sqcup)^*)^{\mathrm{op}}.$
- Hence $\mathcal{OD}((V, \Psi), \sqcup)$, $\mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup) = \text{frames of size} \neq n-1.$
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- *PB*(V, Ψ) := *PB*((V, Ψ), ⊔, P) with P_S the set of "unit" bases of a minimal non-degenerate subspace S.

Moreover, if \mathbb{K} is a finite field, Ψ is unitary or symplectic, and *n* is large enough, then $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ is not Cohen-Macaulay.

Question. What is the behaviour of $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ and $\mathcal{PB}(V, \Psi)$ for infinite fields?

For any $A, B \in \mathcal{I}(M)$ with |A| > |B|, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

 $\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

 $\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

We work with
$$C = \mathcal{L}(M)$$
 and $\sqcup = \lor$, so $\mathcal{L}(M) = \mathcal{S}(M, \lor)$.

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

 $\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

We work with
$$\mathcal{C} = \mathcal{L}(M)$$
 and $\sqcup = \lor$, so $\mathcal{L}(M) = \mathcal{S}(M, \lor)$.

By general theory of finite matroids:

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

 $\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

We work with
$$\mathcal{C} = \mathcal{L}(M)$$
 and $\sqcup = \lor$, so $\mathcal{L}(M) = \mathcal{S}(M, \lor)$.

By general theory of finite matroids:

$$\mathcal{L}(M)$$
, $\mathcal{F}(M)$ and $\mathcal{PB}(M) := \mathcal{I}(M)$ are CM.

For any
$$A, B \in \mathcal{I}(M)$$
 with $|A| > |B|$, there is $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}(M)$.

A *flat* of *M* is a subset $F \subseteq M$ such that for any $x \in M \setminus F$

$$\operatorname{rk}(F) := \max\{|A| : A \subseteq F, A \in \mathcal{I}(M)\} < \operatorname{rk}(F \cup \{x\}).$$

 $\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

We work with
$$\mathcal{C} = \mathcal{L}(M)$$
 and $\sqcup = \lor$, so $\mathcal{L}(M) = \mathcal{S}(M, \lor)$.

By general theory of finite matroids:

$$\mathcal{L}(M)$$
, $\mathcal{F}(M)$ and $\mathcal{PB}(M) := \mathcal{I}(M)$ are CM.

Question. Are $\mathcal{L}(M)$ and $\mathcal{I}(M)$ Cohen-Macaulay if M is infinite?

Regard the poset of subspaces as the lattice of flats of a matroid:

Regard the poset of subspaces as the lattice of flats of a matroid:

• V a finite-dimensional vector space over a field \mathbb{K} .

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) =$ partial basis complex, is a matroid structure for V.

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) =$ poset of direct sum decompositions:

(Welker) CM when \mathbb{K} is a finite field,

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) =$ poset of direct sum decompositions:

- **(Welker)** CM when \mathbb{K} is a finite field,
- ② (Charney) *OD*(*V*) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) *OD*(*V*) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) OD(V) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) OD(V) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

(Hanlon, Hersh, Shareshian) $\mathcal{PD}(V)$ is CM for finite fields (Unpublished).

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) OD(V) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

- **(**Hanlon, Hersh, Shareshian) $\mathcal{PD}(V)$ is CM for finite fields (Unpublished).
- **2** (Brück, P., Welker) $\mathcal{PD}(V)^*$ is homotopic to the common basis complex.

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) *OD*(*V*) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

- **(**Hanlon, Hersh, Shareshian) $\mathcal{PD}(V)$ is CM for finite fields (Unpublished).
- **2** (Brück, P., Welker) $\mathcal{PD}(V)^*$ is homotopic to the *common basis complex*. The latter was recently shown to be (2n 4)-connected (Miller, Patzt, Wilson),
Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) *OD*(*V*) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

- **(**Hanlon, Hersh, Shareshian) $\mathcal{PD}(V)$ is CM for finite fields (Unpublished).
- (Brück, P., Welker) PD(V)* is homotopic to the common basis complex. The latter was recently shown to be (2n − 4)-connected (Miller, Patzt, Wilson), so PD(V)* is spherical for any field.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K} .
- $\mathcal{I}(V) = \text{partial basis complex, is a matroid structure for } V$.
- Hence $S(V, \lor) = L(V) =$ lattice of subspaces (CM by Solomon-Tits).

 $\mathcal{D}(V) = \text{poset of direct sum decompositions:}$

- (Welker) CM when \mathbb{K} is a finite field,
- ② (Charney) *OD*(*V*) is isomorphic to a poset introduced by Charney, who showed it is CM (for any field K).
- Thus $\mathcal{OD}(V)$ and $\mathcal{D}(V)$ are CM for any field.

 $\mathcal{PD}(V) = \text{poset of partial decompositions:}$

- **(**Hanlon, Hersh, Shareshian) $\mathcal{PD}(V)$ is CM for finite fields (Unpublished).
- (Brück, P., Welker) PD(V)* is homotopic to the common basis complex. The latter was recently shown to be (2n − 4)-connected (Miller, Patzt, Wilson), so PD(V)* is spherical for any field.

(van der Kallen) The complex $\mathcal{PB}(V) := \mathcal{I}(V)$ (and hence $\mathcal{F}(V)$) is CM.

• Π_n is the lattice of flats of a matroid.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.
- (McCammond-Meier) HT_n is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.
- (McCammond-Meier) HT_n is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{PD}(\Pi_n)^*$ is homotopy equivalent to the poset of hyperforests HF_n on n vertices.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.
- (McCammond-Meier) HT_n is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{PD}(\Pi_n)^*$ is homotopy equivalent to the poset of hyperforests HF_n on n vertices.
- (Bacher) The Möbius number of HF_n is -(n-2)!.

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.
- (McCammond-Meier) HT_n is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{PD}(\Pi_n)^*$ is homotopy equivalent to the poset of hyperforests HF_n on n vertices.
- (Bacher) The Möbius number of HF_n is -(n-2)!.

Question 1. Is $\mathcal{PD}(\Pi_n)$ Cohen-Macaulay of dimension 2n - 1?

- Π_n is the lattice of flats of a matroid.
- Π_n is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)!$.
- D(Π_n)° is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_n on n vertices.
- (McCammond-Meier) HT_n is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{PD}(\Pi_n)^*$ is homotopy equivalent to the poset of hyperforests HF_n on n vertices.
- (Bacher) The Möbius number of HF_n is -(n-2)!.

Question 1. Is $\mathcal{PD}(\Pi_n)$ Cohen-Macaulay of dimension 2n - 1?

Question 2. Is the Möbius number of $\mathcal{OD}(\Pi_n)$ equal to $(-1)^{n-1}(2n-1)^{n-2}$?

Thank you very much!