A categorical approach to study posets of decompositions into subobjects

Kevin I. Piterman
(joint with Volkmar Welker)
Philipps-Universität Marburg

March 19, 2024
University of Copenhagen

Basic preliminaries

Basic preliminaries

Let \mathcal{S} be a poset.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S})$.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S})$.
- If $n=h(\mathcal{S})<\infty$, we say that \mathcal{S} is spherical if it is ($n-1$)-connected.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S})$.
- If $n=h(\mathcal{S})<\infty$, we say that \mathcal{S} is spherical if it is $(n-1)$-connected.
- \mathcal{S} is Cohen-Macaulay (CM) if $\mathcal{S}, \mathcal{S}_{>x}, \mathcal{S}_{<x}$ and $\mathcal{S}_{>x} \cap \mathcal{S}_{<y}$ (with $x<y$) are spherical of the correct dimension.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S})$.
- If $n=h(\mathcal{S})<\infty$, we say that \mathcal{S} is spherical if it is $(n-1)$-connected.
- \mathcal{S} is Cohen-Macaulay (CM) if $\mathcal{S}, \mathcal{S}_{>x}, \mathcal{S}_{<x}$ and $\mathcal{S}_{>x} \cap \mathcal{S}_{<y}$ (with $x<y$) are spherical of the correct dimension.
- \mathcal{S} is bounded if it has $0,1 \in \mathcal{S}$.

Basic preliminaries

Let \mathcal{S} be a poset.

- $\Delta(\mathcal{S})=$ order-complex of \mathcal{S}, where simplices are finite chains on \mathcal{S}.
- Height of $\mathcal{S}=h(\mathcal{S})=\operatorname{dim} \Delta(\mathcal{S})$.
- Height of $x \in \mathcal{S}=h\left(\mathcal{S}_{\leq x}\right)$.
- Topology of $\mathcal{S}=$ topology of $\Delta(\mathcal{S})$.
- Homotopy type of $\mathcal{S}=$ homotopy type of $\Delta(\mathcal{S})$.
- If $n=h(\mathcal{S})<\infty$, we say that \mathcal{S} is spherical if it is $(n-1)$-connected.
- \mathcal{S} is Cohen-Macaulay (CM) if $\mathcal{S}, \mathcal{S}_{>x}, \mathcal{S}_{<x}$ and $\mathcal{S}_{>x} \cap \mathcal{S}_{<y}$ (with $x<y$) are spherical of the correct dimension.
- \mathcal{S} is bounded if it has $0,1 \in \mathcal{S}$.

We will mainly work with bounded posets of finite height and look for highly-connectedness properties such as sphericity or the Cohen-Macaulayness.

Motivation: group cohomology

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}.

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even CM) of dimension $n-2$.

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even $C M)$ of dimension $n-2$.
(2) $\mathrm{St}_{n}(\mathbb{K}):=\widetilde{H}_{n-2}\left(\mathcal{S}(V)^{*}\right)$ is the Steinberg module of $\mathrm{SL}_{n}(\mathbb{K})$.

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even CM) of dimension $n-2$.
(2) $\mathrm{St}_{n}(\mathbb{K}):=\widetilde{H}_{n-2}\left(\mathcal{S}(V)^{*}\right)$ is the Steinberg module of $\mathrm{SL}_{n}(\mathbb{K})$.
(3) (Borel-Serre '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

$$
H^{\mathrm{vcd}-i}\left(\mathrm{SL}_{n}(\mathcal{O}), M\right)=H_{i}\left(\mathrm{SL}_{n}(\mathcal{O}), M \otimes \mathrm{St}_{n}(\mathbb{K})\right) \text { for all } M \text { and } i \leq \operatorname{vcd} .
$$

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even $C M)$ of dimension $n-2$.
(2) $\mathrm{St}_{n}(\mathbb{K}):=\widetilde{H}_{n-2}\left(\mathcal{S}(V)^{*}\right)$ is the Steinberg module of $\mathrm{SL}_{n}(\mathbb{K})$.
(3) (Borel-Serre '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

$$
H^{\mathrm{vcd}-i}\left(\mathrm{SL}_{n}(\mathcal{O}), M\right)=H_{i}\left(\mathrm{SL}_{n}(\mathcal{O}), M \otimes \mathrm{St}_{n}(\mathbb{K})\right) \text { for all } M \text { and } i \leq \operatorname{vcd} .
$$

(1) (Quillen) Homological stability $(|\mathbb{K}| \neq 2)$:

$$
H_{m}\left(\mathrm{GL}_{n}(\mathbb{K})\right) \xrightarrow{\cong} H_{m}\left(\mathrm{GL}_{n+1}(\mathbb{K})\right) \quad \text { for } n \geq m+1 .
$$

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even CM) of dimension $n-2$.
(2) $\mathrm{St}_{n}(\mathbb{K}):=\widetilde{H}_{n-2}\left(\mathcal{S}(V)^{*}\right)$ is the Steinberg module of $\mathrm{SL}_{n}(\mathbb{K})$.
(3) (Borel-Serre '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

$$
H^{\mathrm{vcd}-i}\left(\mathrm{SL}_{n}(\mathcal{O}), M\right)=H_{i}\left(\mathrm{SL}_{n}(\mathcal{O}), M \otimes \mathrm{St}_{n}(\mathbb{K})\right) \text { for all } M \text { and } i \leq \operatorname{vcd} .
$$

(1) (Quillen) Homological stability $(|\mathbb{K}| \neq 2)$:

$$
H_{m}\left(\mathrm{GL}_{n}(\mathbb{K})\right) \xrightarrow{\cong} H_{m}\left(\mathrm{GL}_{n+1}(\mathbb{K})\right) \text { for } n \geq m+1
$$

General idea: construct a family of highly-connected complexes related to $\mathcal{S}\left(\mathbb{K}^{n}\right)$.

Motivation: group cohomology

Let V be a vector space of dimension n over a field \mathbb{K}. Let $\mathcal{S}(V)$ be the poset of subspaces, and $\mathcal{S}(V)^{*}=\mathcal{S}(V) \backslash\{0, V\}$ (the proper part).
(1) (Solomon-Tits) $\mathcal{S}(V)^{*}$ is the Tits building of $\mathrm{SL}_{n}(\mathbb{K})$, so it is spherical (even CM) of dimension $n-2$.
(2) $\mathrm{St}_{n}(\mathbb{K}):=\widetilde{H}_{n-2}\left(\mathcal{S}(V)^{*}\right)$ is the Steinberg module of $\mathrm{SL}_{n}(\mathbb{K})$.
(3) (Borel-Serre '73) For the ring of integers \mathcal{O} of a number field \mathbb{K} :

$$
H^{\mathrm{vcd}-i}\left(\mathrm{SL}_{n}(\mathcal{O}), M\right)=H_{i}\left(\mathrm{SL}_{n}(\mathcal{O}), M \otimes \mathrm{St}_{n}(\mathbb{K})\right) \text { for all } M \text { and } i \leq \operatorname{vcd} .
$$

(1) (Quillen) Homological stability $(|\mathbb{K}| \neq 2)$:

$$
H_{m}\left(\mathrm{GL}_{n}(\mathbb{K})\right) \xrightarrow{\cong} H_{m}\left(\mathrm{GL}_{n+1}(\mathbb{K})\right) \text { for } n \geq m+1
$$

General idea: construct a family of highly-connected complexes related to $\mathcal{S}\left(\mathbb{K}^{n}\right)$.
Direct sum decompositions, partial basis complexes, frame complexes, etc.

Motivation: q-analogues

Motivation: q-analogues

$\{1, \ldots, n\}$ and Sym $_{n}$	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\binom{n}{k_{1}, \ldots, k_{r}}=$ number of flags	$\left[\begin{array}{c}n \\ k_{1}, \ldots, k_{r}\end{array}\right]_{q}=$ number of flags
$\emptyset=S_{0} \subset S_{1} \subset \ldots \subset S_{r}=[n]$	$0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n}$
with $\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i}$.	with dim $V_{i} / V_{i-1}=k_{i}$.
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements,	Several q-analogues

Motivation: q-analogues

$\{1, \ldots, n\}$ and $S_{y m}$	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\binom{n}{k_{1}, \ldots, k_{r}}=$ number of flags	$\left[\begin{array}{c}n \\ k_{1}, \ldots, k_{r}\end{array}\right]_{q}=$ number of flags
$\emptyset=S_{0} \subset \ldots \subset S_{1} \subset \ldots \subset S_{r}=[n]$	$0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n}$
with $\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i}$.	with $\operatorname{dim} V_{i} / V_{i-1}=k_{i}$.
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements,	Several q-analogues

Questions. Do we have "analogues" for other groups?

Motivation: q-analogues

$\{1, \ldots, n\}$ and Sym_{n}	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\left(\begin{array}{c}{ }_{k}{ }^{n}, \ldots, k_{r}\end{array}\right)=$ number of flags	$\left.{ }_{k_{1}, \ldots, k_{r}}^{n}\right]_{q}=\text { number of flags }$
$\begin{gathered} \emptyset=S_{0} \subset S_{1} \subset \ldots \subset S_{r}=[n] \\ \quad \text { with }\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i} . \end{gathered}$	$\begin{aligned} & 0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n} \\ & \quad \text { with } \operatorname{dim} V_{i} / V_{i-1}=k_{i} . \end{aligned}$
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements, Stirling, Catalan number, etc	Several q-analogues

Questions. Do we have "analogues" for other groups? What about dualizing modules or homological stability?

Motivation: q-analogues

$\{1, \ldots, n\}$ and $S_{y m}$	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\binom{n}{k_{1}, \ldots, k_{r}}=$ number of flags	$\left.\left[\begin{array}{c}n \\ =\end{array}\right] S_{1} \subset \ldots \subset\right]_{r}=$ number of flags
$\left.\emptyset=S_{0} \subset S_{1} \subset \ldots\right]$	$0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n}$
with $\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i}$.	with dim $V_{i} / V_{i-1}=k_{i}$.
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements,	Several q-analogues

Questions. Do we have "analogues" for other groups? What about dualizing modules or homological stability?
(1) Free group F_{n} of rank $n, \operatorname{Aut}\left(F_{n}\right), \operatorname{Out}\left(F_{n}\right)$,

Motivation: q-analogues

$\{1, \ldots, n\}$ and $S_{y m}$	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\binom{n}{k_{1}, \ldots, k_{r}}=$ number of flags	$\left.\left[\begin{array}{c}n \\ =\end{array}\right] S_{1} \subset \ldots \subset\right]_{r}=$ number of flags
$\left.\emptyset=S_{0} \subset S_{1} \subset \ldots\right]$	$0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n}$
with $\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i}$.	with dim $V_{i} / V_{i-1}=k_{i}$.
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements,	Several q-analogues

Questions. Do we have "analogues" for other groups? What about dualizing modules or homological stability?
(1) Free group F_{n} of rank $n, \operatorname{Aut}\left(F_{n}\right), \operatorname{Out}\left(F_{n}\right)$,
(2) Isometry groups $\mathrm{Sp}_{n}, \mathrm{SU}_{n}$, etc.,

Motivation: q-analogues

$\{1, \ldots, n\}$ and $S_{y m}$	\mathbb{F}_{q}^{n} and $\mathrm{GL}_{n}(q)$
$\binom{n}{k}=$ subsets of size k	$\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=$ number of subspaces of dimension k
$\binom{n}{k_{1}, \ldots, k_{r}}=$ number of flags	$\left[\begin{array}{c}n \\ k_{1}, \ldots, k_{r}\end{array}\right]_{q}=$ number of flags
$\emptyset=S_{0} \subset S_{1} \subset \ldots \subset S_{r}=[n]$	$0=V_{0} \subset V_{1} \subset \ldots \subset V_{r}=\mathbb{F}_{q}^{n}$
with $\left\|S_{i}\right\|-\left\|S_{i-1}\right\|=k_{i}$.	with $\operatorname{dim} V_{i} / V_{i-1}=k_{i}$.
Partition lattice Π_{n}	Poset of direct sum decompositions
Number of derangements,	Several q-analogues

Questions. Do we have "analogues" for other groups? What about dualizing modules or homological stability?
(1) Free group F_{n} of rank $n, \operatorname{Aut}\left(F_{n}\right), \operatorname{Out}\left(F_{n}\right)$,
(2) Isometry groups $\mathrm{Sp}_{n}, \mathrm{SU}_{n}$, etc.,
(3) Linear groups SL_{n} over Dedekind domains, PIDs, local rings, etc.

The general poset-approach

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving,

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving,

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".
- Also $\Phi_{\sigma}(\sigma)=1$ and $\Phi_{\sigma}(\emptyset)=0$.

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".
- Also $\Phi_{\sigma}(\sigma)=1$ and $\Phi_{\sigma}(\emptyset)=0$.

The condition on the heights is:

$$
h\left(\Phi_{\sigma}(\tau)\right)=\sum_{x \in \tau} h(x) .
$$

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".
- Also $\Phi_{\sigma}(\sigma)=1$ and $\Phi_{\sigma}(\emptyset)=0$.

The condition on the heights is:

$$
h\left(\Phi_{\sigma}(\tau)\right)=\sum_{x \in \tau} h(x) .
$$

$\mathcal{D}(\mathcal{S})=$ poset of decompositions ordered by refinement,

The general poset-approach

Let \mathcal{S} be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type " A ") of \mathcal{S} is a subset σ such that:

- For all $\tau \subseteq \sigma$, the join $\bigvee_{x \in \tau} x$ exists.
- The map $\Phi_{\sigma}: 2^{\sigma} \rightarrow \mathcal{S}$ sending τ to the join of its elements is order-preserving, meet/join preserving, and "height preserving".
- Also $\Phi_{\sigma}(\sigma)=1$ and $\Phi_{\sigma}(\emptyset)=0$.

The condition on the heights is:

$$
h\left(\Phi_{\sigma}(\tau)\right)=\sum_{x \in \tau} h(x) .
$$

$\mathcal{D}(\mathcal{S})=$ poset of decompositions ordered by refinement,
$\mathcal{P D}(\mathcal{S})=$ poset of partial decompositions ordered by refinement

$$
=\{\tau: \tau \subseteq \sigma, \sigma \in \mathcal{D}(\mathcal{S})\} .
$$

Some motivating examples

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional,

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Partial goal: cover the following examples.

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Partial goal: cover the following examples.

(1) If $G=F_{n}$ is the free group of rank n, we would like to take $\mathcal{S}=\mathcal{S}\left(F_{n}\right)$ the poset of free factors and $\mathcal{D}\left(\mathcal{S}\left(F_{n}\right)\right)$ the poset of decompositions into free factors.

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Partial goal: cover the following examples.

(1) If $G=F_{n}$ is the free group of rank n, we would like to take $\mathcal{S}=\mathcal{S}\left(F_{n}\right)$ the poset of free factors and $\mathcal{D}\left(\mathcal{S}\left(F_{n}\right)\right)$ the poset of decompositions into free factors.
(2) If M is a f.g. free module over a PID, then $\mathcal{S}(M)$ should be the poset of direct summands and $\mathcal{D}(\mathcal{S}(M))$ the poset of direct sum decompositions of M.

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Partial goal: cover the following examples.

(1) If $G=F_{n}$ is the free group of rank n, we would like to take $\mathcal{S}=\mathcal{S}\left(F_{n}\right)$ the poset of free factors and $\mathcal{D}\left(\mathcal{S}\left(F_{n}\right)\right)$ the poset of decompositions into free factors.
(2) If M is a f.g. free module over a PID, then $\mathcal{S}(M)$ should be the poset of direct summands and $\mathcal{D}(\mathcal{S}(M))$ the poset of direct sum decompositions of M.
(0 If V is a vector space with a non-degenerate sesquilinear form Ψ,

Some motivating examples

- $\mathcal{S}=\mathcal{S}(V)$ is the poset of subspaces with V finite dimensional, then $\mathcal{D}(\mathcal{S}(V))=\mathcal{D}(V)$ is the poset of direct sum decompositions.
- $\mathcal{S}=2^{[n]}$ the lattice of subsets of [n], then $\mathcal{D}\left(2^{[n]}\right)=\Pi_{n}$ is the partition lattice.
- $\mathcal{S}=\mathcal{L}(G)$ the lattice of subgroups of a finite group G, then $\mathcal{D}(\mathcal{L}(G))=$?

Partial goal: cover the following examples.

(1) If $G=F_{n}$ is the free group of rank n, we would like to take $\mathcal{S}=\mathcal{S}\left(F_{n}\right)$ the poset of free factors and $\mathcal{D}\left(\mathcal{S}\left(F_{n}\right)\right)$ the poset of decompositions into free factors.
(2) If M is a f.g. free module over a PID, then $\mathcal{S}(M)$ should be the poset of direct summands and $\mathcal{D}(\mathcal{S}(M))$ the poset of direct sum decompositions of M.
(3) If V is a vector space with a non-degenerate sesquilinear form Ψ, then $\mathcal{S}(V, \Psi)$ should be the poset of non-degenerate subspaces, and $\mathcal{D}(\mathcal{S}(V, \Psi))$ the poset of orthogonal decompositions of V.

The categorical approach

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup).

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup). Let $\mathcal{S}(X)$ be the poset of subobjects of X : classes of monomorphisms $Y \rightarrow X$.

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup). Let $\mathcal{S}(X)$ be the poset of subobjects of X : classes of monomorphisms $Y \rightarrow X$. This is a bounded poset with $0=$ initial object, and $1=\left[\left(X, \operatorname{Id}_{X}\right)\right]=X$.

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup). Let $\mathcal{S}(X)$ be the poset of subobjects of X : classes of monomorphisms $Y \rightarrow X$. This is a bounded poset with $0=$ initial object, and $1=\left[\left(X, \operatorname{Id}_{X}\right)\right]=X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup-compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T}, and it is a subobject that coincides with the \sqcup-product of its elements + choice of representatives+compatibility:

$$
\left[i_{1}: Y_{1} \rightarrow X\right] \vee \ldots \vee\left[i_{r}: Y_{r} \rightarrow X\right]=\left[i: Y_{1} \sqcup \ldots \sqcup Y_{r} \rightarrow X\right]
$$

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup). Let $\mathcal{S}(X)$ be the poset of subobjects of X : classes of monomorphisms $Y \rightarrow X$. This is a bounded poset with $0=$ initial object, and $1=\left[\left(X, \operatorname{Id}_{X}\right)\right]=X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup-compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T}, and it is a subobject that coincides with the \sqcup-product of its elements +choice of representatives+compatibility:

$$
\left[i_{1}: Y_{1} \rightarrow X\right] \vee \ldots \vee\left[i_{r}: Y_{r} \rightarrow X\right]=\left[i: Y_{1} \sqcup \ldots \sqcup Y_{r} \rightarrow X\right] .
$$

We say that $x \in \mathcal{S}(X)$ is \sqcup-complemented if there is a poset complement $y \in \mathcal{S}(X)$ such that $\{x, y\}$ is \sqcup-compatible in $\mathcal{S}(X)$.

The categorical approach

To recover free factors, summands or non-degenerate subspaces with the orthogonality relation, we need a kind of "product" that detects such behaviours on decompositions.

Definition. An ISM-category is a symmetric monoidal category (\mathcal{C}, \sqcup) with initial object 0 which is also a unit for the product \sqcup.

Let X be an object of an ISM-category (\mathcal{C}, \sqcup). Let $\mathcal{S}(X)$ be the poset of subobjects of X : classes of monomorphisms $Y \rightarrow X$. This is a bounded poset with $0=$ initial object, and $1=\left[\left(X, \operatorname{Id}_{X}\right)\right]=X$.

Definition. A subset σ of a subposet $\mathcal{T} \subseteq \mathcal{S}(X)$ is \sqcup-compatible in \mathcal{T} if for all $\tau \subseteq \sigma$, the join of τ exists in \mathcal{T}, and it is a subobject that coincides with the \sqcup-product of its elements +choice of representatives+compatibility:

$$
\left[i_{1}: Y_{1} \rightarrow X\right] \vee \ldots \vee\left[i_{r}: Y_{r} \rightarrow X\right]=\left[i: Y_{1} \sqcup \ldots \sqcup Y_{r} \rightarrow X\right] .
$$

We say that $x \in \mathcal{S}(X)$ is \sqcup-complemented if there is a poset complement $y \in \mathcal{S}(X)$ such that $\{x, y\}$ is \sqcup-compatible in $\mathcal{S}(X)$.

$$
\mathcal{S}(X, \sqcup)=\text { poset of } \sqcup \text {-complemented subobjects. }
$$

Posets of decompositions in ISM-categories

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Definition (Decompositions)

A \sqcup-decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup-compatible in $\mathcal{S}(X, \sqcup)$.

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Definition (Decompositions)

A \sqcup-decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup-compatible in $\mathcal{S}(X, \sqcup)$.

$$
\mathcal{D}(X, \sqcup)=\text { poset of } \sqcup \text {-decompositions, }
$$

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Definition (Decompositions)

A \sqcup-decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup-compatible in $\mathcal{S}(X, \sqcup)$.
$\mathcal{D}(X, \sqcup)=$ poset of \sqcup-decompositions,
$\mathcal{P D}(X, \sqcup)=$ poset of \sqcup-partial decompositions.

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Definition (Decompositions)

A \sqcup-decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup-compatible in $\mathcal{S}(X, \sqcup)$.

$$
\begin{gathered}
\mathcal{D}(X, \sqcup)=\text { poset of } \sqcup \text {-decompositions, } \\
\mathcal{P} \mathcal{D}(X, \sqcup)=\text { poset of } \sqcup \text {-partial decompositions. }
\end{gathered}
$$

Example. If \mathcal{S} is a complemented lattice of finite height, regard \mathcal{S} as an ISM-category with $\sqcup=\vee$.

Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (\mathcal{C}, \sqcup) such that $\mathcal{S}(X, \sqcup)$ has finite height.

Definition (Decompositions)

A \sqcup-decomposition of X is a decomposition $\sigma \in \mathcal{D}(\mathcal{S}(X, \sqcup))$ which is \sqcup-compatible in $\mathcal{S}(X, \sqcup)$.

$$
\begin{gathered}
\mathcal{D}(X, \sqcup)=\text { poset of } \sqcup \text {-decompositions, } \\
\mathcal{P} \mathcal{D}(X, \sqcup)=\text { poset of } \sqcup \text {-partial decompositions. }
\end{gathered}
$$

Example. If \mathcal{S} is a complemented lattice of finite height, regard \mathcal{S} as an ISM-category with $\sqcup=\vee$. Then $\mathcal{S}(1, \vee)=\mathcal{S}$ and $\mathcal{D}(1, \vee)=\mathcal{D}(\mathcal{S})$.

Some properties

Some properties

The following hold:

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P} \mathcal{D}(X, \sqcup)$.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3) $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3 $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(1) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3 $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(1) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.
(0. If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h)-complemented then $\mathcal{P D}(X, \sqcup)^{*} \simeq \mathcal{D}(X, \sqcup)^{\circ}:=\mathcal{D}(X, \sqcup) \backslash\{\{X\}\}$.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3) $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(1) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.
(0. If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h)-complemented then $\mathcal{P D}(X, \sqcup)^{*} \simeq \mathcal{D}(X, \sqcup)^{\circ}:=\mathcal{D}(X, \sqcup) \backslash\{\{X\}\}$.

Intervals:

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3) $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(1) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.
(0. If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h)-complemented then $\mathcal{P D}(X, \sqcup)^{*} \simeq \mathcal{D}(X, \sqcup)^{\circ}:=\mathcal{D}(X, \sqcup) \backslash\{\{X\}\}$.

Intervals:
(1) $\mathcal{D}(X, \sqcup)_{\geq \sigma} \cong \Pi(\sigma)$ the partition lattice on σ.

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3) $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(1) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.
(0. If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h)-complemented then $\mathcal{P D}(X, \sqcup)^{*} \simeq \mathcal{D}(X, \sqcup)^{\circ}:=\mathcal{D}(X, \sqcup) \backslash\{\{X\}\}$.

Intervals:
(1) $\mathcal{D}(X, \sqcup)_{\geq \sigma} \cong \Pi(\sigma)$ the partition lattice on σ.
(2) In most examples we will also have:

$$
\mathcal{P D}(X, \sqcup)_{\leq \sigma} \cong \prod_{y \in \sigma} \mathcal{P} \mathcal{D}(Y, \sqcup) .
$$

Some properties

The following hold:
(1) $\mathcal{P D}$ is bounded with minimum \emptyset and maximum $\{X\} \in \mathcal{D}(X, \sqcup)$.
(2) $\Phi(\tau):=\bigvee_{x \in \tau} x$ for $\tau \in \mathcal{P D}(X, \sqcup)$.
(3) $\Phi: \mathcal{P} \mathcal{D}(X, \sqcup) \rightarrow \mathcal{S}(X, \sqcup)$ is a poset map with image $\mathcal{S}_{h}(X, \sqcup)$ the (\sqcup, h)-complemented subobjects.
(9) $\mathcal{P D}(X, \sqcup)^{*} \backslash \mathcal{D}(X, \sqcup) \simeq \mathcal{S}_{h}(X, \sqcup)$.
(0. If $\mathcal{S}(X, \sqcup)$ is uniquely downward (\sqcup, h)-complemented then $\mathcal{P D}(X, \sqcup)^{*} \simeq \mathcal{D}(X, \sqcup)^{\circ}:=\mathcal{D}(X, \sqcup) \backslash\{\{X\}\}$.

Intervals:
(1) $\mathcal{D}(X, \sqcup)_{\geq \sigma} \cong \Pi(\sigma)$ the partition lattice on σ.
(2) In most examples we will also have:

$$
\mathcal{P D}(X, \sqcup)_{\leq \sigma} \cong \prod_{y \in \sigma} \mathcal{P} \mathcal{D}(Y, \sqcup) .
$$

(3) Upper intervals $\mathcal{P D}(X, \sqcup)_{\geq \sigma}$ are harder to control.

Other associated structures

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases:

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
- $\mathcal{O D}(X, \sqcup)=$ ordered decompositions

$$
=\left\{\left(x_{1}, \ldots, x_{r}\right):\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{D}(X, \sqcup)\right\} .
$$

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
- $\mathcal{O D}(X, \sqcup)=$ ordered decompositions

$$
=\left\{\left(x_{1}, \ldots, x_{r}\right):\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{D}(X, \sqcup)\right\} .
$$

- $\mathcal{O P D}(X, \sqcup)$,

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
- $\mathcal{O D}(X, \sqcup)=$ ordered decompositions

$$
=\left\{\left(x_{1}, \ldots, x_{r}\right):\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{D}(X, \sqcup)\right\} .
$$

- $\mathcal{O P D}(X, \sqcup)$,
- $\mathcal{O F}(X, \sqcup)$ and $\mathcal{O P B}(X, \sqcup)$.

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
- $\mathcal{O D}(X, \sqcup)=$ ordered decompositions

$$
=\left\{\left(x_{1}, \ldots, x_{r}\right):\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{D}(X, \sqcup)\right\} .
$$

- $\mathcal{O P D}(X, \sqcup)$,
- $\mathcal{O F}(X, \sqcup)$ and $\mathcal{O P B}(X, \sqcup)$.
- The unordered version is spherical if the ordered version is.

Other associated structures

Suppose $\mathcal{S}(X, \sqcup)$ has finite height n.

- $\mathcal{F}(X, \sqcup)=$ frame complex, the simplicial complex whose maximal simplices are decompositions into atoms (=height 1).
- $\mathcal{P B}(X, \sqcup, P)=$ complex of partial bases: For each vertex v of $\mathcal{F}(X, \sqcup)$, we pick a non-empty set ("of bases") P_{v}, and $\mathcal{P B}$ is the inflation by the family P of $\mathcal{F}(X, \sqcup)$.
- Therefore: $\mathcal{P B}$ is Cohen-Macaulay of dimension $n-1$ if and only if \mathcal{F} is.
- Ordered versions ("injective words"):
- $\mathcal{O D}(X, \sqcup)=$ ordered decompositions

$$
=\left\{\left(x_{1}, \ldots, x_{r}\right):\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{D}(X, \sqcup)\right\} .
$$

- $\mathcal{O P \mathcal { D }}(X, \sqcup)$,
- $\mathcal{O F}(X, \sqcup)$ and $\mathcal{O P B}(X, \sqcup)$.
- The unordered version is spherical if the ordered version is.
- If the unordered version is Cohen-Macaulay then the ordered version is (the converse also holds for $\mathcal{F}, \mathcal{P B}$).

Back to examples: free groups

Back to examples: free groups

Let F_{n} be the free group of rank n.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\} .
$$

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\}
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\}
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\} .
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:
(1) (Hatcher-Vogtmann) FC_{n} is Cohen-Macaulay of dimension n.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\} .
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:
(1) (Hatcher-Vogtmann) FC_{n} is Cohen-Macaulay of dimension n.
(2) (Hatcher-Vogtmann) $\mathcal{D}\left(F_{n}\right)$ is Cohen-Macaulay of dimension $n-1$.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\}
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:
(1) (Hatcher-Vogtmann) FC_{n} is Cohen-Macaulay of dimension n.
(2) (Hatcher-Vogtmann) $\mathcal{D}\left(F_{n}\right)$ is Cohen-Macaulay of dimension $n-1$.
(3) (Sadofschi Costa) $\mathcal{P B}\left(F_{n}\right)$, the complex of partial bases, is Cohen-Macaulay of dimension $n-1$.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\}
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:
(1) (Hatcher-Vogtmann) FC_{n} is Cohen-Macaulay of dimension n.
(2) (Hatcher-Vogtmann) $\mathcal{D}\left(F_{n}\right)$ is Cohen-Macaulay of dimension $n-1$.
(3) (Sadofschi Costa) $\mathcal{P B}\left(F_{n}\right)$, the complex of partial bases, is Cohen-Macaulay of dimension $n-1$.

In particular, $\mathcal{O} \mathcal{D}\left(F_{n}\right), \mathcal{F}\left(F_{n}, *\right), \mathcal{O} \mathcal{F}\left(F_{n}, *\right)$ and $\mathcal{O P \mathcal { B }}\left(F_{n}\right)$ are Cohen-Macaulay of dimension $n-1$.

Back to examples: free groups

Let F_{n} be the free group of rank n.

- $\mathcal{C}=$ category of groups, and $\sqcup=*$ the coproduct (free product).
- $\mathcal{S}\left(F_{n}, *\right)=\mathrm{FC}_{n}=$ poset of free factors:

$$
\mathrm{FC}_{n}=\left\{H \leq F_{n}: \exists K \leq F_{n} \text { s.t. } H * K \cong\langle H, K\rangle=F_{n}\right\}
$$

- $\mathcal{D}\left(F_{n}, *\right)=\mathcal{D}\left(F_{n}\right)=$ poset of decompositions of F_{n} into free factors.

We have the following results:
(1) (Hatcher-Vogtmann) FC_{n} is Cohen-Macaulay of dimension n.
(2) (Hatcher-Vogtmann) $\mathcal{D}\left(F_{n}\right)$ is Cohen-Macaulay of dimension $n-1$.
(3) (Sadofschi Costa) $\mathcal{P B}\left(F_{n}\right)$, the complex of partial bases, is Cohen-Macaulay of dimension $n-1$.

In particular, $\mathcal{O D}\left(F_{n}\right), \mathcal{F}\left(F_{n}, *\right), \mathcal{O} \mathcal{F}\left(F_{n}, *\right)$ and $\mathcal{O P \mathcal { B }}\left(F_{n}\right)$ are Cohen-Macaulay of dimension $n-1$.

Question. What is the homotopy type of $\mathcal{P} \mathcal{D}\left(F_{n}\right)^{*}$?

Back to examples: vector spaces with forms

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2 . Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$.

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2 . Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$. Then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension $n+1$.

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2 . Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$. Then $\mathcal{S}((V, \Psi), \sqcup)$ is
Cohen-Macaulay of dimension $n+1$.
(2) (Das) If $\mathbb{K}=\mathbb{F}_{q}, q>2$, and $V=\mathbb{F}_{q}^{2 n}$ is symplectic,

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2 . Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$. Then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension $n+1$.
(2) (Das) If $\mathbb{K}=\mathbb{F}_{q}, q>2$, and $V=\mathbb{F}_{q}^{2 n}$ is symplectic, then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension n.

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2 . Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$. Then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension $n+1$.
(2) (Das) If $\mathbb{K}=\mathbb{F}_{q}, q>2$, and $V=\mathbb{F}_{q}^{2 n}$ is symplectic, then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension n.
Question 1. Is $\mathcal{S}((V, \Psi), \sqcup)$ always $C M$ for $n \geq \geq 1$ and $q \geq \geq 1$?

Back to examples: vector spaces with forms

Let V be a \mathbb{K}-vector space with a non-degenerate σ-sesquilinear form Ψ.

- $\mathcal{C}=$ category of vector spaces with forms and isometries (over \mathbb{K}),
- $\sqcup=$ orthogonal sum (this is not a coproduct!),
- $\mathcal{S}((V, \Psi), \sqcup)=$ poset of non-degenerate subspaces,
- $\mathcal{D}((V, \Psi), \sqcup)=$ poset of orthogonal decompositions of V.

We have only partial results on these posets:
(1) (Devillers, Gramlich, Mühlherr) Let $\sigma \in \operatorname{Aut}(\mathbb{K}),|\sigma|=1$ or 2. Let $V=\mathbb{K}^{n+1}$ and Ψ a non-degenerate σ-Hermitian form. If $\mathbb{K}=\mathbb{F}_{q}$ then assume $2^{n}<q$ if $|\sigma|=1$, and $2^{n-1}(\sqrt{q}+1)<q$ if $|\sigma|=2$. Then $\mathcal{S}((V, \Psi), \sqcup)$ is
Cohen-Macaulay of dimension $n+1$.
(2) (Das) If $\mathbb{K}=\mathbb{F}_{q}, q>2$, and $V=\mathbb{F}_{q}^{2 n}$ is symplectic, then $\mathcal{S}((V, \Psi), \sqcup)$ is Cohen-Macaulay of dimension n.
Question 1. Is $\mathcal{S}((V, \Psi), \sqcup)$ always $C M$ for $n \geq \geq 1$ and $q \geq \geq 1$?
Question 2. What happens for arbitrary fields in the symplectic case?

More on vector spaces with non-degenerate forms

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup)=$ frames of size $\neq n-1$.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup)=$ frames of size $\neq n-1$.
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup)=$ frames of size $\neq n-1$.
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- $\mathcal{P B}(V, \Psi):=\mathcal{P B}((V, \Psi), \sqcup, P)$ with P_{S} the set of "unit" bases of a minimal non-degenerate subspace S.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O} \mathcal{D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup)=$ frames of size $\neq n-1$.
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- $\mathcal{P B}(V, \Psi):=\mathcal{P B}((V, \Psi), \sqcup, P)$ with P_{S} the set of "unit" bases of a minimal non-degenerate subspace S.

Moreover, if \mathbb{K} is a finite field, Ψ is unitary or symplectic, and n is large enough, then $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ is not Cohen-Macaulay.

More on vector spaces with non-degenerate forms

If $\mathcal{S}((V, \Psi), \sqcup)$ has height n, then by unique orthocomplementation we have:

- $\mathcal{P D}((V, \Psi), \sqcup)^{*} \simeq \mathcal{D}((V, \Psi), \sqcup)^{\circ}$.
- $\mathcal{O D} \mathcal{D}((V, \Psi), \sqcup)^{\circ} \cong \Delta\left(\mathcal{S}((V, \Psi), \sqcup)^{*}\right)^{\mathrm{op}}$.
- Hence $\mathcal{O D}((V, \Psi), \sqcup), \mathcal{D}((V, \Psi), \sqcup)$ are Cohen-Macaulay if $\mathcal{S}((V, \Psi), \sqcup)$ is.
- $\mathcal{F}((V, \Psi), \sqcup) \simeq \hat{\mathcal{F}}((V, \Psi), \sqcup)=$ frames of size $\neq n-1$.
- Thus $\mathcal{F}((V, \Psi), \sqcup)$ is never Cohen-Macaulay.
- $\mathcal{P B}(V, \Psi):=\mathcal{P B}((V, \Psi), \sqcup, P)$ with P_{S} the set of "unit" bases of a minimal non-degenerate subspace S.

Moreover, if \mathbb{K} is a finite field, Ψ is unitary or symplectic, and n is large enough, then $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ is not Cohen-Macaulay.

Question. What is the behaviour of $\hat{\mathcal{F}}((V, \Psi), \sqcup)$ and $\mathcal{P B}(V, \Psi)$ for infinite fields?

A different context: Matroids

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that

$$
B \cup\{x\} \in \mathcal{I}(M) .
$$

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that

$$
B \cup\{x\} \in \mathcal{I}(M) .
$$

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that $B \cup\{x\} \in \mathcal{I}(M)$.

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

$\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that $B \cup\{x\} \in \mathcal{I}(M)$.

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

$\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

$$
\text { We work with } \mathcal{C}=\mathcal{L}(M) \text { and } \sqcup=\vee \text {, so } \mathcal{L}(M)=\mathcal{S}(M, \vee) \text {. }
$$

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that $B \cup\{x\} \in \mathcal{I}(M)$.

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

$\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

$$
\text { We work with } \mathcal{C}=\mathcal{L}(M) \text { and } \sqcup=\vee \text {, so } \mathcal{L}(M)=\mathcal{S}(M, \vee) \text {. }
$$

By general theory of finite matroids:

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that $B \cup\{x\} \in \mathcal{I}(M)$.

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

$\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

$$
\text { We work with } \mathcal{C}=\mathcal{L}(M) \text { and } \sqcup=\vee \text {, so } \mathcal{L}(M)=\mathcal{S}(M, \vee) \text {. }
$$

By general theory of finite matroids:

$$
\mathcal{L}(M), \mathcal{F}(M) \text { and } \mathcal{P B}(M):=\mathcal{I}(M) \text { are } C M
$$

A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex $\mathcal{I}(M)$ (the independent sets) whose vertices are elements of M and such that:

For any $A, B \in \mathcal{I}(M)$ with $|A|>|B|$, there is $x \in A \backslash B$ such that $B \cup\{x\} \in \mathcal{I}(M)$.

A flat of M is a subset $F \subseteq M$ such that for any $x \in M \backslash F$

$$
\operatorname{rk}(F):=\max \{|A|: A \subseteq F, A \in \mathcal{I}(M)\}<\operatorname{rk}(F \cup\{x\}) .
$$

$\mathcal{L}(M)$ is the poset of flats of M, which is a geometric lattice with maximum M.

$$
\text { We work with } \mathcal{C}=\mathcal{L}(M) \text { and } \sqcup=\vee \text {, so } \mathcal{L}(M)=\mathcal{S}(M, \vee) \text {. }
$$

By general theory of finite matroids:

$$
\mathcal{L}(M), \mathcal{F}(M) \text { and } \mathcal{P B}(M):=\mathcal{I}(M) \text { are } \mathrm{CM} .
$$

Question. Are $\mathcal{L}(M)$ and $\mathcal{I}(M)$ Cohen-Macaulay if M is infinite?

Examples of matroids: vector spaces (again)

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(3) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(3) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(3 Thus $\mathcal{O D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:
(1) (Hanlon, Hersh, Shareshian) $\mathcal{P D}(V)$ is CM for finite fields (Unpublished).

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(0) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:
(1) (Hanlon, Hersh, Shareshian) $\mathcal{P D}(V)$ is CM for finite fields (Unpublished).
(2) (Brück, P., Welker) $\mathcal{P D}(V)^{*}$ is homotopic to the common basis complex.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(0) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:
(1) (Hanlon, Hersh, Shareshian) $\mathcal{P D}(V)$ is CM for finite fields (Unpublished).
(2) (Brück, P., Welker) $\mathcal{P D}(V)^{*}$ is homotopic to the common basis complex. The latter was recently shown to be $(2 n-4)$-connected (Miller, Patzt, Wilson),

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(0) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:
(1) (Hanlon, Hersh, Shareshian) $\mathcal{P D}(V)$ is CM for finite fields (Unpublished).
(2) (Brück, P., Welker) $\mathcal{P D}(V)^{*}$ is homotopic to the common basis complex. The latter was recently shown to be $(2 n-4)$-connected (Miller, Patzt, Wilson), so $\mathcal{P D}(V)^{*}$ is spherical for any field.

Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

- V a finite-dimensional vector space over a field \mathbb{K}.
- $\mathcal{I}(V)=$ partial basis complex, is a matroid structure for V.
- Hence $\mathcal{S}(V, \vee)=\mathcal{L}(V)=$ lattice of subspaces (CM by Solomon-Tits).
$\mathcal{D}(V)=$ poset of direct sum decompositions:
(1) (Welker) CM when \mathbb{K} is a finite field,
(2) (Charney) $\mathcal{O D}(V)$ is isomorphic to a poset introduced by Charney, who showed it is CM (for any field \mathbb{K}).
(0) Thus $\mathcal{O} \mathcal{D}(V)$ and $\mathcal{D}(V)$ are CM for any field.
$\mathcal{P D}(V)=$ poset of partial decompositions:
(1) (Hanlon, Hersh, Shareshian) $\mathcal{P D}(V)$ is CM for finite fields (Unpublished).
(2) (Brück, P., Welker) $\mathcal{P D}(V)^{*}$ is homotopic to the common basis complex. The latter was recently shown to be $(2 n-4)$-connected (Miller, Patzt, Wilson), so $\mathcal{P D}(V)^{*}$ is spherical for any field.
(van der Kallen) The complex $\mathcal{P B}(V):=\mathcal{I}(V)$ (and hence $\mathcal{F}(V)$) is CM .

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.
- (McCammond-Meier) HT_{n} is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.
- (McCammond-Meier) HT_{n} is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{P D}\left(\Pi_{n}\right)^{*}$ is homotopy equivalent to the poset of hyperforests HF_{n} on n vertices.

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.
- (McCammond-Meier) HT_{n} is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{P D}\left(\Pi_{n}\right)^{*}$ is homotopy equivalent to the poset of hyperforests HF_{n} on n vertices.
- (Bacher) The Möbius number of HF_{n} is $-(n-2)$!.

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.
- (McCammond-Meier) HT_{n} is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{P D}\left(\Pi_{n}\right)^{*}$ is homotopy equivalent to the poset of hyperforests HF_{n} on n vertices.
- (Bacher) The Möbius number of HF_{n} is $-(n-2)$!.

Question 1. Is $\mathcal{P} \mathcal{D}\left(\Pi_{n}\right)$ Cohen-Macaulay of dimension $2 n-1$?

Last example: the partition lattice

We work with Π_{n} the partition lattice on the set $[n]=\{1, \ldots, n\}$.

- Π_{n} is the lattice of flats of a matroid.
- Π_{n} is Cohen-Macaulay with Möbius number $(-1)^{n-1}(n-1)$!.
- $\mathcal{D}\left(\Pi_{n}\right)^{\circ}$ is CM and homotopy equivalent to the proper part of the poset of hypertrees HT_{n} on n vertices.
- (McCammond-Meier) HT_{n} is spherical with Möbius number $(-1)^{n-1}(n-1)^{n-2}$.
- $\mathcal{P} \mathcal{D}\left(\Pi_{n}\right)^{*}$ is homotopy equivalent to the poset of hyperforests HF_{n} on n vertices.
- (Bacher) The Möbius number of HF_{n} is $-(n-2)$!.

Question 1. Is $\mathcal{P D}\left(\Pi_{n}\right)$ Cohen-Macaulay of dimension $2 n-1$?
Question 2. Is the Möbius number of $\mathcal{O} \mathcal{D}\left(\Pi_{n}\right)$ equal to $(-1)^{n-1}(2 n-1)^{n-2}$?

Thank you very much!

