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Basic preliminaries

Let S be a poset.

∆(S) = order-complex of S, where simplices are finite chains on S.

Height of S = h(S) = dim∆(S).

Height of x ∈ S = h(S≤x).

Topology of S = topology of ∆(S).

Homotopy type of S = homotopy type of ∆(S).

If n = h(S) < ∞, we say that S is spherical if it is (n − 1)-connected.

S is Cohen-Macaulay (CM) if S, S>x , S<x and S>x ∩ S<y (with x < y) are
spherical of the correct dimension.

S is bounded if it has 0, 1 ∈ S.

We will mainly work with bounded posets of finite height and look for
highly-connectedness properties such as sphericity or the Cohen-Macaulayness.
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Motivation: group cohomology

Let V be a vector space of dimension n over a field K. Let S(V ) be the poset of
subspaces, and S(V )∗ = S(V ) \ {0,V } (the proper part).

1 (Solomon-Tits) S(V )∗ is the Tits building of SLn(K), so it is spherical (even
CM) of dimension n − 2.

2 Stn(K) := H̃n−2(S(V )∗) is the Steinberg module of SLn(K).

3 (Borel-Serre ’73) For the ring of integers O of a number field K:

Hvcd−i
(
SLn(O),M

)
= Hi

(
SLn(O),M ⊗ Stn(K)

)
for all M and i ≤ vcd.

4 (Quillen) Homological stability (|K| ≠ 2):

Hm(GLn(K))
∼=−→ Hm(GLn+1(K)) for n ≥ m + 1.

General idea: construct a family of highly-connected complexes related to S(Kn).

Direct sum decompositions, partial basis complexes, frame complexes, etc.
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Hm(GLn(K))
∼=−→ Hm(GLn+1(K)) for n ≥ m + 1.

General idea: construct a family of highly-connected complexes related to S(Kn).

Direct sum decompositions, partial basis complexes, frame complexes, etc.

2 / 16



Motivation: group cohomology

Let V be a vector space of dimension n over a field K. Let S(V ) be the poset of
subspaces, and S(V )∗ = S(V ) \ {0,V } (the proper part).

1 (Solomon-Tits) S(V )∗ is the Tits building of SLn(K), so it is spherical (even
CM) of dimension n − 2.

2 Stn(K) := H̃n−2(S(V )∗) is the Steinberg module of SLn(K).

3 (Borel-Serre ’73) For the ring of integers O of a number field K:

Hvcd−i
(
SLn(O),M

)
= Hi

(
SLn(O),M ⊗ Stn(K)

)
for all M and i ≤ vcd.

4 (Quillen) Homological stability (|K| ≠ 2):
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Motivation: q-analogues

{1, . . . , n} and Symn Fn
q and GLn(q)(

n
k

)
= subsets of size k

[
n
k

]
q
= number of subspaces of dimension k(

n
k1,...,kr

)
= number of flags

[
n

k1,...,kr

]
q
= number of flags

∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sr = [n] 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vr = Fn
q

with |Si | − |Si−1| = ki . with dimVi/Vi−1 = ki .

Partition lattice Πn Poset of direct sum decompositions

Number of derangements,
Stirling, Catalan number, etc

Several q-analogues

Questions. Do we have “analogues” for other groups? What about dualizing
modules or homological stability?

1 Free group Fn of rank n, Aut(Fn), Out(Fn),

2 Isometry groups Spn, SUn, etc.,

3 Linear groups SLn over Dedekind domains, PIDs, local rings, etc.
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The general poset-approach

Let S be a bounded poset (with 0 and 1) of finite height.

Definition (Decompositions)

A decomposition (of type “A”) of S is a subset σ such that:

For all τ ⊆ σ, the join
∨

x∈τ x exists.

The map Φσ : 2σ → S sending τ to the join of its elements is
order-preserving, meet/join preserving, and “height preserving”.

Also Φσ(σ) = 1 and Φσ(∅) = 0.

The condition on the heights is:

h(Φσ(τ)) =
∑
x∈τ

h(x).

D(S) = poset of decompositions ordered by refinement,

PD(S) = poset of partial decompositions ordered by refinement

= {τ : τ ⊆ σ, σ ∈ D(S)}.
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Also Φσ(σ) = 1 and Φσ(∅) = 0.

The condition on the heights is:

h(Φσ(τ)) =
∑
x∈τ

h(x).

D(S) = poset of decompositions ordered by refinement,

PD(S) = poset of partial decompositions ordered by refinement

= {τ : τ ⊆ σ, σ ∈ D(S)}.
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Some motivating examples

S = S(V ) is the poset of subspaces with V finite dimensional, then
D(S(V )) = D(V ) is the poset of direct sum decompositions.

S = 2[n] the lattice of subsets of [n], then D(2[n]) = Πn is the partition lattice.

S = L(G ) the lattice of subgroups of a finite group G , then D(L(G )) = ?

Partial goal: cover the following examples.

1 If G = Fn is the free group of rank n, we would like to take S = S(Fn) the
poset of free factors and D(S(Fn)) the poset of decompositions into free
factors.

2 If M is a f.g. free module over a PID, then S(M) should be the poset of
direct summands and D(S(M)) the poset of direct sum decompositions of M.

3 If V is a vector space with a non-degenerate sesquilinear form Ψ, then
S(V ,Ψ) should be the poset of non-degenerate subspaces, and D(S(V ,Ψ))
the poset of orthogonal decompositions of V .
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The categorical approach

To recover free factors, summands or non-degenerate subspaces with the
orthogonality relation, we need a kind of “product” that detects such behaviours
on decompositions.

Definition. An ISM-category is a symmetric monoidal category (C,⊔) with initial
object 0 which is also a unit for the product ⊔.

Let X be an object of an ISM-category (C,⊔). Let S(X ) be the poset of
subobjects of X : classes of monomorphisms Y → X . This is a bounded poset
with 0 = initial object, and 1 = [(X , IdX )] = X .

Definition. A subset σ of a subposet T ⊆ S(X ) is ⊔-compatible in T if for all
τ ⊆ σ, the join of τ exists in T , and it is a subobject that coincides with the
⊔-product of its elements +choice of representatives+compatibility:

[i1 : Y1 → X ] ∨ . . . ∨ [ir : Yr → X ] = [i : Y1 ⊔ . . . ⊔ Yr → X ].

We say that x ∈ S(X ) is ⊔-complemented if there is a poset complement
y ∈ S(X ) such that {x , y} is ⊔-compatible in S(X ).

S(X ,⊔) = poset of ⊔-complemented subobjects.
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We say that x ∈ S(X ) is ⊔-complemented if there is a poset complement
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Posets of decompositions in ISM-categories

Let X be an object of an ISM-category (C,⊔) such that S(X ,⊔) has finite height.

Definition (Decompositions)

A ⊔-decomposition of X is a decomposition σ ∈ D(S(X ,⊔)) which is
⊔-compatible in S(X ,⊔).

D(X ,⊔) = poset of ⊔-decompositions,

PD(X ,⊔) = poset of ⊔-partial decompositions.

Example. If S is a complemented lattice of finite height, regard S as an
ISM-category with ⊔ = ∨. Then S(1,∨) = S and D(1,∨) = D(S).
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Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).

2 Φ(τ) :=
∨

x∈τ x for τ ∈ PD(X ,⊔).
3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the

(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).

5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then
PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Some properties

The following hold:

1 PD is bounded with minimum ∅ and maximum {X} ∈ D(X ,⊔).
2 Φ(τ) :=

∨
x∈τ x for τ ∈ PD(X ,⊔).

3 Φ : PD(X ,⊔) → S(X ,⊔) is a poset map with image Sh(X ,⊔) the
(⊔, h)-complemented subobjects.

4 PD(X ,⊔)∗ \ D(X ,⊔) ≃ Sh(X ,⊔).
5 If S(X ,⊔) is uniquely downward (⊔, h)-complemented then

PD(X ,⊔)∗ ≃ D(X ,⊔)◦ := D(X ,⊔) \ {{X}}.

Intervals:

1 D(X ,⊔)≥σ
∼= Π(σ) the partition lattice on σ.

2 In most examples we will also have:

PD(X ,⊔)≤σ
∼=

∏
y∈σ

PD(Y ,⊔).

3 Upper intervals PD(X ,⊔)≥σ are harder to control.

8 / 16



Other associated structures

Suppose S(X ,⊔) has finite height n.

F(X ,⊔) = frame complex, the simplicial complex whose maximal simplices
are decompositions into atoms (=height 1).

PB(X ,⊔,P) = complex of partial bases: For each vertex v of F(X ,⊔), we
pick a non-empty set (“of bases”) Pv , and PB is the inflation by the family
P of F(X ,⊔).

Therefore: PB is Cohen-Macaulay of dimension n − 1 if and only if F is.

Ordered versions (“injective words”):

OD(X ,⊔) = ordered decompositions
= {(x1, . . . , xr ) : {x1, . . . , xr} ∈ D(X ,⊔)}.
OPD(X ,⊔),
OF(X ,⊔) and OPB(X ,⊔).

The unordered version is spherical if the ordered version is.

If the unordered version is Cohen-Macaulay then the ordered version is (the
converse also holds for F ,PB).
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Other associated structures
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Back to examples: free groups

Let Fn be the free group of rank n.

C = category of groups, and ⊔ = ∗ the coproduct (free product).

S(Fn, ∗) = FCn = poset of free factors:

FCn = {H ≤ Fn : ∃K ≤ Fn s.t. H ∗ K ∼= ⟨H,K ⟩ = Fn}.

D(Fn, ∗) = D(Fn) = poset of decompositions of Fn into free factors.

We have the following results:

1 (Hatcher-Vogtmann) FCn is Cohen-Macaulay of dimension n.

2 (Hatcher-Vogtmann) D(Fn) is Cohen-Macaulay of dimension n − 1.

3 (Sadofschi Costa) PB(Fn), the complex of partial bases, is Cohen-Macaulay
of dimension n − 1.

In particular, OD(Fn), F(Fn, ∗), OF(Fn, ∗) and OPB(Fn) are Cohen-Macaulay of
dimension n − 1.

Question. What is the homotopy type of PD(Fn)
∗?
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Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate σ-sesquilinear form Ψ.

C = category of vector spaces with forms and isometries (over K),

⊔ = orthogonal sum (this is not a coproduct!),

S((V ,Ψ),⊔) = poset of non-degenerate subspaces,

D((V ,Ψ),⊔) = poset of orthogonal decompositions of V .

We have only partial results on these posets:

1 (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kn+1

and Ψ a non-degenerate σ-Hermitian form. If K = Fq then assume 2n < q if
|σ| = 1, and 2n−1 (

√
q + 1) < q if |σ| = 2. Then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n + 1.

2 (Das) If K = Fq, q > 2, and V = F2n
q is symplectic, then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n.

Question 1. Is S((V ,Ψ),⊔) always CM for n ≥≥ 1 and q ≥≥ 1?

Question 2. What happens for arbitrary fields in the symplectic case?
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1 (Devillers, Gramlich, Mühlherr) Let σ ∈ Aut(K), |σ| = 1 or 2. Let V = Kn+1

and Ψ a non-degenerate σ-Hermitian form. If K = Fq then assume 2n < q if
|σ| = 1, and 2n−1 (

√
q + 1) < q if |σ| = 2. Then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n + 1.

2 (Das) If K = Fq, q > 2, and V = F2n
q is symplectic, then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n.

Question 1. Is S((V ,Ψ),⊔) always CM for n ≥≥ 1 and q ≥≥ 1?

Question 2. What happens for arbitrary fields in the symplectic case?

11 / 16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate σ-sesquilinear form Ψ.

C = category of vector spaces with forms and isometries (over K),

⊔ = orthogonal sum (this is not a coproduct!),

S((V ,Ψ),⊔) = poset of non-degenerate subspaces,

D((V ,Ψ),⊔) = poset of orthogonal decompositions of V .

We have only partial results on these posets:
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|σ| = 1, and 2n−1 (

√
q + 1) < q if |σ| = 2. Then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n + 1.

2 (Das) If K = Fq, q > 2, and V = F2n
q is symplectic, then S((V ,Ψ),⊔) is

Cohen-Macaulay of dimension n.

Question 1. Is S((V ,Ψ),⊔) always CM for n ≥≥ 1 and q ≥≥ 1?

Question 2. What happens for arbitrary fields in the symplectic case?
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More on vector spaces with non-degenerate forms

If S((V ,Ψ),⊔) has height n, then by unique orthocomplementation we have:

PD((V ,Ψ),⊔)∗ ≃ D((V ,Ψ),⊔)◦.

OD((V ,Ψ),⊔)◦ ∼= ∆(S((V ,Ψ),⊔)∗)op.

Hence OD((V ,Ψ),⊔), D((V ,Ψ),⊔) are Cohen-Macaulay if S((V ,Ψ),⊔) is.

F((V ,Ψ),⊔) ≃ F̂((V ,Ψ),⊔) = frames of size ̸= n − 1.

Thus F((V ,Ψ),⊔) is never Cohen-Macaulay.

PB(V ,Ψ) := PB((V ,Ψ),⊔,P) with PS the set of “unit” bases of a minimal
non-degenerate subspace S .

Moreover, if K is a finite field, Ψ is unitary or symplectic, and n is large enough,
then F̂((V ,Ψ),⊔) is not Cohen-Macaulay.

Question. What is the behaviour of F̂((V ,Ψ),⊔) and PB(V ,Ψ) for infinite
fields?
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A different context: Matroids

A matroid is a set M together with a finite-dimensional simplicial complex I(M)
(the independent sets) whose vertices are elements of M and such that:

For any A,B ∈ I(M) with |A| > |B|, there is x ∈ A \ B such that
B ∪ {x} ∈ I(M).

A flat of M is a subset F ⊆ M such that for any x ∈ M \ F

rk(F ) := max{|A| : A ⊆ F ,A ∈ I(M)} < rk(F ∪ {x}).

L(M) is the poset of flats of M, which is a geometric lattice with maximum M.

We work with C = L(M) and ⊔ = ∨, so L(M) = S(M,∨).

By general theory of finite matroids:

L(M), F(M) and PB(M) := I(M) are CM.

Question. Are L(M) and I(M) Cohen-Macaulay if M is infinite?
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Examples of matroids: vector spaces (again)

Regard the poset of subspaces as the lattice of flats of a matroid:

V a finite-dimensional vector space over a field K.

I(V ) = partial basis complex, is a matroid structure for V .

Hence S(V ,∨) = L(V ) = lattice of subspaces (CM by Solomon-Tits).

D(V ) = poset of direct sum decompositions:

1 (Welker) CM when K is a finite field,

2 (Charney) OD(V ) is isomorphic to a poset introduced by Charney, who
showed it is CM (for any field K).

3 Thus OD(V ) and D(V ) are CM for any field.

PD(V ) = poset of partial decompositions:

1 (Hanlon, Hersh, Shareshian) PD(V ) is CM for finite fields (Unpublished).

2 (Brück, P., Welker) PD(V )∗ is homotopic to the common basis complex.
The latter was recently shown to be (2n − 4)-connected (Miller, Patzt,
Wilson), so PD(V )∗ is spherical for any field.

(van der Kallen) The complex PB(V ) := I(V ) (and hence F(V )) is CM.
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Last example: the partition lattice

We work with Πn the partition lattice on the set [n] = {1, . . . , n}.

Πn is the lattice of flats of a matroid.

Πn is Cohen-Macaulay with Möbius number (−1)n−1(n − 1)!.

D(Πn)
◦ is CM and homotopy equivalent to the proper part of the poset of

hypertrees HTn on n vertices.

(McCammond-Meier) HTn is spherical with Möbius number
(−1)n−1(n − 1)n−2.

PD(Πn)
∗ is homotopy equivalent to the poset of hyperforests HFn on n

vertices.

(Bacher) The Möbius number of HFn is −(n − 2)! .

Question 1. Is PD(Πn) Cohen-Macaulay of dimension 2n − 1?

Question 2. Is the Möbius number of OD(Πn) equal to (−1)n−1(2n − 1)n−2?
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(−1)n−1(n − 1)n−2.

PD(Πn)
∗ is homotopy equivalent to the poset of hyperforests HFn on n

vertices.
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Thank you very much!
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