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Let S be a poset.

@ A(S) = order-complex of S, where simplices are finite chains on S.

@ Height of S = h(S) = dim A(S).

@ Height of x € § = h(S<y).

@ Topology of S = topology of A(S).

@ Homotopy type of S = homotopy type of A(S).

o If n= h(S) < oo, we say that S is spherical if it is (n — 1)-connected.

o Sis Cohen-Macaulay (CM) if S, Ssx, S<x and S5, N S<, (with x < y) are
spherical of the correct dimension.

@ S is bounded if it has 0,1 € S.

We will mainly work with bounded posets of finite height and look for
highly-connectedness properties such as sphericity or the Cohen-Macaulayness.
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@ (Quillen) Homological stability (|K| # 2):
Hm(GLA(K)) — Hm(GLps1(K)) for n> m+1.

General idea: construct a family of highly-connected complexes related to S(K").

Direct sum decompositions, partial basis complexes, frame complexes, etc.
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© Linear groups SL, over Dedekind domains, PIDs, local rings, etc.
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@ Also ®,(c) =1 and ®,(0) = 0.

The condition on the heights is:

h(®s(7)) =D h(x).

XET

D(S) = poset of decompositions ordered by refinement,

PD(S) = poset of partial decompositions ordered by refinement
={r : 7Co,0€DS)}
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@ If M is a f.g. free module over a PID, then S(M) should be the poset of
direct summands and D(S(M)) the poset of direct sum decompositions of M.

© If V is a vector space with a non-degenerate sesquilinear form W, then
S(V, V) should be the poset of non-degenerate subspaces, and D(S(V, ¥))
the poset of orthogonal decompositions of V.
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PD(X,U) = poset of Ll-partial decompositions.

Example. If S is a complemented lattice of finite height, regard S as an
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@ Upper intervals PD(X,U)>, are harder to control.
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pick a non-empty set (“of bases") P,, and PB is the inflation by the family
P of F(X,L).

Therefore: PB is Cohen-Macaulay of dimension n — 1 if and only if F is.

Ordered versions (“injective words"):
e OD(X,L) = ordered decompositions
={(x1,...,%x) : {x1,...,x} € D(X,)}.
o OPD(X,U),
o OF(X,U) and OPB(X, ).

@ The unordered version is spherical if the ordered version is.

If the unordered version is Cohen-Macaulay then the ordered version is (the
converse also holds for F, P).
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10/16



Back to examples: vector spaces with forms

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),
o S((V,W¥),U) = poset of non-degenerate subspaces,

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:
@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1

and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo|=1,and 2" (/g + 1) < q if |[o] = 2.

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1
and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo| =1, and 2" (/g + 1) < q if |o| = 2. Then S((V,V¥),L) is
Cohen-Macaulay of dimension n+ 1.

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1
and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo| =1, and 2" (/g + 1) < q if |o| = 2. Then S((V,V¥),L) is
Cohen-Macaulay of dimension n+ 1.

@ (Das) If K=Fg4, g>2, and V = IF?I” is symplectic,

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1
and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo| =1, and 2" (/g + 1) < q if |o| = 2. Then S((V,V¥),L) is
Cohen-Macaulay of dimension n+ 1.

Q (Das) If K=TFq, ¢ > 2, and V =F2" is symplectic, then S((V, V), L) is
Cohen-Macaulay of dimension n.

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1
and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo| =1, and 2" (/g + 1) < q if |o| = 2. Then S((V,V¥),L) is
Cohen-Macaulay of dimension n+ 1.

Q (Das) If K=TFq, ¢ > 2, and V =F2" is symplectic, then S((V, V), L) is
Cohen-Macaulay of dimension n.

Question 1. Is S((V,W¥),U) always CM for n >> 1 and ¢ >> 17

11/16



Back to examples: vector spaces with forms

Let V be a K-vector space with a non-degenerate o-sesquilinear form V.

@ C = category of vector spaces with forms and isometries (over K),
@ LI = orthogonal sum (this is not a coproduct!),

o S((V,W¥),U) = poset of non-degenerate subspaces,

@ D((V,W¥),U) = poset of orthogonal decompositions of V.

We have only partial results on these posets:

@ (Devillers, Gramlich, Miihlherr) Let o € Aut(K), |o| = 1 or 2. Let V = K"*1
and ¥ a non-degenerate o-Hermitian form. If K = IF, then assume 2”7 < q if
lo| =1, and 2" (/g + 1) < q if |o| = 2. Then S((V,V¥),L) is
Cohen-Macaulay of dimension n+ 1.

Q (Das) If K=TFq, ¢ > 2, and V =F2" is symplectic, then S((V, V), L) is
Cohen-Macaulay of dimension n.

Question 1. Is S((V,W¥),U) always CM for n >> 1 and ¢ >> 17

Question 2. What happens for arbitrary fields in the symplectic case?
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has height n, then by unique orthocomplementation we have:

D((V,V¥),u)°.

Moreover, if K is a finite field, W is unitary or symplectic, and n is large enough,
then F((V,WV),U) is not Cohen-Macaulay.

Question. What is the behaviour of F((V,V),U) and PB(V, W) for infinite
fields?
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We work with C = L(M) and U =V, so L(M) = S(M, V).
By general theory of finite matroids:

L(M), F(M) and PB(M) :=Z(M) are CM.

Question. Are £(M) and Z(M) Cohen-Macaulay if M is infinite?
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PD(V) = poset of partial decompositions:
@ (Hanlon, Hersh, Shareshian) PD(V) is CM for finite fields (Unpublished).

@ (Briick, P., Welker) PD(V)* is homotopic to the common basis complex.
The latter was recently shown to be (2n — 4)-connected (Miller, Patzt,
Wilson), so PD(V)* is spherical for any field.

(van der Kallen) The complex PB(V) :=Z(V) (and hence F(V)) is CM.
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o (McCammond-Meier) HT,, is spherical with Mobius number
(_1)n—1(n _ 1)n—2_

e PD(M,)* is homotopy equivalent to the poset of hyperforests HF, on n
vertices.

o (Bacher) The Mébius number of HF,, is —(n —2)! .

Question 1. Is PD(MM,) Cohen-Macaulay of dimension 2n — 17
Question 2. Is the Mébius number of OD(M,) equal to (—1)"~%(2n — 1)"~2?
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Thank you very much!
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