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> G a finite group,

> p a prime number,
We consider:

» S,(G) = {nontrivial p-subgroups of G} = Brown poset,
> A,(G) ={P € S,(G) : elementary abelian} = Quillen poset,
» Bo(G) ={R € Sp(G) : R= 0p(Ng(R))} = Bouc poset.

We study their topological properties via their order-complexes.
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Quillen’s results

1. A,(G) — Sp(G) is a homotopy equivalence.

2. G = group of Lie type in characteristic p, then A,(G) is
homotopy equivalent to the building of G (indeed B,(G)).

3. Ap(G) is disconnected if and only if G has a strongly
p-embedded subgroup.

4. If Op(G) # 1 then A,(G) is contractible.

Quillen’s conjecture. If A,(G) is contractible then O,(G) # 1.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.

Quillen proved the following cases of (H-QC):

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;
2. p-rank of G = mp(G) < 2;

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;
2. p-rank of G = mp(G) < 2;

3. G is solvable.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

2. p-rank of G = mp(G) < 2;

3. G is solvable. Moreover, if Op(G) =1 then G satisfies
(QD),.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

2. p-rank of G = mp(G) < 2;

3. G is solvable. Moreover, if Op(G) =1 then G satisfies
(QD),.

> H satisfies (QD),, if Ap(H) has non-zero homology in
top-degree: )
Hm,(t)-1(Ap(H); Q) # 0.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

2. p-rank of G = mp(G) < 2;

3. G is solvable. Moreover, if Op(G) =1 then G satisfies
(QD),.

> H satisfies (QD),, if Ap(H) has non-zero homology in
top-degree: )
Hm,(t)-1(Ap(H); Q) # 0.

Theorem (various authors). If G is p-solvable and O,(G) =1,
then G satisfies (QD),,.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture

(H-QC). If 0,(G) =1 then H.(A,(G),Q) # 0.
Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

2. p-rank of G = mp(G) < 2;

3. G is solvable. Moreover, if Op(G) =1 then G satisfies
(QD),.

> H satisfies (QD),, if Ap(H) has non-zero homology in
top-degree:

Hm,(H)-1(Ap(H); Q) # 0.

Theorem (various authors). If G is p-solvable and O,(G) =1,
then G satisfies (QD),. Thus (H-QC) holds for p-solvable groups.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture: the Aschbacher-Smith result

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture: the Aschbacher-Smith result

Aschbacher-Smith’s Theorem. (H-QC) holds for G if p > 5 and:

(H2U). If L= PSU,(q), p| g+ 1, g odd, is a component of G,
then p-extensions of PSUn(q®) satisfy (QD),, Ym < n and e € Z.

Kevin Piterman On the homotopy type of p-subgroup posets



On Quillen’s conjecture: the Aschbacher-Smith result

Aschbacher-Smith’s Theorem. (H-QC) holds for G if p > 5 and:

(H2U). If L= PSU,(q), p| g+ 1, g odd, is a component of G,
then p-extensions of PSUn(q®) satisfy (QD),, Ym < n and e € Z.

> A p-extension of L is a split extension of L by some

B € Ay(Out(L)) U{1}.

l1—-L—-LB—B—1.
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Why p > 5?7 Why the unitary groups?

1. For L simple, every p-extension LB is LB = LB’ with
Op(CL(B")) =1, except for

(x) L =Sz(2%),PSLy(2%), PSU3(2%),

for p =5, 3,3 resp. Strongly depends on p odd and the CFSG.

2. Under a minimal counterexample G and excluding
components (*), perform several reductions.

3. Every component L has a p-extension failing (QD)p.

4. QD-list: short list of potential simple groups failing (QD)p in
some p-extension. PSU,(q), p | g+ 1, are included.

5. Every remaining component has a 2-elementary Robinson
subgroup, and thus G satisfies (H-QC). Works for p > 3.
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On Quillen’s conjecture: new results

» Alternative methods to eliminate problematic components like
L = Sz(2%), PSL,(23), PSU3(23) for p = 5,3, 3 resp.

Theorem. (P) Aschbacher-Smith's Theorem extends to p = 5.
For p = 3, also be careful with components L = Ree(3?).

Theorem. (P-Smith) Aschbacher-Smith’'s Theorem extends to
p > 3 (i.e. to every to odd prime).

Methodology: replace strongly CFSG-dependent steps by more
combinatorial arguments.
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Theorem. (P-Smith) If p =2 and G is a minimal counterexample
to (H-QC), then:

L 0x(G) =1,

2. every component L of G has a non-trivial 2-extension LB < G;
3. every component L of G has a 2-extension in G failing (9D)s,;
4. G has a component L of Lie type such that char(L) # 2,3 or

L 22 PSL,(27)(n > 3), Dn(27)(n > 4), or Eg(2%).
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On Quillen’s conjecture: results for p = 2

Theorem. (P-Smith) If p =2 and G is a minimal counterexample
to (H-QC), then:

L 0x(G) =1,

2. every component L of G has a non-trivial 2-extension LB < G;
3. every component L of G has a 2-extension in G failing (9D)s,;
4. G has a component L of Lie type such that char(L) # 2,3 or

L 22 PSL,(27)(n > 3), Dn(27)(n > 4), or Eg(2%).

Remark. The CFSG is only invoked to guarantee that the list in
(4) is complete.
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2. Understand the homotopy type of A,(G) from A,(H).

Ng(H)={Ac A,(G) : ANH # 1},
Fo(H)={A€ A,(G): ANH =1}.
Then Ng(H) deformation retracts onto A,(H) via A— ANH.

AP(G) =Ng(H)UFg(H) " ~" AP(H) U Fe(H).
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Definition. Let X¢(H) be the poset A,(H) U Fg(H) with order
given by:

Ac Ay(H),F € Fo(H) = F <A iff Ca(F) # 1.
Proposition. X¢(H) ~ A,(G).
Next, we want to avoid “conic” situations:

B e Ay(Co(H)) =  Ay(H) — Ay(HB) ~ x.
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|deas of the proofs

Definition. Let X¢(H) be the poset A,(H) U Fg(H) with order
given by:

Ac Ay(H),F € Fo(H) = F <A iff Ca(F) # 1.
Proposition. X¢(H) ~ A,(G).
Next, we want to avoid “conic” situations:
Be A, (Ce(H)) = Ap(H) — Ap(HB) ~ .

Then we look for central product configurations HK with
[H,K]=1and HN K a p’-group. By Quillen’s results:

Ap(HK) = Ap(H) * Ap(K).

Proposition.
Xc(HK) ~ Ws(H, K) == (Ap(H)*xAp(K)) U Fe(HK).
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We take then K = C¢(LB) and:

1. Induction on A,(K) to get non-zero cycles, (B is chosen s.t.
Op(K) = 1).
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Under certain reductions, we take H = LB, where

» L is a (simple) component of G, and

> [Bis a p-extension of L in G.

We take then K = C¢(LB) and:
1. Induction on A,(K) to get non-zero cycles, (B is chosen s.t.
Op(K) =1).
2. Look for more specific cycles in A,(LB) (e.g. (QD),, cycles
in top dimension).

3. Take advantage of W (H, K) to show that
i: Ap(H)*Ap(K) — Wg(H, K) is non-zero in homology.
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|deas of the proofs

Under certain reductions, we take H = LB, where

» L is a (simple) component of G, and

> [Bis a p-extension of L in G.

We take then K = C¢(LB) and:
1. Induction on A,(K) to get non-zero cycles, (B is chosen s.t.
Op(K) =1).
2. Look for more specific cycles in A,(LB) (e.g. (QD),, cycles
in top dimension).
3. Take advantage of W (H, K) to show that
i: Ap(H)*Ap(K) — Wg(H, K) is non-zero in homology.

Variant! A,(G) ~ WE(H,K) = (Bp(H)xAp(K)) U Fc(HK).
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|deas of the proofs

Under certain reductions, we take H = LB, where

» L is a (simple) component of G, and

> [Bis a p-extension of L in G.

We take then K = C¢(LB) and:
1. Induction on A,(K) to get non-zero cycles, (B is chosen s.t.
Op(K) =1).
2. Look for more specific cycles in A,(LB) (e.g. (QD),, cycles
in top dimension).
3. Take advantage of W (H, K) to show that
i: Ap(H)*Ap(K) — Wg(H, K) is non-zero in homology.
Variant! A,(G) ~ WE(H,K) = (Bp(H)xAp(K)) U Fc(HK).

» H = L simple of Lie type in characteristic p (homology in top
dimension in Bp(L)).
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Thank you very much!
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