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Context

I G a finite group,

I p a prime number,

We consider:

I Sp(G ) = {nontrivial p-subgroups of G} = Brown poset,

I Ap(G ) = {P ∈ Sp(G ) : elementary abelian} = Quillen poset,

I Bp(G ) = {R ∈ Sp(G ) : R = Op(NG (R))} = Bouc poset.

We study their topological properties via their order-complexes.
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Quillen’s results

1. Ap(G ) ↪→ Sp(G ) is a homotopy equivalence.

2. G = group of Lie type in characteristic p, then Ap(G ) is
homotopy equivalent to the building of G (indeed Bp(G )).

3. Ap(G ) is disconnected if and only if G has a strongly
p-embedded subgroup.

4. If Op(G ) 6= 1 then Ap(G ) is contractible.

Quillen’s conjecture. If Ap(G ) is contractible then Op(G ) 6= 1.
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On Quillen’s conjecture

(H-QC). If Op(G ) = 1 then H̃∗(Ap(G ),Q) 6= 0.

Quillen proved the following cases of (H-QC):

1. G is a group of Lie type in characteristic p;

2. p-rank of G = mp(G ) ≤ 2;

3. G is solvable. Moreover, if Op(G ) = 1 then G satisfies
(QD)p.

I H satisfies (QD)p if Ap(H) has non-zero homology in
top-degree:

H̃mp(H)−1(Ap(H);Q) 6= 0.

Theorem (various authors). If G is p-solvable and Op(G ) = 1,
then G satisfies (QD)p. Thus (H-QC) holds for p-solvable groups.
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On Quillen’s conjecture: the Aschbacher-Smith result

Aschbacher-Smith’s Theorem. (H-QC) holds for G if p > 5 and:

(H2U). If L ∼= PSUn(q), p | q + 1, q odd, is a component of G ,
then p-extensions of PSUm(qe) satisfy (QD)p, ∀m ≤ n and e ∈ Z.

I A p-extension of L is a split extension of L by some
B ∈ Ap(Out(L)) ∪ {1}.

1→ L→ LB → B → 1.
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Why p > 5? Why the unitary groups?

1. For L simple, every p-extension LB is LB = LB ′ with
Op(CL(B ′)) = 1, except for

(∗) L = Sz(25),PSL2(23),PSU3(23),

for p = 5, 3, 3 resp. Strongly depends on p odd and the CFSG.

2. Under a minimal counterexample G and excluding
components (*), perform several reductions.

3. Every component L has a p-extension failing (QD)p.

4. QD-list: short list of potential simple groups failing (QD)p in
some p-extension. PSUn(q), p | q + 1, are included.

5. Every remaining component has a 2-elementary Robinson
subgroup, and thus G satisfies (H-QC). Works for p > 3.
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On Quillen’s conjecture: new results

I Alternative methods to eliminate problematic components like
L = Sz(25),PSL2(23),PSU3(23) for p = 5, 3, 3 resp.

Theorem. (P) Aschbacher-Smith’s Theorem extends to p = 5.

For p = 3, also be careful with components L = Ree(3a).

Theorem. (P-Smith) Aschbacher-Smith’s Theorem extends to
p ≥ 3 (i.e. to every to odd prime).

Methodology: replace strongly CFSG-dependent steps by more
combinatorial arguments.
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On Quillen’s conjecture: results for p = 2

Theorem. (P-Smith) If p = 2 and G is a minimal counterexample
to (H-QC), then:

1. O2′(G ) = 1;

2. every component L of G has a non-trivial 2-extension LB ≤ G ;

3. every component L of G has a 2-extension in G failing (QD)2;

4. G has a component L of Lie type such that char(L) 6= 2, 3 or

L ∼= PSLn(2a)(n ≥ 3), Dn(2a)(n ≥ 4), or E6(2a).

Remark. The CFSG is only invoked to guarantee that the list in
(4) is complete.
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Ideas of the proofs

1. Look for some H < G such that i : Ap(H) ↪→ Ap(G ) is
non-zero in homology.

2. Understand the homotopy type of Ap(G ) from Ap(H).

NG (H) = {A ∈ Ap(G ) : A ∩ H 6= 1},

FG (H) = {A ∈ Ap(G ) : A ∩ H = 1}.

Then NG (H) deformation retracts onto Ap(H) via A 7→ A ∩ H.

Ap(G ) = NG (H) ∪ FG (H) “ ' ” Ap(H) ∪ FG (H).
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Ideas of the proofs

Definition. Let XG (H) be the poset Ap(H) ∪ FG (H) with order
given by:

A ∈ Ap(H),F ∈ FG (H) ⇒ F ≺ A iff CA(F ) 6= 1.

Proposition. XG (H) ' Ap(G ).

Next, we want to avoid “conic” situations:

B ∈ Ap(CG (H)) ⇒ Ap(H) ↪→ Ap(HB) ' ∗.

Then we look for central product configurations HK with
[H,K ] = 1 and H ∩ K a p′-group. By Quillen’s results:

Ap(HK ) ' Ap(H) ∗ Ap(K ).

Proposition.

XG (HK ) 'WG (H,K ) := (Ap(H)∗Ap(K )) ∪ FG (HK ).
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Ideas of the proofs

Under certain reductions, we take H = LB, where

I L is a (simple) component of G , and

I LB is a p-extension of L in G .

We take then K = CG (LB) and:

1. Induction on Ap(K ) to get non-zero cycles, (B is chosen s.t.
Op(K ) = 1).

2. Look for more specific cycles in Ap(LB) (e.g. (QD)p, cycles
in top dimension).

3. Take advantage of WG (H,K ) to show that
i : Ap(H)∗Ap(K ) ↪→WG (H,K ) is non-zero in homology.

Variant! Ap(G ) ' W B
G (H,K ) = (Bp(H)∗Ap(K )) ∪ FG (HK ).

I H = L simple of Lie type in characteristic p (homology in top
dimension in Bp(L)).
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Thank you very much!
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