Advances on Quillen's conjecture

Kevin I. Piterman (joint w. Stephen D. Smith)

Philipps-Universität Marburg

Groups 2023 - Northern Group Theory conference in honour of Bernd Fischer

September 29, 2023

Setting

The Quillen poset is:

 $\mathcal{A}_p(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p \text{-group}\},\$

The Quillen poset is:

 $\mathcal{A}_p(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p \text{-group}\},\$

• $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.

The Quillen poset is:

 $\mathcal{A}_{p}(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p$ -group $\},\$

- $\mathcal{A}_p(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{\rho}(G)$ as a topological space via its order-complex.

The Quillen poset is:

 $\mathcal{A}_{p}(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p$ -group $\},\$

- $\mathcal{A}_p(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{\rho}(G)$ as a topological space via its order-complex.
- G acts on $\mathcal{A}_p(G)$ by conjugation.

The Quillen poset is:

 $\mathcal{A}_{p}(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p$ -group $\},\$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{p}(G)$ as a topological space via its order-complex.
- G acts on $\mathcal{A}_p(G)$ by conjugation.

General goal. Establish connections between properties of *G* and combinatorial/topological properties of $\mathcal{A}_{p}(G)$.

(D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,

Krull dimension of $H^*(G, k) = p$ -rank of $G = 1 + \dim \mathcal{A}_p(G)$.

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- $(K. Brown, '94) H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- (Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup.

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- $(K. Brown, '94) H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- (Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
- Quillen, '78) $O_p(G) = \text{largest normal } p$ -subgroup of G.

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
- Quillen, '78) O_p(G) = largest normal p-subgroup of G. If O_p(G) ≠ 1 then A_p(G) is contractible.

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- (Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
- Quillen, '78) O_p(G) = largest normal p-subgroup of G. If O_p(G) ≠ 1 then A_p(G) is contractible.

Quillen's conjecture

If $O_{\rho}(G) = 1$ then $\mathcal{A}_{\rho}(G)$ is not contractible.

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- (Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
- Quillen, '78) $O_p(G) = \text{largest normal } p\text{-subgroup of } G$. If $O_p(G) ≠ 1$ then $\mathcal{A}_p(G)$ is contractible.

Quillen's conjecture

If $O_p(G) = 1$ then $\mathcal{A}_p(G)$ is not contractible.

(Strong) Quillen's conjecture

If
$$O_p(G) = 1$$
 then $\widetilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

(**H-QC**) If $O_p(G) = 1$ then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

• G is a group of Lie type in characteristic p;

$$(\mathsf{H}\text{-}\mathsf{QC}) \quad \text{ If } O_p(G) = 1 \text{ then } \tilde{H}_*(\mathcal{A}_p(G),\mathbb{Q}) \neq 0.$$

- G is a group of Lie type in characteristic *p*;
- 2 p-rank of $G = m_p(G) \le 2$;

$$(\mathsf{H}\text{-}\mathsf{QC}) \quad \text{ If } O_p(G) = 1 \text{ then } \tilde{H}_*(\mathcal{A}_p(G),\mathbb{Q}) \neq 0.$$

- G is a group of Lie type in characteristic *p*;
- 2 *p*-rank of $G = m_p(G) \le 2$;
- **G** is solvable.

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **③** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **③** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.
 - H satisfies $(\mathcal{QD})_p$ if $\mathcal{A}_p(H)$ has non-zero homology in top-degree:

$$\widetilde{H}_{m_p(H)-1}(\mathcal{A}_p(H),\mathbb{Q})\neq 0.$$

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **③** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.
 - H satisfies $(\mathcal{QD})_p$ if $\mathcal{A}_p(H)$ has non-zero homology in top-degree:

$$\widetilde{H}_{m_{\rho}(H)-1}(\mathcal{A}_{\rho}(H),\mathbb{Q})\neq 0.$$

Theorem. If G is *p*-solvable and $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$,

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **3** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.
 - H satisfies $(\mathcal{QD})_p$ if $\mathcal{A}_p(H)$ has non-zero homology in top-degree:

$$\widetilde{H}_{m_{\rho}(H)-1}(\mathcal{A}_{\rho}(H),\mathbb{Q})\neq 0.$$

Theorem. If G is *p*-solvable and $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$, and hence (H-QC).

(**H-QC**) If
$$O_p(G) = 1$$
 then $\tilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **③** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.
 - H satisfies $(\mathcal{QD})_p$ if $\mathcal{A}_p(H)$ has non-zero homology in top-degree:

$$\widetilde{H}_{m_p(H)-1}(\mathcal{A}_p(H),\mathbb{Q})\neq 0.$$

Theorem. If G is *p*-solvable and $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$, and hence (H-QC). (Use of **CFSG**).

(H-QC) holds for G if p > 5 and:

(H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \ \forall m \le n, e \in \mathbb{Z}$.

(H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \ \forall m \le n, e \in \mathbb{Z}$.

A *p*-extension of *L* is a split-extension of *L* by some $B \in \mathcal{A}_p(\text{Out}(L)) \cup \{1\}$.

(H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \ \forall m \le n, e \in \mathbb{Z}$.

A *p*-extension of *L* is a split-extension of *L* by some $B \in \mathcal{A}_p(\text{Out}(L)) \cup \{1\}$. Why $(\mathcal{QD})_p$?

(H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \ \forall m \le n, e \in \mathbb{Z}$.

A *p*-extension of *L* is a split-extension of *L* by some $B \in \mathcal{A}_p(\text{Out}(L)) \cup \{1\}$.

Why $(\mathcal{QD})_p$?

 Under a minimal counterexample to (H-QC) for p > 5, Aschbacher-Smith prove that every component has a p-extension that fails (QD)_p.

(H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \; \forall m \le n, e \in \mathbb{Z}$.

A *p*-extension of *L* is a split-extension of *L* by some $B \in \mathcal{A}_p(\text{Out}(L)) \cup \{1\}$.

Why $(\mathcal{QD})_p$?

- Under a minimal counterexample to (H-QC) for p > 5, Aschbacher-Smith prove that every component has a p-extension that fails (QD)_p.
- Then they list all simple groups with a potential *p*-extension failing (QD)_p for *p* odd.

More general combinatorial arguments that do not depend on the prime p and the **CFSG**, allow us to extend *some* reductions on a minimal counterexample to (H-QC) to **every prime** p.

More general combinatorial arguments that do not depend on the prime p and the **CFSG**, allow us to extend *some* reductions on a minimal counterexample to (H-QC) to **every prime** p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to p = 3, 5.

More general combinatorial arguments that do not depend on the prime p and the **CFSG**, allow us to extend *some* reductions on a minimal counterexample to (H-QC) to **every prime** p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to p = 3, 5.

Theorem (Antonio Díaz Ramos, '23)

For p odd, $p \mid q+1$, $q \neq 2$, $\mathsf{PSU}_n(q)$ and $\mathsf{PGU}_n(q)$ satisfy $(\mathcal{QD})_p$.

More general combinatorial arguments that do not depend on the prime p and the **CFSG**, allow us to extend *some* reductions on a minimal counterexample to (H-QC) to **every prime** p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to p = 3, 5.

Theorem (Antonio Díaz Ramos, '23)

For p odd, $p \mid q+1$, $q \neq 2$, $\mathsf{PSU}_n(q)$ and $\mathsf{PGU}_n(q)$ satisfy $(\mathcal{QD})_p$.

Corollary

If p is odd and for all $q \neq 2$ with $p \mid q+1$, $PGU_n(q)$ extended by a field automorphism of order p satisfies $(QD)_p$, then (H-QC) holds for p.

If p = 2 and G is a minimal counterexample to (H-QC), then:

If p = 2 and G is a minimal counterexample to (H-QC), then: $O_{2'}(G) = 1$,

- If p = 2 and G is a minimal counterexample to (H-QC), then:
 - **1** $O_{2'}(G) = 1$,
 - 2 every component L of G has non-trivial 2-extension $LB \leq G$,

- If p = 2 and G is a minimal counterexample to (H-QC), then:
 - **1** $O_{2'}(G) = 1$,
 - 2 every component L of G has non-trivial 2-extension $LB \leq G$,
 - **3** every component L of G has a 2-extension in G failing $(QD)_2$,

- If p = 2 and G is a minimal counterexample to (H-QC), then:
 - $O_{2'}(G) = 1$,
 - 2 every component L of G has non-trivial 2-extension $LB \leq G$,
 - **3** every component *L* of *G* has a 2-extension in *G* failing $(\mathcal{QD})_2$,
 - G has a component L of Lie type such that $char(L) \neq 2, 3$ or

 $L \cong \mathsf{PSL}_n(2^a) (n \ge 3), D_n(2^a) (n \ge 4), \text{ or } E_6(2^a).$

If p = 2 and G is a minimal counterexample to (H-QC), then:

$$O_{2'}(G) = 1,$$

- **2** every component *L* of *G* has non-trivial 2-extension $LB \leq G$,
- **3** every component L of G has a 2-extension in G failing $(\mathcal{QD})_2$,
- G has a component L of Lie type such that $char(L) \neq 2, 3$ or

$$L \cong \mathsf{PSL}_n(2^a) (n \ge 3), D_n(2^a) (n \ge 4), \text{ or } E_6(2^a).$$

Only reduction 4 depends on the CFSG to exclude the non-Lie type components.

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

 $LB \leq G$, L a simple component and LB a 2-extension such that

 $\operatorname{not-}(\mathcal{QD})_2 \quad H_{m_2(LB)-1}(\mathcal{A}_2(LB),\mathbb{Q})=0.$

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

 $LB \leq G$, L a simple component and LB a 2-extension such that

 $\operatorname{not-}(\mathcal{QD})_2 \quad H_{m_2(LB)-1}(\mathcal{A}_2(LB),\mathbb{Q})=0.$

Problem. Classify simple groups *L* satisfying the following condition: (E-(QD)) Every 2-extension of *L* satisfies $(QD)_2$.

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

 $LB \leq G$, L a simple component and LB a 2-extension such that

 $\operatorname{not-}(\mathcal{QD})_2 \quad H_{m_2(LB)-1}(\mathcal{A}_2(LB),\mathbb{Q})=0.$

Problem. Classify simple groups *L* satisfying the following condition:

(E-(QD)) Every 2-extension of L satisfies $(QD)_2$.

Theorem (P., '22)

Let L be a simple group of exceptional Lie type in odd characteristic.

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

 $LB \leq G$, L a simple component and LB a 2-extension such that

 $\operatorname{not-}(\mathcal{QD})_2 \quad H_{m_2(LB)-1}(\mathcal{A}_2(LB),\mathbb{Q})=0.$

Problem. Classify simple groups *L* satisfying the following condition:

(E-(QD)) Every 2-extension of L satisfies $(QD)_2$.

Theorem (P., '22)

Let *L* be a simple group of exceptional Lie type in odd characteristic. If *L* fails (E-(QD)), then it is one of the following groups:

 ${}^{3}D_{4}(9), F_{4}(3), F_{4}(9), G_{2}(3), G_{2}(9), {}^{2}G_{2}(3)', E_{8}(3), E_{8}(9).$

• Establish $(E_{-}(QD))$ for the low-rank groups PSL_2 , PSL_3 , PSU_3 .

Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).

Idea of the proof

- Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
- For L an exceptional group, we look for maximal subgroups H of the 2-extensions LB such that

Idea of the proof

- Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
- For L an exceptional group, we look for maximal subgroups H of the 2-extensions LB such that

$$H \leq LB, \quad m_2(H) = m_2(LB), \quad ext{and}$$

 $0 \neq H_{m_2(H)-1}(\mathcal{A}_2(H), \mathbb{Q}) \subseteq H_{m_2(LB)-1}(\mathcal{A}_2(LB), \mathbb{Q}).$

Idea of the proof

- Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
- For L an exceptional group, we look for maximal subgroups H of the 2-extensions LB such that

$$H \leq LB$$
, $m_2(H) = m_2(LB)$, and

 $0 \neq H_{m_2(H)-1}(\mathcal{A}_2(H), \mathbb{Q}) \subseteq H_{m_2(LB)-1}(\mathcal{A}_2(LB), \mathbb{Q}).$

If H is parabolic, it has a solvable subgroup K with $m_2(H) = m_2(K)$ and $O_2(K) = 1$, so we are done by Quillen's result.

- Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
- For L an exceptional group, we look for maximal subgroups H of the 2-extensions LB such that

$$H \leq LB$$
, $m_2(H) = m_2(LB)$, and

 $0 \neq H_{m_2(H)-1}(\mathcal{A}_2(H), \mathbb{Q}) \subseteq H_{m_2(LB)-1}(\mathcal{A}_2(LB), \mathbb{Q}).$

- If H is parabolic, it has a solvable subgroup K with $m_2(H) = m_2(K)$ and $O_2(K) = 1$, so we are done by Quillen's result.
- Otherwise, look for $H = H_1 \times H_2$, where the H_i satisfy $(QD)_2$ and

 $H_{m_2(H)-1}(\mathcal{A}_2(H),\mathbb{Q}) = H_{m_2(H_1)-1}(\mathcal{A}_2(H_1),\mathbb{Q}) \otimes H_{m_2(H_2)-1}(\mathcal{A}_2(H_2),\mathbb{Q}).$

Let G be a minimal counterexample to (H-QC) for p = 2.

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$.

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails (E-(QD)) and belongs to one of the following families:

 $\mathsf{PSL}_n(2^a)(n \ge 3), D_n(2^a)(n \ge 4), E_6(2^a),$

 $\mathsf{PSL}_n^{\pm}(q) (n \ge 4), \Omega_{2n+1}(q) (n \ge 2), \mathsf{PSp}_{2n}(q) (n \ge 3), D_n^{\pm}(q) (n \ge 4),$ where $q = r^b$ and r > 3.

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails (E-(QD)) and belongs to one of the following families:

 $\mathsf{PSL}_n(2^a)(n \ge 3), D_n(2^a)(n \ge 4), E_6(2^a),$

 $\mathsf{PSL}_n^{\pm}(q) (n \ge 4), \Omega_{2n+1}(q) (n \ge 2), \mathsf{PSp}_{2n}(q) (n \ge 3), D_n^{\pm}(q) (n \ge 4),$ where $q = r^b$ and r > 3.

What could we do next? Study (E(QD)) for the classical groups.

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails (E-(QD)) and belongs to one of the following families:

 $\mathsf{PSL}_n(2^a)(n \ge 3), D_n(2^a)(n \ge 4), E_6(2^a),$

 $\mathsf{PSL}_n^{\pm}(q) (n \ge 4), \Omega_{2n+1}(q) (n \ge 2), \mathsf{PSp}_{2n}(q) (n \ge 3), D_n^{\pm}(q) (n \ge 4),$ where $q = r^b$ and r > 3.

What could we do next? Study (E-(QD)) for the classical groups. Partial results for $\Omega_{2n+1}(q)$, $PSp_{2n}(q)$ and some of the $D_n^{\pm}(q)$.

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails (E-(QD)) and belongs to one of the following families:

 $\mathsf{PSL}_n(2^a)(n \ge 3), D_n(2^a)(n \ge 4), E_6(2^a),$

 $\mathsf{PSL}_n^{\pm}(q) (n \ge 4), \Omega_{2n+1}(q) (n \ge 2), \mathsf{PSp}_{2n}(q) (n \ge 3), D_n^{\pm}(q) (n \ge 4),$ where $q = r^b$ and r > 3.

What could we do next? Study (E- (\mathcal{QD})) for the classical groups. Partial results for $\Omega_{2n+1}(q)$, $PSp_{2n}(q)$ and some of the $D_n^{\pm}(q)$. But I'd try a different argument to eliminate them...

Let p be a prime and G a group such that for a fixed component L the following hold:

• p divides the order of L,

- p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,

- p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- 3 $C_G(\widehat{L})$ satisfies (H-QC),

- p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- 3 $C_G(\widehat{L})$ satisfies (H-QC),
- $\mathcal{A}_p(L) \to \mathcal{A}_p(\operatorname{Aut}_G(L))$ is non-zero in homology.

Let p be a prime and G a group such that for a fixed component L the following hold:

- p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- $\mathcal{A}_{\rho}(L) \rightarrow \mathcal{A}_{\rho}(\operatorname{Aut}_{G}(L))$ is non-zero in homology.

Then G satisfies (H-QC).

Let p be a prime and G a group such that for a fixed component L the following hold:

- **1** p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- $\mathcal{A}_p(L) \to \mathcal{A}_p(\operatorname{Aut}_G(L))$ is non-zero in homology.

Then G satisfies (H-QC).

In particular, if G is a minimal counterexample to (H-QC) then:

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:

- p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- \bigcirc $C_G(\widehat{L})$ satisfies (H-QC),
- $\mathcal{A}_p(L) \to \mathcal{A}_p(\operatorname{Aut}_G(L))$ is non-zero in homology.

Then G satisfies (H-QC).

In particular, if G is a minimal counterexample to (H-QC) then:

• If p is odd, G does not contain alternating or sporadic components.

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:

- **1** p divides the order of L,
- 2 \widehat{L} = central product of conjugates of L,
- \bigcirc $C_G(\widehat{L})$ satisfies (H-QC),
- $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}(\operatorname{Aut}_{G}(L))$ is non-zero in homology.

Then G satisfies (H-QC).

In particular, if G is a minimal counterexample to (H-QC) then:

- If p is odd, G does not contain alternating or sporadic components.
- If p = 2, G does not contain components L with Out(L) = 1, or components L = Alt₆, Alt₈, M₁₂, M₂₂, HS.

Fact. If A is obtained from L by an extension of order p,

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_{p}(A)) \to \bigoplus_{B} \widetilde{H}_{n}(\mathcal{A}_{p}(C_{L}(B))) \to \widetilde{H}_{n}(\mathcal{A}_{p}(L)) \to \widetilde{H}_{n}(\mathcal{A}_{p}(A)) \to \ldots$

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_p(A)) \to \bigoplus_B \widetilde{H}_n(\mathcal{A}_p(C_L(B))) \to \widetilde{H}_n(\mathcal{A}_p(L)) \to \widetilde{H}_n(\mathcal{A}_p(A)) \to \ldots$

Eliminating Alt₈

We show that $\mathcal{A}_2(Alt_8) \rightarrow \mathcal{A}_2(Sym_8)$ is non-zero in homology.

12/14

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_p(A)) \to \bigoplus_{B} \widetilde{H}_n(\mathcal{A}_p(C_L(B))) \to \widetilde{H}_n(\mathcal{A}_p(L)) \to \widetilde{H}_n(\mathcal{A}_p(A)) \to \ldots$

Eliminating Alt₈

We show that $\mathcal{A}_2(Alt_8) \rightarrow \mathcal{A}_2(Sym_8)$ is non-zero in homology.

• The "outer" subgroups B of order p have $C_{Alt_8}(B) = Sym_6 = Sp_4(2)$.

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_p(A)) \to \bigoplus_{B} \widetilde{H}_n(\mathcal{A}_p(C_L(B))) \to \widetilde{H}_n(\mathcal{A}_p(L)) \to \widetilde{H}_n(\mathcal{A}_p(A)) \to \ldots$

Eliminating Alt₈

We show that $\mathcal{A}_2(Alt_8) \rightarrow \mathcal{A}_2(Sym_8)$ is non-zero in homology.

- The "outer" subgroups B of order p have $C_{Alt_8}(B) = Sym_6 = Sp_4(2)$.
- **2** Then $\mathcal{A}_2(C_{Alt_8}(B))$ is a wedge of 1-spheres.

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_p(A)) \to \bigoplus_{B} \widetilde{H}_n(\mathcal{A}_p(C_L(B))) \to \widetilde{H}_n(\mathcal{A}_p(L)) \to \widetilde{H}_n(\mathcal{A}_p(A)) \to \ldots$

Eliminating Alt₈

We show that $\mathcal{A}_2(Alt_8) \rightarrow \mathcal{A}_2(Sym_8)$ is non-zero in homology.

- The "outer" subgroups B of order p have $C_{Alt_8}(B) = Sym_6 = Sp_4(2)$.
- Then $\mathcal{A}_2(C_{Alt_8}(B))$ is a wedge of 1-spheres.
- Alt₈ \cong PSL₄(2), so $A_2(Alt_8)$ is a wedge of 2-spheres.

12/14

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_p(A)$ is homotopy equivalent to $\mathcal{A}_p(L)$ after attaching a cone over $\mathcal{A}_p(C_L(B))$ for each $B \in \mathcal{A}_p(A)$ of order p with $B \cap L = 1$.

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_p(A)) \to \bigoplus_{B} \widetilde{H}_n(\mathcal{A}_p(C_L(B))) \to \widetilde{H}_n(\mathcal{A}_p(L)) \to \widetilde{H}_n(\mathcal{A}_p(A)) \to \ldots$

Eliminating Alt₈

We show that $\mathcal{A}_2(Alt_8) \rightarrow \mathcal{A}_2(Sym_8)$ is non-zero in homology.

- The "outer" subgroups B of order p have $C_{Alt_8}(B) = Sym_6 = Sp_4(2)$.
- Then $\mathcal{A}_2(C_{Alt_8}(B))$ is a wedge of 1-spheres.
- Alt₈ \cong PSL₄(2), so $\mathcal{A}_2(Alt_8)$ is a wedge of 2-spheres.

$$n = 2 : 0 = \bigoplus_{B} \widetilde{H}_{2}(\mathcal{A}_{2}(\mathcal{C}_{\mathsf{Alt}_{8}}(B))) \to \widetilde{H}_{2}(\mathcal{A}_{2}(\mathsf{Alt}_{8})) \to \widetilde{H}_{2}(\mathcal{A}_{2}(\mathsf{Sym}_{8}))$$

Goal. Show that $\mathcal{A}_2(HS) \to \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology. Let L := HS and A := Aut(HS).

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology. Let L := HS and A := Aut(HS).

•
$$m_2(L) = 4$$
, $m_2(A) = 5$ and $A = HS : 2C = HS : 2D$.

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_2(\mathcal{A})) \to \bigoplus_t \widetilde{H}_n(\mathcal{A}_2(\mathcal{C}_L(t))) \to \widetilde{H}_n(\mathcal{A}_2(L)) \to \widetilde{H}_n(\mathcal{A}_2(\mathcal{A})) \to \ldots$

Goal. Show that $\mathcal{A}_2(HS) \to \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $(2C) \text{ If } t = 2C, \ O_2(C_L(2C)) \neq 1 \text{ and } \mathcal{A}_2(C_L(t)) \simeq *.$

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_2(A)) \to \bigoplus_t \widetilde{H}_n(\mathcal{A}_2(C_L(t))) \to \widetilde{H}_n(\mathcal{A}_2(L)) \to \widetilde{H}_n(\mathcal{A}_2(A)) \to \ldots$

- (2C) If t = 2C, $O_2(C_L(2C)) \neq 1$ and $\mathcal{A}_2(C_L(t)) \simeq *$.
- (2D) If t = 2D, $C_L(2D) = \text{Sym}_8$ and $\mathcal{A}_2(\text{Sym}_8) \simeq \bigvee S^2$ (dimension 2).

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_2(\mathcal{A})) \to \bigoplus_t \widetilde{H}_n(\mathcal{A}_2(\mathcal{C}_L(t))) \to \widetilde{H}_n(\mathcal{A}_2(L)) \to \widetilde{H}_n(\mathcal{A}_2(\mathcal{A})) \to \ldots$

- (2C) If t = 2C, $O_2(C_L(2C)) \neq 1$ and $A_2(C_L(t)) \simeq *$.
- (2D) If t = 2D, $C_L(2D) = \text{Sym}_8$ and $\mathcal{A}_2(\text{Sym}_8) \simeq \bigvee S^2$ (dimension 2).
 - Hence $H_2(\mathcal{A}_2(L)) \rightarrow H_2(\mathcal{A}_2(A))$ is surjective.

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_2(\mathcal{A})) \to \bigoplus_t \widetilde{H}_n(\mathcal{A}_2(\mathcal{C}_L(t))) \to \widetilde{H}_n(\mathcal{A}_2(L)) \to \widetilde{H}_n(\mathcal{A}_2(\mathcal{A})) \to \ldots$

- (2C) If t = 2C, $O_2(C_L(2C)) \neq 1$ and $\mathcal{A}_2(C_L(t)) \simeq *$.
- (2D) If t = 2D, $C_L(2D) = \text{Sym}_8$ and $\mathcal{A}_2(\text{Sym}_8) \simeq \bigvee S^2$ (dimension 2).
 - Hence $H_2(\mathcal{A}_2(L)) \rightarrow H_2(\mathcal{A}_2(A))$ is surjective.
 - **2** $H_4(\mathcal{A}_2(A)) = 0$ and $\tilde{\chi}(\mathcal{A}_2(A)) = 1204224$, so $H_2(\mathcal{A}_2(A)) \neq 0$.

Goal. Show that $\mathcal{A}_2(HS) \rightarrow \mathcal{A}_2(Aut(HS))$ is non-zero in homology.

Let L := HS and A := Aut(HS).

- $m_2(L) = 4$, $m_2(A) = 5$ and A = HS : 2C = HS : 2D.
- \$\mathcal{A}_2(A)\$ is obtained from \$\mathcal{A}_2(L)\$ by gluing cones over \$\mathcal{A}_2(C_L(t))\$, where t runs over the conjugates of \$2C\$ and \$2D\$:

 $\ldots \widetilde{H}_{n+1}(\mathcal{A}_2(\mathcal{A})) \to \bigoplus_t \widetilde{H}_n(\mathcal{A}_2(\mathcal{C}_L(t))) \to \widetilde{H}_n(\mathcal{A}_2(L)) \to \widetilde{H}_n(\mathcal{A}_2(\mathcal{A})) \to \ldots$

- (2C) If t = 2C, $O_2(C_L(2C)) \neq 1$ and $\mathcal{A}_2(C_L(t)) \simeq *$.
- (2D) If t = 2D, $C_L(2D) = \text{Sym}_8$ and $\mathcal{A}_2(\text{Sym}_8) \simeq \bigvee S^2$ (dimension 2).
 - Hence $H_2(\mathcal{A}_2(L)) \rightarrow H_2(\mathcal{A}_2(A))$ is surjective.
 - **2** $H_4(\mathcal{A}_2(A)) = 0$ and $\tilde{\chi}(\mathcal{A}_2(A)) = 1204224$, so $H_2(\mathcal{A}_2(A)) \neq 0$.

(Similarly, for $L = M_{12}$ and $L = M_{22}$, $O_2(C_L(B)) \neq 1$ if |B| = 2).

Vielen Dank!