Advances on Quillen's conjecture

Kevin I. Piterman
(joint w. Stephen D. Smith)
Philipps-Universität Marburg

Groups 2023 - Northern Group Theory conference in honour of Bernd Fischer

September 29, 2023

Setting

Setting

Let G be a finite group and p a prime number.

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{p}(G)$ as a topological space via its order-complex.

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{p}(G)$ as a topological space via its order-complex.
- G acts on $\mathcal{A}_{p}(G)$ by conjugation.

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.
- Regard $\mathcal{A}_{p}(G)$ as a topological space via its order-complex.
- G acts on $\mathcal{A}_{p}(G)$ by conjugation.

General goal. Establish connections between properties of G and combinatorial/topological properties of $\mathcal{A}_{p}(G)$.

Why do we study p-group complexes?

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) (K. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
(4) (Quillen, '78) $O_{p}(G)=$ largest normal p-subgroup of G.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
(9) (Quillen, '78) $O_{p}(G)=$ largest normal p-subgroup of G. If $O_{p}(G) \neq 1$ then $\mathcal{A}_{p}(G)$ is contractible.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) (K. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
(9) (Quillen, '78) $O_{p}(G)=$ largest normal p-subgroup of G. If $O_{p}(G) \neq 1$ then $\mathcal{A}_{p}(G)$ is contractible.

Quillen's conjecture

If $O_{p}(G)=1$ then $\mathcal{A}_{p}(G)$ is not contractible.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
(9) (Quillen, '78) $O_{p}(G)=$ largest normal p-subgroup of G. If $O_{p}(G) \neq 1$ then $\mathcal{A}_{p}(G)$ is contractible.

Quillen's conjecture

If $O_{p}(G)=1$ then $\mathcal{A}_{p}(G)$ is not contractible.

(Strong) Quillen's conjecture

If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

On Quillen's conjecture

$(\mathbf{H}-\mathbf{Q C}) \quad$ If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

On Quillen's conjecture

$(\mathbf{H}-\mathbf{Q C}) \quad$ If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):

On Quillen's conjecture

(H-QC) If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;

On Quillen's conjecture

(H-QC) If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable.

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

- H satisfies $(\mathcal{Q D})_{p}$ if $\mathcal{A}_{p}(H)$ has non-zero homology in top-degree:

$$
\tilde{H}_{m_{p}(H)-1}\left(\mathcal{A}_{p}(H), \mathbb{Q}\right) \neq 0 .
$$

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

- H satisfies $(\mathcal{Q D})_{p}$ if $\mathcal{A}_{p}(H)$ has non-zero homology in top-degree:

$$
\tilde{H}_{m_{p}(H)-1}\left(\mathcal{A}_{p}(H), \mathbb{Q}\right) \neq 0
$$

Theorem. If G is p-solvable and $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$,

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

- H satisfies $(\mathcal{Q D})_{p}$ if $\mathcal{A}_{p}(H)$ has non-zero homology in top-degree:

$$
\tilde{H}_{m_{p}(H)-1}\left(\mathcal{A}_{p}(H), \mathbb{Q}\right) \neq 0
$$

Theorem. If G is p-solvable and $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$, and hence ($\mathrm{H}-\mathrm{QC}$).

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

- H satisfies $(\mathcal{Q D})_{p}$ if $\mathcal{A}_{p}(H)$ has non-zero homology in top-degree:

$$
\tilde{H}_{m_{p}(H)-1}\left(\mathcal{A}_{p}(H), \mathbb{Q}\right) \neq 0 .
$$

Theorem. If G is p-solvable and $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$, and hence (H-QC). (Use of CFSG).

The Aschbacher-Smith result

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

A p-extension of L is a split-extension of L by some $B \in \mathcal{A}_{p}(\operatorname{Out}(L)) \cup\{1\}$.

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

A p-extension of L is a split-extension of L by some $B \in \mathcal{A}_{p}(\operatorname{Out}(L)) \cup\{1\}$. Why $(\mathcal{Q D})_{p}$?

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

A p-extension of L is a split-extension of L by some $B \in \mathcal{A}_{p}(\operatorname{Out}(L)) \cup\{1\}$.
Why $(\mathcal{Q D})_{p}$?

- Under a minimal counterexample to (H-QC) for $p>5$, Aschbacher-Smith prove that every component has a p-extension that fails $(\mathcal{Q D})_{p}$.

The Aschbacher-Smith result

Aschbacher-Smith Theorem

(H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

A p-extension of L is a split-extension of L by some $B \in \mathcal{A}_{p}(\operatorname{Out}(L)) \cup\{1\}$.
Why $(\mathcal{Q D})_{p}$?

- Under a minimal counterexample to (H-QC) for $p>5$, Aschbacher-Smith prove that every component has a p-extension that fails $(\mathcal{Q D})_{p}$.
- Then they list all simple groups with a potential p-extension failing $(\mathcal{Q D})_{p}$ for p odd.

On Quillen's conjecture: new results

On Quillen's conjecture: new results

More general combinatorial arguments that do not depend on the prime p and the CFSG, allow us to extend some reductions on a minimal counterexample to (H-QC) to every prime p.

On Quillen's conjecture: new results

More general combinatorial arguments that do not depend on the prime p and the CFSG, allow us to extend some reductions on a minimal counterexample to (H-QC) to every prime p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to $p=3,5$.

On Quillen's conjecture: new results

More general combinatorial arguments that do not depend on the prime p and the CFSG, allow us to extend some reductions on a minimal counterexample to (H-QC) to every prime p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to $p=3,5$.

Theorem (Antonio Díaz Ramos, '23)

For p odd, $p \mid q+1, q \neq 2, \operatorname{PSU}_{n}(q)$ and $\operatorname{PGU}_{n}(q)$ satisfy $(\mathcal{Q D})_{p}$.

On Quillen's conjecture: new results

More general combinatorial arguments that do not depend on the prime p and the CFSG, allow us to extend some reductions on a minimal counterexample to (H-QC) to every prime p.

Theorem (P.-Smith, '21)

Aschbacher-Smith Theorem extends to $p=3,5$.

Theorem (Antonio Díaz Ramos, '23)

For p odd, $p \mid q+1, q \neq 2, \operatorname{PSU}_{n}(q)$ and $\operatorname{PGU}_{n}(q)$ satisfy $(\mathcal{Q D})_{p}$.

Corollary

If p is odd and for all $q \neq 2$ with $p \mid q+1, \operatorname{PGU}_{n}(q)$ extended by a field automorphism of order p satisfies $(\mathcal{Q D})_{p}$, then ($\mathrm{H}-\mathrm{QC}$) holds for p.

Results for $p=2$

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,
(2) every component L of G has non-trivial 2-extension $L B \leq G$,

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,
(2) every component L of G has non-trivial 2-extension $L B \leq G$,
(3) every component L of G has a 2-extension in G failing $(\mathcal{Q D})_{2}$,

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,
(2) every component L of G has non-trivial 2-extension $L B \leq G$,
(3) every component L of G has a 2-extension in G failing $(\mathcal{Q D})_{2}$,
(9) G has a component L of Lie type such that $\operatorname{char}(L) \neq 2,3$ or

$$
L \cong \operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), \text { or } E_{6}\left(2^{a}\right)
$$

Results for $p=2$

Theorem (P.-Smith, '21)

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,
(2) every component L of G has non-trivial 2-extension $L B \leq G$,
(3) every component L of G has a 2-extension in G failing $(\mathcal{Q D})_{2}$,
(4) G has a component L of Lie type such that $\operatorname{char}(L) \neq 2,3$ or

$$
L \cong \operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), \text { or } E_{6}\left(2^{a}\right)
$$

Only reduction 4 depends on the CFSG to exclude the non-Lie type components.

On Quillen's conjecture: more recent results for $p=2$

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2-extension failing $(\mathcal{Q D})_{2}$:

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2-extension failing $(\mathcal{Q D})_{2}$:
$L B \leq G, L$ a simple component and $L B$ a 2-extension such that

$$
\operatorname{not}-(Q \mathcal{D})_{2} \quad H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)=0
$$

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2-extension failing $(\mathcal{Q D})_{2}$:
$L B \leq G, L$ a simple component and $L B$ a 2-extension such that

$$
\operatorname{not}-(Q \mathcal{D})_{2} \quad H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)=0
$$

Problem. Classify simple groups L satisfying the following condition:
$(\mathbf{E}-(\mathcal{Q D})) \quad$ Every 2 -extension of L satisfies $(\mathcal{Q D})_{2}$.

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2-extension failing $(\mathcal{Q D})_{2}$:
$L B \leq G, L$ a simple component and $L B$ a 2-extension such that

$$
\operatorname{not}-(\mathcal{Q D})_{2} \quad H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)=0 .
$$

Problem. Classify simple groups L satisfying the following condition:
(E-($\mathcal{Q D})$) Every 2-extension of L satisfies $(\mathcal{Q D})_{2}$.

Theorem (P., '22)

Let L be a simple group of exceptional Lie type in odd characteristic.

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2-extension failing $(\mathcal{Q D})_{2}$:
$L B \leq G, L$ a simple component and $L B$ a 2-extension such that

$$
\operatorname{not}-(\mathcal{Q D})_{2} \quad H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)=0
$$

Problem. Classify simple groups L satisfying the following condition:
(E-($\mathcal{Q D})$) Every 2-extension of L satisfies $(\mathcal{Q D})_{2}$.

Theorem (P., '22)

Let L be a simple group of exceptional Lie type in odd characteristic. If L fails ($\mathrm{E}-(\mathcal{Q D})$), then it is one of the following groups:

$$
{ }^{3} D_{4}(9), F_{4}(3), F_{4}(9), G_{2}(3), G_{2}(9),{ }^{2} G_{2}(3)^{\prime}, E_{8}(3), E_{8}(9)
$$

Idea of the proof

(1) Establish ($\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$.

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
(2) For L an exceptional group, we look for maximal subgroups H of the 2-extensions $L B$ such that

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
(2) For L an exceptional group, we look for maximal subgroups H of the 2-extensions $L B$ such that

$$
\begin{gathered}
H \leq L B, \quad m_{2}(H)=m_{2}(L B), \quad \text { and } \\
0 \neq H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right) \subseteq H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)
\end{gathered}
$$

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
(2) For L an exceptional group, we look for maximal subgroups H of the 2-extensions $L B$ such that

$$
\begin{gathered}
H \leq L B, \quad m_{2}(H)=m_{2}(L B), \quad \text { and } \\
0 \neq H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right) \subseteq H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)
\end{gathered}
$$

(3) If H is parabolic, it has a solvable subgroup K with $m_{2}(H)=m_{2}(K)$ and $O_{2}(K)=1$, so we are done by Quillen's result.

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
(2) For L an exceptional group, we look for maximal subgroups H of the 2-extensions $L B$ such that

$$
\begin{gathered}
H \leq L B, \quad m_{2}(H)=m_{2}(L B), \quad \text { and } \\
0 \neq H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right) \subseteq H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)
\end{gathered}
$$

(3) If H is parabolic, it has a solvable subgroup K with $m_{2}(H)=m_{2}(K)$ and $O_{2}(K)=1$, so we are done by Quillen's result.
(4) Otherwise, look for $H=H_{1} \times H_{2}$, where the H_{i} satisfy $(\mathcal{Q D})_{2}$ and

$$
H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right)=H_{m_{2}\left(H_{1}\right)-1}\left(\mathcal{A}_{2}\left(H_{1}\right), \mathbb{Q}\right) \otimes H_{m_{2}\left(H_{2}\right)-1}\left(\mathcal{A}_{2}\left(H_{2}\right), \mathbb{Q}\right) .
$$

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$.

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$.

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails ($\mathrm{E}-(\mathcal{Q D})$) and belongs to one of the following families:

$$
\begin{gathered}
\operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), E_{6}\left(2^{a}\right) \\
\operatorname{PSL}_{n}^{ \pm}(q)(n \geq 4), \Omega_{2 n+1}(q)(n \geq 2), \operatorname{PSp}_{2 n}(q)(n \geq 3), D_{n}^{ \pm}(q)(n \geq 4),
\end{gathered}
$$

where $q=r^{b}$ and $r>3$.

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$.
Moreover, every such component fails ($\mathrm{E}-(\mathcal{Q D})$) and belongs to one of the following families:

$$
\operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), E_{6}\left(2^{a}\right)
$$

$$
\operatorname{PSL}_{n}^{ \pm}(q)(n \geq 4), \Omega_{2 n+1}(q)(n \geq 2), \operatorname{PSp}_{2 n}(q)(n \geq 3), D_{n}^{ \pm}(q)(n \geq 4)
$$

where $q=r^{b}$ and $r>3$.
What could we do next? Study $(\mathrm{E}-(\mathcal{Q D}))$ for the classical groups.

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$.
Moreover, every such component fails ($\mathrm{E}-(\mathcal{Q D})$) and belongs to one of the following families:

$$
\begin{gathered}
\operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), E_{6}\left(2^{a}\right) \\
\operatorname{PSL}_{n}^{ \pm}(q)(n \geq 4), \Omega_{2 n+1}(q)(n \geq 2), \operatorname{PSp}_{2 n}(q)(n \geq 3), D_{n}^{ \pm}(q)(n \geq 4),
\end{gathered}
$$

where $q=r^{b}$ and $r>3$.
What could we do next? Study $(\mathrm{E}-(\mathcal{Q D}))$ for the classical groups. Partial results for $\Omega_{2 n+1}(q), \operatorname{PSp}_{2 n}(q)$ and some of the $D_{n}^{ \pm}(q)$.

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$.
Moreover, every such component fails ($\mathrm{E}-(\mathcal{Q D})$) and belongs to one of the following families:

$$
\begin{gathered}
\operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), E_{6}\left(2^{a}\right) \\
\operatorname{PSL}_{n}^{ \pm}(q)(n \geq 4), \Omega_{2 n+1}(q)(n \geq 2), \operatorname{PSp}_{2 n}(q)(n \geq 3), D_{n}^{ \pm}(q)(n \geq 4),
\end{gathered}
$$

where $q=r^{b}$ and $r>3$.
What could we do next? Study $(\mathrm{E}-(\mathcal{Q D}))$ for the classical groups. Partial results for $\Omega_{2 n+1}(q), \mathrm{PSp}_{2 n}(q)$ and some of the $D_{n}^{ \pm}(q)$. But I'd try a different argument to eliminate them...

Where are alternating and sporadic components?

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,
(4) $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}\left(\mathrm{Aut}_{G}(L)\right)$ is non-zero in homology.

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,
(9) $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}\left(\mathrm{Aut}_{G}(L)\right)$ is non-zero in homology.

Then G satisfies (H-QC).

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,
(4) $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}\left(\mathrm{Aut}_{G}(L)\right)$ is non-zero in homology.

Then G satisfies (H-QC).
In particular, if G is a minimal counterexample to $(H-Q C)$ then:

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,
(9) $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}\left(\mathrm{Aut}_{G}(L)\right)$ is non-zero in homology.

Then G satisfies (H-QC).
In particular, if G is a minimal counterexample to (H-QC) then:

- If p is odd, G does not contain alternating or sporadic components.

Where are alternating and sporadic components?

Theorem (P.-Smith, '21)

Let p be a prime and G a group such that for a fixed component L the following hold:
(1) p divides the order of L,
(2) $\widehat{L}=$ central product of conjugates of L,
(3) $C_{G}(\widehat{L})$ satisfies $(\mathrm{H}-\mathrm{QC})$,
(4) $\mathcal{A}_{p}(L) \rightarrow \mathcal{A}_{p}\left(\mathrm{Aut}_{G}(L)\right)$ is non-zero in homology.

Then G satisfies (H-QC).
In particular, if G is a minimal counterexample to (H-QC) then:

- If p is odd, G does not contain alternating or sporadic components.
- If $p=2, G$ does not contain components L with $\operatorname{Out}(L)=1$, or components $L=$ Alt $_{6}$, Alt $_{8}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{HS}$.

Some examples

Some examples

Fact. If A is obtained from L by an extension of order p,

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots$

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots$

Eliminating Alt ${ }_{8}$

We show that $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right) \rightarrow \mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)$ is non-zero in homology.

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots$

Eliminating Alt ${ }_{8}$

We show that $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right) \rightarrow \mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)$ is non-zero in homology.
(1) The "outer" subgroups B of order p have $C_{\mathrm{Alt}_{8}}(B)=\operatorname{Sym}_{6}=\operatorname{Sp}_{4}(2)$.

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots$

Eliminating Alt ${ }_{8}$

We show that $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right) \rightarrow \mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)$ is non-zero in homology.
(1) The "outer" subgroups B of order p have $C_{\mathrm{Alt}_{8}}(B)=\operatorname{Sym}_{6}=\operatorname{Sp}_{4}(2)$.
(2) Then $\mathcal{A}_{2}\left(C_{\text {Alt }_{8}}(B)\right)$ is a wedge of 1 -spheres.

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.

$$
\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots
$$

Eliminating Alt ${ }_{8}$

We show that $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right) \rightarrow \mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)$ is non-zero in homology.
(1) The "outer" subgroups B of order p have $C_{\mathrm{Alt}_{8}}(B)=\operatorname{Sym}_{6}=\operatorname{Sp}_{4}(2)$.
(2) Then $\mathcal{A}_{2}\left(C_{\text {Alt }_{8}}(B)\right)$ is a wedge of 1 -spheres.
(3) $\mathrm{Alt}_{8} \cong \mathrm{PSL}_{4}(2)$, so $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right)$ is a wedge of 2 -spheres.

Some examples

Fact. If A is obtained from L by an extension of order p, then $\mathcal{A}_{p}(A)$ is homotopy equivalent to $\mathcal{A}_{p}(L)$ after attaching a cone over $\mathcal{A}_{p}\left(C_{L}(B)\right)$ for each $B \in \mathcal{A}_{p}(A)$ of order p with $B \cap L=1$.

$$
\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{p}(A)\right) \rightarrow \bigoplus_{B} \widetilde{H}_{n}\left(\mathcal{A}_{p}\left(C_{L}(B)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{p}(A)\right) \rightarrow \ldots
$$

Eliminating Alt ${ }_{8}$

We show that $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right) \rightarrow \mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)$ is non-zero in homology.
(1) The "outer" subgroups B of order p have $C_{\mathrm{Alt}_{8}}(B)=\operatorname{Sym}_{6}=\operatorname{Sp}_{4}(2)$.
(2) Then $\mathcal{A}_{2}\left(C_{\text {Alt }_{8}}(B)\right)$ is a wedge of 1 -spheres.
(3) $\mathrm{Alt}_{8} \cong \mathrm{PSL}_{4}(2)$, so $\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right)$ is a wedge of 2 -spheres.

$$
n=2: 0=\bigoplus_{B} \widetilde{H}_{2}\left(\mathcal{A}_{2}\left(C_{\mathrm{Alt}_{8}}(B)\right)\right) \rightarrow \widetilde{H}_{2}\left(\mathcal{A}_{2}\left(\mathrm{Alt}_{8}\right)\right) \rightarrow \widetilde{H}_{2}\left(\mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right)\right)
$$

Example: eliminating HS

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology.
Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\operatorname{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$
(2C) If $t=2 C, O_{2}\left(C_{L}(2 C)\right) \neq 1$ and $\mathcal{A}_{2}\left(C_{L}(t)\right) \simeq *$.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$
(2C) If $t=2 C, O_{2}\left(C_{L}(2 C)\right) \neq 1$ and $\mathcal{A}_{2}\left(C_{L}(t)\right) \simeq *$.
(2D) If $t=2 D, C_{L}(2 D)=\operatorname{Sym}_{8}$ and $\mathcal{A}_{2}\left(\mathrm{Sym}_{8}\right) \simeq \bigvee S^{2}$ (dimension 2).

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$
(2C) If $t=2 C, O_{2}\left(C_{L}(2 C)\right) \neq 1$ and $\mathcal{A}_{2}\left(C_{L}(t)\right) \simeq *$.
(2D) If $t=2 D, C_{L}(2 D)=\operatorname{Sym}_{8}$ and $\mathcal{A}_{2}\left(\right.$ Sym $\left._{8}\right) \simeq \bigvee S^{2}$ (dimension 2).
(1) Hence $H_{2}\left(\mathcal{A}_{2}(L)\right) \rightarrow H_{2}\left(\mathcal{A}_{2}(A)\right)$ is surjective.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$
(2C) If $t=2 C, O_{2}\left(C_{L}(2 C)\right) \neq 1$ and $\mathcal{A}_{2}\left(C_{L}(t)\right) \simeq *$.
(2D) If $t=2 D, C_{L}(2 D)=$ Sym $_{8}$ and $\mathcal{A}_{2}\left(\right.$ Sym $\left._{8}\right) \simeq \bigvee S^{2}$ (dimension 2).
(1) Hence $H_{2}\left(\mathcal{A}_{2}(L)\right) \rightarrow H_{2}\left(\mathcal{A}_{2}(A)\right)$ is surjective.
(2) $H_{4}\left(\mathcal{A}_{2}(A)\right)=0$ and $\tilde{\chi}\left(\mathcal{A}_{2}(A)\right)=1204224$, so $H_{2}\left(\mathcal{A}_{2}(A)\right) \neq 0$.

Example: eliminating HS

Goal. Show that $\mathcal{A}_{2}(\mathrm{HS}) \rightarrow \mathcal{A}_{2}(\mathrm{Aut}(\mathrm{HS}))$ is non-zero in homology. Let $L:=\mathrm{HS}$ and $A:=\operatorname{Aut}(\mathrm{HS})$.

- $m_{2}(L)=4, m_{2}(A)=5$ and $A=\mathrm{HS}: 2 C=\mathrm{HS}: 2 D$.
- $\mathcal{A}_{2}(A)$ is obtained from $\mathcal{A}_{2}(L)$ by gluing cones over $\mathcal{A}_{2}\left(C_{L}(t)\right)$, where t runs over the conjugates of $2 C$ and $2 D$:
$\ldots \widetilde{H}_{n+1}\left(\mathcal{A}_{2}(A)\right) \rightarrow \bigoplus_{t} \widetilde{H}_{n}\left(\mathcal{A}_{2}\left(C_{L}(t)\right)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(L)\right) \rightarrow \widetilde{H}_{n}\left(\mathcal{A}_{2}(A)\right) \rightarrow \ldots$
(2C) If $t=2 C, O_{2}\left(C_{L}(2 C)\right) \neq 1$ and $\mathcal{A}_{2}\left(C_{L}(t)\right) \simeq *$.
(2D) If $t=2 D, C_{L}(2 D)=$ Sym $_{8}$ and $\mathcal{A}_{2}\left(\right.$ Sym $\left._{8}\right) \simeq \bigvee S^{2}$ (dimension 2).
(1) Hence $H_{2}\left(\mathcal{A}_{2}(L)\right) \rightarrow H_{2}\left(\mathcal{A}_{2}(A)\right)$ is surjective.
(2) $H_{4}\left(\mathcal{A}_{2}(A)\right)=0$ and $\tilde{\chi}\left(\mathcal{A}_{2}(A)\right)=1204224$, so $H_{2}\left(\mathcal{A}_{2}(A)\right) \neq 0$.
(Similarly, for $L=\mathrm{M}_{12}$ and $L=\mathrm{M}_{22}, O_{2}\left(C_{L}(B)\right) \neq 1$ if $|B|=2$).

Vielen Dank!

