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Abstract. Stochastic ordinary differential equations may have solutions that explode in finite
time. In this article we prove the continuity of the explosion time with respect to the different
parameters appearing in the equation, such as the initial datum, the drift and the diffusion.

1. Introduction

In this paper we consider the following stochastic differential equation (SDE):

(P ) dx = b(x) dt + σ(x) ◦ dw,

with x(0) = x0 ∈ R>0. Here b and σ are smooth positive functions (C1 will be enough for
our calculations) and w is a (one dimensional) Wiener process defined on a given complete
probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is
right continuous and F0 contains all P−null sets, [7]).

It is well known that stochastic differential equations like (P ) may explode in finite time. That
is, trajectories may diverge to infinity as t goes to some finite time T that in general depends
on the particular path.

The Feller Test for explosions ([7, 8]) gives a precise description in terms of b and σ of whether
explosions in finite time occur with probability zero, positive or one. For example, if b and σ
behave like powers at infinity, i.e., b(s) ∼ sp and σ(s) ∼ sq as s → ∞, applying the Feller
test one obtains that solutions to (P ) explode with probability one if p > max{2q, 1}. We use
f(s) ∼ g(s) to mean that there exist constants 0 < c < C such that cg(s) ≤ f(s) ≤ Cg(s) for
large enough s. The intuition behind this condition is that p > 2q ensures that the asymptotic
behavior of the solutions is governed by the drift term while p > 1 impose the solution to grow
up so fast that explodes in finite time, as happens in the deterministic case (σ = 0).

Stochastic differential equations with explosions have been considered, for example, in fatigue
cracking (fatigue failures in solid materials) with b and σ of power type, see [12], where solutions
may explode in finite time. This explosion time is generally random, depends on the particular
sample path and corresponds to the time of ultimate damage or fatigue failure in the material.

For deterministic one-dimensional ODEs (σ = 0), the dependence of the explosion time T
with respect to the different parameters entering in the problem is very well understood, thanks
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to the explicit formula

T =
∫ ∞

x0

1
b(s)

ds.

In more general situations (N -dimensional deterministic ODEs, SDEs or parabolic PDEs),
where no such explicit formula is available, the situation gets a lot more complicated.

In parabolic semilinear PDEs, typically of the form ut−∆u = up, for example with Dirichlet
boundary conditions, the continuous dependence of the explosion time on the initial data has
deserved a great deal of attention and effort. See for instance [1, 5, 6, 9, 10] and also [11] for a
general result on the continuity of the explosion time in a general semiflow context.

For systems of (deterministic) ODEs, or even for nonautonomous one-dimensional ODEs,
there is no general result concerning the continuous dependence of the explosion time with
respect to the initial data or with respect to parameters. Up to our knowledge, the only result
that treats a related issue for SDEs is [4] where the authors analyze the behavior of the explosion
time under small stochastic perturbations of a one-dimensional ODE.

This paper consists in an abstract result on continuity of the explosion time under structural
hypotheses and, as an application of this result, we get the continuity of the explosion time in
stochastic differential equations with respect to the initial datum, the drift and the diffusion.

The main idea used in the proofs is to obtain estimates for the first time where two solutions
spread at a fixed distance. This idea was previously used in [3, 5] and [11]. The main results on
this paper can be summarized as follows:

(1) Assume b/σ is nondecreasing, x(t) is a solution to (P ) with initial datum x0 and xn(t)
is a solution to (P ) with initial datum xn. Let T and Tn be the explosion times for x(t)
and xn(t) respectively. If xn → x0 then Tn → T a.s.

(2) For additive or multiplicative noise, under adequate hypotheses, if bn → b and σn → σ
then Tn → T a.s.

Organization of the paper. In Section 2 we prove an abstract result on convergence of
explosion times for sequences of functions with explosion; in Section 3 we recall some known
results on the relation between SDEs and random differential equations; in Section 4 we study
the dependence of T on the initial datum; finally in Section 5 we look at the dependence of T
with respect to b and σ in two relevant examples; additive and multiplicative noise.

2. An abstract result

In this section we prove a very general result on convergence of the explosion times. Let Tn,
T be real numbers and un, u functions with values on a Banach space equipped with norm ‖ · ‖
such that the following hypotheses hold:

Continuation property:

(H1) lim
t→T

‖u(t)‖ = ∞, lim
t→Tn

‖un(t)‖ = ∞.

That is, we assume that both u and un explode in finite times, T and Tn respectively.



CONTINUITY OF THE EXPLOSION TIME IN SDE 3

Continuous dependence:

(H2) For every t < T it holds lim
n→∞ sup

s∈[0,t]
‖un(s)− u(s)‖ = 0.

That is, we are assuming that un approaches u as n → ∞ at times at which u is well defined
and bounded.

Uniform upper explosion estimate: There exists a nondecreasing continuous function G, inde-
pendent of n, such that

(H3) ‖un(t)‖ ≤ G
( 1

Tn − t

)
.

We are assuming that we have a uniform (in n) bound on the explosion rate of the sequence un.

The main result of the section, is the following:

Theorem 2.1. If (H1)–(H3) hold, then

lim
n→∞Tn = T.

We divide the proof of the theorem into two propositions.

Proposition 2.2. If (H1)–(H3) hold, then

lim sup
n→∞

Tn ≤ T.

Proof. It is enough to consider n such that Tn > T . Set

en(t) = ‖un(t)− u(t)‖.
We have en(0) = o(1). Assume that for all t < T , en(t) < 1, then Tn ≤ T due to (H1); but this
is impossible. Hence, there exists a first time tn < T such that en(tn) = 1. Hypotheses (H2)
implies that tn → T since for any subsequence tnk

satisfying sup tnk
< T we have 1 = e(tnk

) → 0.
Finally from (H3) we get

G
( 1

Tn − tn

)
≥ ‖un(tn)‖ ≥ ‖u(tn)‖ − 1 →∞, n →∞.

Recall that, due to (H3), G(s) →∞ as s → 0. Consequently, Tn − tn → 0 as n →∞ and hence

lim sup
n→∞

Tn ≤ lim sup
n→∞

Tn − tn + T = T,

as we wanted to prove. ¤

The lower semicontinuity is an easy consequence of continuation and continuous dependence
properties. We recall the following to complete the proof of the theorem.

Proposition 2.3. If (H1) and (H2) hold, then

lim inf
n→∞ Tn ≥ T.

Proof. We need only consider n such that Tn < T . We use the same notation as in the previous
proof. By (H1), there is a first time tn < Tn such that en(tn) = 1 and (H2) implies that tn → T .
Since Tn > tn, it follows that lim infn→∞ Tn ≥ T , as we wanted to prove. ¤
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A counterexample. Let us now see that if (H3) fails we can have a sequence verifying (H1)
and (H2) but with Tn 6→ T . In order to see this fact it suffices to consider a one dimensional
deterministic ODE. In fact, let us consider

{
u̇ = u2,

u(0) = 1.

The explicit solution is

u(t) =
1

1− t
, (0 < t < 1).

Now take

fn(x) =

{
x2 0 ≤ x ≤ n

anxpn + (n2 − annpn) x > n,

and consider {
u̇n = fn(un),

un(0) = 1.

Remark that un and u coincide until they reach level n, that is,

(2.1) un(t) = u(t) for all t ≤ 1− 1
n

.

Therefore un is a solution of

(2.2)

{
u̇n = anupn

n + (n2 − annpn),

un(1 + 1/n) = n.

Assume that pn > 1, then un explodes in finite time Tn (hypothesis (H1)) and, from (2.1) it
is clear that (H2) holds.

From (2.2), we obtain

Tn = 1− 1
n

+
∫ +∞

n

ds

anspn + (n2 − annpn)
,

that is, changing variables, nu = s,

Tn = 1− 1
n

+
∫ +∞

1

du

npn−1an(upn − 1) + n
.

Let us choose
an =

1
npn−1

,

we obtain,

Tn = 1− 1
n

+
∫ +∞

1

du

(upn − 1) + n
≥ 1− 1

n
+

∫ +∞

(n+1)1/pn

du

2upn
.

Therefore, if we choose

pn = 1 +
1
n

we get

Tn ≥ 1− 1
n

+
n

2(n + 1)
1

n+1

→ +∞, n →∞.
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Therefore
lim

n→∞Tn = +∞ 6= T = 1.

It is clear that we can modify this example in such a way that (fn)n ⊂ C∞ (here they are
only continuous) and moreover for any K > 1 we can select pn, an in such a way that

Tn → K, n →∞.

The main obstruction that prevents convergence of the explosion times in this example is the
fact that the sources fn and f are far away at infinity for every n in such a way that fn grows
very slowly making the blow-up times increase (and even go to infinity) with n. In the one
dimensional autonomous deterministic case, u̇ = f(u) and u̇n = fn(un) with the same initial
datum u(0) = un(0) = u0, a sufficient condition to assure (H3) is fn ≥ g with

∫∞ 1/g < ∞.
This fact plus pointwise convergence of fn to f implies the convergence of the blow-up times,
Tn → T . This can be easily proved using the explicit formula for the explosion times

Tn =
∫ +∞

u0

1
fn(s)

ds

and the Dominated Convergence Theorem.

3. From SDE to Random Differential Equations

As proved in [13] (see also [7] pp. 295–297), one can get a solution to (P ) by means of a
random differential equation. Let us define φ(t, z) the flux associated to the ODE

φ̇(t, z) = σ(φ(t, z)), φ(0, z) = z.

Observe that if σ is globally Lipschitz, φ(t, z) is globally defined. Let

(3.3) H(z, t) :=
b(φ(t, z))σ(z)

σ(φ(t, z))
.

By simple computation one can check that

H(z, t) =
b(φ(t, z))
∂zφ(t, z)

.

Now, for any ω ∈ Ω fixed, such that the path of the Wiener process w(·, ω) is continuous, we
consider z(t) to be the solution of the (deterministic, non autonomous) ODE:

(3.4) ż = H(z(t), w(t, ω)).

This type of equations are known as random differential equations since the dependence on ω is
just on the coefficients of an ODE.

The process x(t) given by x(t, ω) := φ(w(t, ω), z(t)) is a solution to (P ) in the Stratonovich
sense with initial datum x(0) = x0. In fact




dx(t) =
∂

∂t
φ(w(t), z(t)) ◦ dw(t) +

∂

∂z
φ(w(t), z(t)) dz(t) = σ(x(t)) ◦ dw(t) + b(x(t)) dt,

x(0) = x0.

Observe that, as φ is globally defined, x(t) explodes if and only if z(t) does, and both variables
explode at the same time.
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If a SDE is given in Itô form, we can apply this result thanks to the well known conversion
formula ([7]). In fact, x(t) solves dx = f(x) dt + g(x) dw if and only if it solves (P ) with
b = f − 1

2σ′σ, σ = g.

4. Continuous dependence with respect to initial data

Now we combine the results of the previous sections to prove the continuity of the explosion
time with respect to the initial data in stochastic differential equations.

Theorem 4.1. Assume σ is globally Lipschitz and (b/σ) is nondecreasing. Let x(t) and xn(t)
be solutions to (P ) with initial data x0 and xn respectively and assume that xn → x0. If x(t)
explodes at a random time T , then xn(t) explodes at a random time Tn and

Tn → T a.s. in Ω.

Proof. Thanks to the previous section we can think of (P ) as a random differential equation. To
apply our general result proved in Section 2, we just need to show that (H1), (H2) and (H3) are
verified. To this end observe first that (H1) holds since for one-dimensional ODEs with regular
coefficients the existence (or not) of explosion does not depend on the initial datum, and (H2)
is a consequence of the very well known result on continuous dependence with respect to initial
data for (nonautonomous) ODEs. To prove (H3) we consider

S := sup
n≥1

{Tn; T}.

The monotonicity of the explosion time with respect to initial data implies P(S < ∞) = 1. Now
let M, K > 0 be two large constants and define

(4.1) AK,M := {ω ∈ Ω : S(ω) ≤ K and |w(t, ω)| ≤ M, for t ∈ [0, K + 1]}.
Observe that

P


 ⋃

K,M≥1

AK,M


 = 1.

Now note that b/σ nondecreasing is equivalent to H(z, t) being nondecreasing in t, hence for
ω ∈ AK,M , we have H(z, w(t, ω)) ≥ H(z,−M) for every z ∈ R, 0 ≤ t ≤ S(ω).

Let z(t), zn(t) be solutions to (3.4) with initial data x0, xn
0 respectively. As mentioned

previously, φ(w(t), z(t)), φ(w(t), zn(t)) solve (P ) and the explosion times of z(t) and zn(t) are
T and Tn respectively.

We have
żn(t) = H(zn(t), w(t)) ≥ H(zn(t),−M).

Integrating we obtain ∫ Tn

t

żn(t)
H(zn(s),−M)

≥ Tn − t,

and changing variables, ∫ +∞

zn(t)

du

H(u,−M)
≥ Tn − t.
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Let

g(ξ) :=
(∫ +∞

ξ

du

H(u,−M)

)−1

.

Since g is increasing, its inverse G := g−1 is also increasing and then we have

zn(t) ≤ G

(
1

Tn − t

)
.

Hence (H3) is also verified and the result follows. ¤

From this theorem we obtain the following corollaries.

Corollary 4.2. Under the same hypotheses of Theorem 4.1, if x0 and xn
0 are random variables

(with the usual assumptions that guarantee existence and uniqueness) such that xn
0 → x0 a.s. in

Ω, then Tn → T a.s. in Ω.

Proof. This result follows exactly as in the proof of Theorem 4.1. Just observe that the arguments
used there works for ω ∈ Ω fixed, and so it is irrelevant if the initial datum is deterministic or
not as far as xn

0 → x0 for almost every ω. ¤

Corollary 4.3. Under the same hypotheses of Theorem 4.1, if xn
0 → x0 in probability, then

Tn → T in probability.

Proof. The proof of this corollary is just an application of Corollary 4.2, taking into account the
following lemma. ¤

Lemma 4.4. Let xn, x : Ω → R be random variables. Then xn → x in probability if and only if
for every subsequence xnk

there exists a sub-subsequence xnkj
such that xnkj

→ x a.s. in Ω.

Proof. It is clear that if xn → x in probability, then the conclusion of the Lemma follows.

To prove the converse we argue by contradiction. Then there exists ε > 0, δ > 0 and a
subsequence xnk

, such that

(4.2) P(|xnk
− x| > ε) > δ.

By hypothesis there exists a sub-subsequence, xnkj
, such that xnkj

→ x a.s. Hence, by Egoroff’s
Theorem, there exists a set A ⊂ Ω with P(A) < δ/2 such that xnkj

→ x uniformly in Ω \ A.
Therefore, for j large (depending on ε), we have |xnkj

− x| < ε in Ω \A. This contradicts (4.2)
and the proof is complete. ¤

Remark 4.1. It is worth noticing that both in the additive noise and the multiplicative noise
cases the hypotheses of Theorem 4.1 are verified if and only if the drift satisfies

∫
1/b < +∞.

The explosion of the solutions with probability one can be checked by means of the Feller Test
or by direct computation. Also observe that in these cases the hypotheses of Theorem 4.1 are
verified if the equation is considered in Itô or in Stratonovich sense.



8 J. FERNÁNDEZ BONDER, P. GROISMAN AND J. D. ROSSI

5. Continuous dependence with respect to b and σ

In this section we show in the two most important examples, additive and multiplicative noise,
how the abstract result of Section 2 can be applied to deal with perturbations of the drift and
the diffusion.

The idea is as follows: First, one constructs H and Hn as in Section 3. Then one has to verify
(H1)–(H3) for z(t) and zn(t) the solutions to

ż = H(z, w(t)) and żn = Hn(zn, w(t))

respectively, for almost every ω ∈ Ω.

5.1. Additive noise: σ constant. Assume that σ is a positive constant. In this case we have

φ(t, z) = z + σt,

and
H(z, t) = b(z + σt).

Therefore H is increasing in both variables if b is increasing and σ > 0.

Assume that we have σn → σ and bn → b, uniformly on compact sets with

bn(s), b(s) ≥ h(s), and
∫ ∞ 1

h(s)
ds < ∞.

It follows that (H1) holds for almost every ω by direct computation. Also (H2) holds by the
uniform convergence on compact sets of bn to b for ω ∈ AK,M , where AK,M is given by (4.1).

To check (H3) we observe that

T − t =
∫ T

t

u̇n

bn(un + σnw)
≤

∫ T

t

u̇n

bn(un − σnM)
=

∫ ∞

un(t)−σnM

ds

bn(s)
≤

∫ ∞

un(t)−σnM

ds

h(s)
.

Hence, if we call

g(x) =
∫ ∞

x

ds

h(s)
,

we have, for large n,

un(t) ≤ g−1(T − t) + 2σM =: G

(
1

T − t

)
,

and so Tn → T.

5.2. Multiplicative noise: σ linear. Assume that σ(s) = as with a > 0. Recall that φ is the
solution of {

φ̇ = σ(φ) = aφ,

φ(0, z) = z.

Therefore in this case we have φ(t, z) = zea t and hence

H(z, t) =
b(zea t)

ea t
.

Assume that we have an → a and bn → b, uniformly on compact sets. It follows that (H1)
and (H2) hold (by the uniform convergence on compact sets of bn to b) for ω ∈ AK,M .
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Now we look for (H3). As before, we impose that

bn(s), b(s) ≥ h(s), with
∫ ∞ 1

h(s)
ds < ∞.

Proceeding as before, we obtain, for n large enough,

T − t =
∫ T

t

u̇n eanw

bn(un eanw)
≤

∫ T

t

u̇neanM

bn(un e−anM )

= e2anM

∫ ∞

un(t)e−anM

ds

bn(s)
≤ e2anM

∫ ∞

un(t)e−anM

ds

h(s)

≤ e4aM

∫ ∞

un(t)e−
a
2 M

ds

h(s)
.

Hence, if we call

g(x) =
∫ ∞

x

ds

h(s)
,

we have

un(t) ≤ e
a
2
Mg−1

(
T − t

e4aM

)
=: G

(
1

T − t

)
,

and Tn → T .

Example. Both for additive and multiplicative noise, just consider bn(s) = αnspn , b(s) = αsp,
with αn → α > 0, and pn → p > 1.
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