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Abstract. In this note we review some recent results concerning the natural
Neumann boundary condition for the ∞-Laplacian and its relation with the
Monge-Kantorovich mass transport problem.
(1) We study the limit as p → ∞ of solutions of −∆pup = 0 in a domain

Ω with |Dup|p−2∂up/∂ν = g on ∂Ω. We obtain a natural minimization
problem that is verified by a limit point of {up} and a limit problem that
is satisfied in the viscosity sense. It turns out that the limit variational
problem is related to the Monge-Kantorovich mass transport problems
when the measures are supported on ∂Ω.

(2) Next, we study the limit of Monge-Kantorovich mass transport prob-
lems when the involved measures are supported in a small strip near the
boundary of a bounded smooth domain, Ω. Given an absolutely con-
tinuous measure (with respect to the surface measure) supported on the
boundary ∂Ω with zero mean value, by performing a suitable extension

of the measures to a strip of width ε near the boundary of the domain
Ω we consider the mass transfer problem for the extensions. Then we
study the limit as ε goes to zero of the Kantorovich potentials for the
extensions and obtain that it coincides with a solution of the original
mass transfer problem.

(3) Also we present a Steklov like eigenvalue problem that appears as the
limit of the usual Steklov eigenvalue problem for the p−Laplacian as
p → ∞.

1. Introduction. The Monge-Kantorovich mass transportation
problem and the ∞−Laplacian

In this note we review some recent results obtained by the authors in [8], [13],
[14] and [15]. We study the Monge-Kantorovich mass transport problem when the
involved measures are supported on the boundary of the domain. This problem
is related to the natural Neumann boundary conditions that appear when one
considers the ∞-Laplacian in a smooth bounded domain as limit of the Neumann
problem for the p-Laplacian as p→ ∞.

To formalize the mass transportation problem, let g be a measure with zero total
mass and let Ω be a domain with supp(g) ⊂ Ω. We want to determine the most
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efficient way of transport the measures g+ to g−, that is, we want to find a function
T : supp(g+) → supp(g−) in such a way that T minimizes the total transport cost

L(T ) =

∫

Ω

|x− T (x)|dg+(x).

We refer to [24] and [10] for references and details.

On the other hand, let ∆pu = div
(

|Du|p−2Du
)

be the p-Laplacian. The ∞-
Laplacian is the limit operator ∆∞ = limp→∞ ∆p given by

∆∞u =

N
∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi

in the viscosity sense (to be more precise, in the sense that a uniform limit of
p−harmonic functions (solutions to ∆pu = 0) is ∞−harmonic (a solution to ∆∞u =
0)). This operator appears naturally when one considers absolutely minimizing
Lipschitz extensions of a boundary function f ; see [2], [3], and [17]. A fundamental
result of Jensen [17] establishes that the Dirichlet problem for ∆∞ is well posed in
the viscosity sense.

The close relation between the Monge-Kantorovich problem and the limit as
p → ∞ for solutions to ∆pu = f was first noticed by Evans and Gangbo in [11].
They considered mass transfer optimization problems between absolutely contin-
uous measures (with respect to the Lebesgue measure) that appear as limits of
p-Laplacian problems. A very general approach is discussed in [7], where a problem
related to but different from ours is discussed (see Remark 4.3 in [7]).

Here we study the Neumann problem for the ∞-Laplacian obtained as the limit
as p→ ∞ of the problems

(1)

{

−∆pu = 0 in Ω,
|Du|p−2 ∂u

∂ν = g on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary and ∂

∂ν is the outer
normal derivative. The boundary data g is a continuous function that necessarily
verifies the compatibility condition

∫

∂Ω
g = 0, otherwise there is no solution to (1).

Imposing the normalization
∫

Ω u = 0 there exists a unique solution to problem (1)
that we denote by up.

We will find a variational problem that is verified by a limit point of {up} and
a limit partial differential equation that is satisfied in the viscosity sense. Next,
we will study the limit of Monge-Kantorovich mass transfer problems when the
involved measures are supported in a small strip near the boundary. Given an
absolutely continuos measure (with respect to the surface measure) supported on
the boundary ∂Ω with zero mean value, by performing a suitable extension of the
measures to a strip of width ε near the boundary of the domain Ω we consider the
mass transfer problem for the extensions. Then we study the limit as ε goes to
zero of the Kantorovich potentials for the extensions and obtain that it coincides
with a solution of the original mass transfer problem. Moreover, recent results from
game theory allow to give a probabilistic interpretation of the infinity Laplacian
(see Section 5 for details). Here, we use these results and show that the PDE that
is solved by the continuous value of the game is actually a mixed boundary value
problem for the infinity Laplacian. In addition, this game theory interpretation
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provides a proof of the uniqueness of viscosity solutions to this mixed problem.
Also, at the end of this paper, we will indicate a Steklov like eigenvalue problem that
appears as the limit of the usual Steklov eigenvalue problem for the p−Laplacian
as p→ ∞.

When considering the Neumann problem, boundary conditions that involve the
outer normal derivative, ∂u/∂ν have been addressed from the point of view of
viscosity solutions for fully nonlinear equations in [4] and [16]. In these references
it is proved that there exist viscosity solutions and comparison principles between
them when appropriate hypothesis are satisfied. In particular a suitable strict
monotonicity is needed and such property does not hold in our case of interest.

The rest of the paper is organized as follows: in Section 2 we deal with a varia-
tional setting, in Section 3 we perform a viscosity analysis of the limit as p → ∞
in (1), in Section 4 we approximate these problems (both variationally and in
the viscosity sense) by problems with measures supported in small strips near the
boundary, in Section 5 we present some results using a game theory approach and
finally in Section 6 we present a related eigenvalue problem.

2. A variational approach

A solution to (1) can be obtained by a variational principle. In fact, up to a
Lagrange multiplier, λp → 1 as p→ ∞, we can write

(2)

∫

∂Ω

up g = max

{
∫

∂Ω

wg : w ∈ W 1,p(Ω),

∫

Ω

w = 0 ,

∫

Ω

|Dw|p ≤ 1

}

.

Our first result states that there exist accumulation points of the family {up}p>1

as p → ∞ which are maximizers of a variational problem that is the natural limit
of variational problems (2). Observe that for q > N the set {up}p>q is bounded in

C1−p/q(Ω).

Theorem 1. Let v∞ be a uniform limit of a subsequence {upi
}, pi → ∞, then v∞

is a solution to the maximization problem

(3)

∫

∂Ω

v∞g = max

{
∫

∂Ω

wg : w ∈W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖∞ ≤ 1

}

.

An equivalent dual statement is the minimization problem

(4) ‖Dv∞‖∞ = min

{

‖Dw‖∞ : w ∈W 1,∞(Ω),

∫

Ω

w = 0,

∫

∂Ω

wg ≥ 1

}

.

The maximization problem (3) is also obtained by applying the Kantorovich op-
timality principle to a mass transfer problem for the measures µ+ = g+HN−1

x ∂Ω
and µ− = g−HN−1

x ∂Ω that are concentrated on ∂Ω. The mass transfer compat-
ibility condition µ+(∂Ω) = µ−(∂Ω) holds since g has zero average on ∂Ω. The
maximizers of (3) are called maximal Kantorovich potentials [1].

To prove Theorem 1 we follow [13]. We review some previous estimates.

Suppose that we have a sequence {up} of solutions to (1). Since we are interested

in large values of p we may assume that p > N and hence up ∈ Cα(Ω). Multiplying
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the equation by up and integrating we obtain,

(5)

∫

Ω

|Dup|
p =

∫

∂Ω

up g ≤

(
∫

∂Ω

|up|
p

)1/p (
∫

∂Ω

|g|p
′

)1/p′

where p′ is the exponent conjugate to p, that is 1/p′+1/p = 1. Recall the following
trace inequality, see for example [9],

∫

∂Ω

|φ|pdσ ≤ Cp

(
∫

Ω

|φ|p + |Dφ|pdx

)

,

where C is a constant that does not depend on p. Going back to (5), we get,

∫

Ω

|Dup|
p ≤

(
∫

∂Ω

|g|p
′

)1/p′

C1/pp1/p

(
∫

Ω

|up|
p + |Dup|

pdx

)1/p

.

On the other hand, for large p we have

|up(x) − up(y)| ≤ Cp|x− y|1−
N
p

(
∫

Ω

|Dup|
pdx

)1/p

.

Since we are assuming that
∫

Ω
up = 0, we may choose a point y such that up(y) = 0,

and hence

|up(x)| ≤ C(p,Ω)

(
∫

Ω

|Dup|
pdx

)1/p

.

The arguments in [9], pag. 266-267, show that the constant C(p,Ω) can be chosen
uniformly in p. Hence, we obtain

∫

Ω

|Dup|
p ≤

(
∫

∂Ω

|g|p
′

)1/p′

C1/pp1/p(Cp
2 + 1)1/p

(
∫

Ω

|Dup|
pdx

)1/p

.

Taking into account that p′ = p/(p− 1), for large values of p we get

(
∫

Ω

|Dup|
p

)1/p

≤ αp

(
∫

∂Ω

|g|p
′

)1/p

where αp → 1 as p→ ∞. Next, fix m, and take p > m. We have,

(
∫

Ω

|Dup|
m

)1/m

≤ |Ω|
1

m
− 1

p

(
∫

Ω

|Dup|
p

)1/p

≤ |Ω|
1

m
− 1

pαp

(
∫

∂Ω

|g|p
′

)1/p

,

where |Ω|
1

m
− 1

p → |Ω|
1

m as p → ∞. Hence, there exists a weak limit in W 1,m(Ω)
that we will denote by v∞. This weak limit has to verify

(
∫

Ω

|Dv∞|m
)1/m

≤ |Ω|
1

m .

As the above inequality holds for everym, we get that v∞ ∈ W 1,∞(Ω) and moreover,
taking the limit m→ ∞,

|Dv∞| ≤ 1, a.e. x ∈ Ω.

Lemma 1. The subsequence upi
converges to v∞ uniformly in Ω.
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Proof. From our previous estimates we know that
(

∫

Ω

|Dup|
pdx

)1/p

≤ C,

uniformly in p. Therefore we conclude that up is bounded (independently of p) and
has a uniform modulus of continuity. Hence up converges uniformly to v∞. �

Proof of Theorem 1. Multiplying by up, passing to the limit, and using Lemma 1,
we obtain,

lim
p→∞

∫

Ω

|Dup|
p = lim

p→∞

∫

∂Ω

upg =

∫

∂Ω

v∞g.

If we multiply (1) by a test function w, we have, for large enough p,
∫

∂Ω

wg ≤

(
∫

Ω

|Dup|
p

)(p−1)/p (
∫

Ω

|Dw|p
)1/p

≤

(
∫

∂Ω

v∞gdσ + δ

)(p−1)/p (
∫

Ω

|Dw|p
)1/p

.

As the previous inequality holds for every δ > 0, passing to the limit as p→ ∞ we
conclude,

∫

∂Ω

wg ≤

(
∫

∂Ω

v∞g

)

‖Dw‖∞.

Hence, the function v∞ verifies,
∫

∂Ω

v∞g = max

{
∫

∂Ω

wg : w ∈ W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖∞ ≤ 1

}

,

or equivalently,

‖Dv∞‖∞ = min

{

‖Dw‖∞ : w ∈W 1,∞(Ω),

∫

Ω

w = 0,

∫

∂Ω

wg ≤ 1

}

.

This ends the proof. �

On the other hand, taking as a test function in the maximization problem v∞
itself we obtain the following corollary.

Corollary 1. If g 6≡ 0, then ‖Dv∞‖L∞(Ω) = 1.

3. Viscosity setting

In this section we discuss the equation that v∞, a uniform limit of up as p→ ∞,
satisfies in the viscosity sense.

Following [4] let us recall the definition of viscosity solution taking into account
general boundary conditions. Assume

F : Ω × R
N × S

N×N → R

a continuous function. The associated equation

F (x,Du,D2u) = 0

is called (degenerate) elliptic if

F (x, ξ,X) ≤ F (x, ξ, Y ) if X ≥ Y.
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Definition 1. Consider the boundary value problem

(6)

{

F (x,∇u,D2u) = 0 in Ω,
B(x, u,∇u) = 0 on ∂Ω.

(1) A lower semi-continuous function u is a viscosity supersolution if for every
φ ∈ C2(Ω) such that u − φ has a strict minimum at the point x0 ∈ Ω with
u(x0) = φ(x0) we have: If x0 ∈ ∂Ω the inequality

max{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0), D
2φ(x0))} ≥ 0

holds and if x0 ∈ Ω then we require

F (x0,∇φ(x0), D
2φ(x0)) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every ψ ∈ C2(Ω)
such that u−ψ has a strict maximum at the point x0 ∈ Ω with u(x0) = ψ(x0)
we have: If x0 ∈ ∂Ω the inequality

min{B(x0, ψ(x0),∇ψ(x0)), F (x0,∇ψ(x0), D
2ψ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0,∇ψ(x0), D
2ψ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolution.

The main result in this section is the following theorem.

Theorem 2. A limit v∞ is a solution of

(7)

{

∆∞u = 0 in Ω,
B(x, u,Du) = 0, on ∂Ω,

in the viscosity sense. Here

B(x, u,Du) ≡















min
{

|Du| − 1 , ∂u
∂ν

}

if g(x) > 0,
max{1 − |Du| , ∂u

∂ν } if g(x) < 0,
H(|Du|)∂u

∂ν if g(x) = 0,
∂u
∂ν = 0 if x ∈ {g(x) = 0}o,

where {g(x) = 0}o is the interior of the zero level set of g and H(a) is given by

H(a) =

{

1 if a ≥ 1,
0 if 0 ≤ a < 1.

Proof of Theorem 2. Again we follow [13]. First, let us check that −∆∞v∞ = 0 in
the viscosity sense in Ω. Let us recall the standard proof. Let φ be a smooth test
function such that v∞ − φ has a strict maximum at x0 ∈ Ω. Since upi

converges
uniformly to v∞ we get that upi

− φ has a maximum at some point xi ∈ Ω with
xi → x0. Next we use the fact that upi

is a viscosity solution (see [13] for a proof
of this fact) of

−∆pi
upi

= 0

and we obtain

(8) −(pi − 2)|Dφ|pi−4∆∞φ(xi) − |Dφ|pi−2∆φ(xi) ≤ 0.
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If Dφ(x0) = 0 we get −∆∞φ(x0) ≤ 0. If this is not the case, we have that
Dφ(xi) 6= 0 for large i and then

−∆∞φ(xi) ≤
1

pi − 2
|Dφ|2∆φ(xi) → 0, as i→ ∞.

We conclude that
−∆∞φ(x0) ≤ 0.

That is v∞ is a viscosity subsolution of −∆∞u = 0.

A similar argument shows that v∞ is also a supersolution and therefore a solution
of −∆∞v∞ = 0 in Ω.

Let us check the boundary condition. There are six cases to be considered. Here
we deal only with one and refer to [13] for the rest of the cases.

Assume that v∞−φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0. Using the
uniform convergence of upi

to v∞ we obtain that upi
− φ has a minimum at some

point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before
and obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|Dφ|pi−2(xi)
∂φ

∂ν
(xi) ≥ g(xi).

Since g(x0) > 0, we have Dφ(x0) 6= 0, and we obtain

|Dφ|(x0) ≥ 1.

Moreover, we also have
∂φ

∂ν
(x0) ≥ 0.

Hence, if v∞ − φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0, we have

(9) max

{

min{−1 + |Dφ|(x0),
∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}

≥ 0.

This ends the proof. �

Remark 1. The function v∞ is a viscosity solution of ∆∞v∞ = 0 in Ω and there-
fore it is an absolutely minimizing function, [3]. It is a minimizer of the Lipschitz
constant of u among functions that coincide with v∞ on ∂Ω′ in every subdomain Ω′

of Ω. Therefore we can rewrite the maximization problem (3) as a maximization
problem on ∂Ω: v∞|∂Ω is a function that has Lipschitz constant less or equal than
one on ∂Ω and maximizes

∫

∂Ω
ug.

Concerning the limit PDE, note that there is no uniqueness of viscosity solutions
of (7), see [13]. Nevertheless we can say something about uniqueness under some
favorable geometric assumptions on g and Ω. The proof of uniqueness is based on
some tools from [11]. To state our uniqueness result let us describe the required
geometrical hypothesis on the boundary data. Let ∂Ω+ = supp g+ and ∂Ω− =
supp g−. For a given v∞ a maximizer in (3) following [11] we define the transport
set as

T (v∞) =

{

z ∈ Ω : ∃x ∈ ∂Ω+, y ∈ ∂Ω−, v∞(z) = v∞(x) − |x− z|

and v∞(z) = v∞(y) + |y − z|

}

.
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Observe that this set T is closed. We have the following property (see [11])

Proposition 1. Suppose that Ω is a convex domain. Let v∞ be a maximizer of
(3) with ∆∞v∞ = 0, then |Dv∞(x)| = 1, for a.e. x ∈ T (v∞).

Define a transport ray by Rx = {z | |v∞(x)− v∞(z)| = |x− z|}. Notice that two
transport rays cannot intersect in Ω unless they are identical. Indeed, assume z ∈ T
then there exist x, y ∈ Ω such that v∞(x) − v∞(z) = |x− z| and v∞(z) − v∞(y) =
|z − y|, then |x − y| ≤ |x − z| + |z − y| = v∞(x) − v∞(y). If x, y and z are not
colinear we contradict the Lipschitz condition verified by v∞.

Our first geometric hypothesis for uniqueness is then

∂Ω ⊂ T (v∞).

Note that with similar ideas but using the uniqueness of viscosity solutions to a
mixed problem for the infinity Laplacian, this hypothesis can be relaxed (see the
last remark of Section 3).

We have:

Theorem 3. Assume that we have a convex domain Ω and a boundary datum
g on ∂Ω such that every maximizer v∞ with ∆∞v∞ = 0 verifies ∂Ω ⊂ T (v∞),
then there exists a unique infinite harmonic solution, u∞ to (3). Hence, the limit
limp→∞ up = u∞, uniformly in Ω exists.

Remark 2. Observe that if {g = 0} has empty interior on the boundary then the
uniqueness of the limit holds since for every v∞ we get ∂Ω ⊂ T (v∞).

Examples. To illustrate our results we present some examples. In an interval
Ω = (−L,L) with g(L) = −g(−L) > 0 the limit of the solutions of (1), up, turns
out to be u∞(x) = x. It is easy to check that this function is indeed the unique
solution of the maximization problem (3) and of the problem (7).

This example can be easily generalized to the case where Ω is an annulus, Ω =
{r1 < |x| < r2}, and the function g is a positive constant g1 on |x| = r1 and a
negative constant g2 on |x| = r2 with the constraint

∫

∂Ω
g =

∫

|x|=r1

g+
∫

|x|=r2

g = 0.

The solutions up of (1) in the annulus converge uniformly as p → ∞ to a cone
u∞(x) = C− |x|. However one can modify the function g on |x| = r2 in such a way
it does not change its sign and that the cone does not maximize (3). Hence, there
is no uniqueness for (7) even for non-vanishing boundary data.

An example of a domain and boundary data such that uniqueness of the limit
holds is a disk in R

2, D = {|(x, y)| < 1} with g(x, y) > 0 for x > 0 and g(x, y) < 0
for x < 0 with

∫

∂D g = 0.

4. Approximations by measures supported in small strips near the
boundary

In this section we will show that these variational problems can be achieved as
a singular limit of mass transport problems where the measures are supported in
small strips near the boundary. In this sense we get a natural Neumann problem
for the p−Laplacian while in the paper [11] it appears a Dirichlet condition in a
large ball.



THE NEUMANN PROBLEM AND THE MASS TRANSPORT PROBLEM 9

Precisely, let us consider the subset of Ω,

ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} .

Note that this set has measure |ωδ| ∼ δ|∂Ω| for small values of δ. Then for suffi-
ciently small s > 0 we can define the parallel interior boundary Γs = {z−sν(z), z ∈
∂Ω} where ν(z) denotes the outwards normal unit at z ∈ ∂Ω. Note that Γ0 = ∂Ω.
Then we can also look at the set ωδ as the neighborhood of Γ0 defined by

ωδ = {y = z − sν(z), z ∈ ∂Ω, s ∈ (0, δ)} =
⋃

0<s<δ

Γs

for sufficiently small δ, say 0 < δ < δ0. We also denote Ωs = {x ∈ Ω : dist(x, ∂Ω) >
s} and for s small we have that ∂Ωs = Γs.

Let us consider the transport problem for a suitable extension of g. To define this
extension, as we have mentioned, let us denote by dσ and dσs the surface measures
on the sets ∂Ω and Γs respectively. Given a function φ defined on Ω̄, and given
y ∈ Γs (with s small) , there exists z ∈ ∂Ω such that y = z − sν(z). Hence, we can
change variables:

∫

Γs

φ(y)dσs =

∫

∂Ω

φ(z − sν(z))G(s, z) dσ

where G(s, z) depends on Ω (more precisely, it depends on the surface measures dσ
and dσs), and by the regularity of ∂Ω, G(s, z) → 1 as s→ 0 uniformly for z ∈ ∂Ω.

Using these ideas, we define the following extension of g in Ω. Consider η :
[0,∞) → [0,∞) a C∞ such that η(s) = 1 if 0 ≤ s ≤ 1

2 , η(s) = 0 if s > 1, 0 ≤ η(s) ≤ 1

and
∫ ∞

0
η(s) ds = A. Defining ηε(s) = 1

Aεη
(

s
ε

)

, we get
∫ ∞

0
ηε(s) ds = 1. For δ < ε

consider Γs and

gε(y) = ηε(s)
g(z)

G(s, z)
, y = z − sν(z).

We have gε ≡ 0 in Ω − ωε and gε ∈ C(Ω). Moreover,
∫

Ω

gε(x) dx =

∫ ε

0

∫

Γs

gε(y) dσs ds

=

∫ ε

0

∫

∂Ω

gε(z − sν(z))G(s, z) dσ ds

=

∫ ε

0

ηε(s)

∫

∂Ω

g(z) dσ ds = 0.

Associated to this extension we could consider the following two variational prob-
lems. First, the maximization problem in W 1,p(Ω),

(10) max

{
∫

ωε

wgε : w ∈W 1,p(Ω),

∫

Ω

w = 0, ‖Dw‖Lp(Ω) ≤ 1

}

,

and the maximization problem in W 1,∞(Ω),

(11) max

{
∫

ωε

wgε : w ∈ W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

We call up,ε a solution to (10) and u∞,ε a solution to (11).
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Our first result says that we can take the limits as ε → 0 and p → ∞ in these
variational problems. With the above notations we have the following commutative
diagram

(12)

u∞,ε → u∞,0

p→ ∞ ↑ ↑

up,ε → up,0

ε→ 0

This diagram can be understood in two senses, either taking into account the
variational properties satisfied by the functions, or considering the corresponding
PDEs that the functions satisfy.

From the variational viewpoint, first we can state the following result:

Theorem 4. Diagram (12) is commutative in the following sense:

(1) Maximizers of (10), up,ε, converge along subsequences uniformly in Ω to
up,0 a maximizer of (2) as ε→ 0.

(2) Maximizers of (10), up,ε, converge along subsequences uniformly in Ω to
u∞,ε a maximizer of (11) as p→ ∞.

(3) Maximizers of (11), u∞,ε, converge along subsequences uniformly in Ω to
u∞,0 a maximizer of (3) as ε→ 0.

(4) Maximizers of (2), up,0, converge along subsequences uniformly in Ω to
u∞,0 a maximizer of (3) as p→ ∞.

Proof of Theorem 4. The proof of the uniform convergence (along subsequences) of
up,0 to u∞,0 is contained in [13].

Let us prove that up,ε converges to up,0 as ε→ 0. We have

‖Dup,ε‖Lp(Ω) ≤ 1.

Therefore we can extract a subsequence (that we still call up,ε) such that

up,ε ⇀ v, as ε→ 0,

weakly in W 1,p(Ω) and, since p > N ,

up,ε → v, as ε→ 0,

uniformly in Ω (in fact, convergence holds in Cβ). This limit v verifies the normal-
ization constraint

∫

Ω

v = 0

and moreover

‖Dv‖Lp(Ω) ≤ 1.
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On the other hand, thanks to the uniform convergence and to the definition of
the extension gε we obtain,

lim
ε→0

∫

ωε

gεup,ε = lim
ε→0

∫ ε

0

∫

Γs

gε(y)up,ε(y) dσs ds

= lim
ε→0

∫ ε

0

∫

∂Ω

gε(z − sν(z))up,ε(z − sν(z))G(s, z) dσ ds

= lim
ε→0

∫ ε

0

ηε(s)

∫

∂Ω

g(z)up,ε(z − sν(z)) dσ ds

=

∫

∂Ω

gv dσ

and hence

(13)

∫

Ω

|Dv|p −

∫

∂Ω

gv dσ ≤ lim inf
ε→0

(
∫

Ω

|Dup,ε|
p −

∫

ωε

gεup,ε

)

.

On the other hand for every w ∈ C1(Ω) we have
∫

Ω

|Dw|p −

∫

∂Ω

gw dσ = lim
ε→0

∫

Ω

|Dw|p −

∫

ωε

gεw.

Hence, the extremal characterization of up,ε implies

inf
u∈W 1,p(Ω),

∫

Ω
u=0

{
∫

Ω

|Du|p −

∫

∂Ω

gudσ

}

≥ lim inf
ε→0

∫

Ω

|Dup,ε|
p −

∫

ωε

gεup,ε.

And by (13) we obtain

inf
u∈W 1,p(Ω),

∫

Ω
u=0

{
∫

Ω

|Du|p −

∫

∂Ω

gu dσ

}

=

∫

Ω

|Dv|p −

∫

∂Ω

gv dσ,

and therefore all possible limits v = up,0 satisfy the extremal property (2).

Now, let us prove that u∞,ε converges to u∞,0, a maximizer of (3). Recall that
u∞,ε is a solution to the problem

Mε = max

{
∫

ωε

wgε : w ∈ W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

That is,

Mε =

∫

ωε

u∞,εgε.

Therefore u∞,ε is bounded in W 1,∞(Ω) and then there exists a subsequence (that
we still denote by u∞,ε) such that,

(14)
u∞,ε

∗
⇀ v weakly-* in W 1,∞(Ω) and

u∞,ε → v uniformly in Ω,

as ε→ 0. Hence

lim
ε→0

∫

ωε

u∞,εgε =

∫

∂Ω

vg dσ.

On the other hand, for every z ∈ C1(Ω) it holds that

lim
ε→0

∫

ωε

gεz =

∫

∂Ω

gz dσ.
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Hence, if we call

(15) M = max

{
∫

∂Ω

wg dσ : w ∈W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

,

we obtain, from (14),

M ≤ lim inf
ε→0

Mε =

∫

∂Ω

vg dσ.

Therefore v = u∞,0 is a maximizer of (15), as we wanted to prove.

Finally, let us prove that up,ε → u∞,ε. Recall that
∫

ωε

up,εgε = max

{
∫

ωε

wgε : w ∈ W 1,p(Ω),

∫

Ω

w = 0, ‖Dw‖Lp(Ω) ≤ 1

}

.

Therefore, for any q < p

‖Dup,ε‖Lq(Ω) ≤
(

‖Dup,ε‖Lp(Ω)|Ω|
p−q

p

)1/q

≤ |Ω|
p−q

pq .

Hence, we can extract a subsequence (still denoted by up,ε) such that,

up,ε → u, uniformly in Ω,

as p→ ∞ with
‖Du‖L∞(Ω) ≤ 1.

Then
∫

ωε

up,εgε →

∫

ωε

ugε, as p→ ∞.

This limit u verifies that
∫

ωε

ugε ≤ max

{
∫

ωε

wgε : w ∈W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

Let us prove that we have an equality here. If not, there exists a function v such
that v ∈W 1,∞(Ω),

∫

Ω
v = 0, ‖Dv‖L∞(Ω) ≤ 1 with

∫

ωε

ugε <

∫

ωε

vgε.

If we normalize, taking ϕ = v/|Ω|1/p, we obtain a function in W 1,p(Ω) with
∫

Ω ϕ =
0, ‖Dϕ‖Lp(Ω) ≤ 1 and such that

lim
p→∞

∫

ωε

up,εgε =

∫

ωε

ugε <

∫

ωε

vgε = lim
p→∞

|Ω|1/p

∫

ωε

ϕgε.

This contradiction proves that
∫

ωε

ugε = max

{
∫

ωε

wgε : w ∈W 1,∞(Ω),

∫

Ω

w = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

This ends the proof. �

Now, we turn our attention to the PDE verified by the limits in the viscosity
sense (see Section 3 for the precise definition) or in the weak sense.

Up to a Lagrange multiplier λp the functions up,0 are viscosity (and weak) solu-
tions to the problem,

(16)

{

−∆pu = 0 in Ω,

|Du|p−2 ∂u
∂ν = λp g on ∂Ω.
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Let us to point out that it is easily seen that λp → 1 as p→ ∞. Hence, to simplify
the notation, we will drop this Lagrange multiplier in the sequel.

In the previous section, see [13] and also [14], the limit as p → ∞ of the family
up,0 is studied in the viscosity setting. It is proved that the problem that is satisfied
by a uniform limit u∞,0 in the viscosity sense is (7) that we recall below,

(17)

{

−∆∞u = 0 in Ω,

B(x, u,Du) = 0, on ∂Ω,

where

B(x, u,Du) ≡















min
{

|Du| − 1 , ∂u
∂ν

}

if g > 0,

max{1 − |Du| , ∂u
∂ν } if g < 0,

H(|Du|)∂u
∂ν if g = 0,

and H(a) is given by

H(a) =

{

1 if a ≥ 1,

0 if 0 ≤ a < 1.

Moreover, u∞,0 satisfies in the sense of viscosity the estimates:

|Du∞,0| ≤ 1 and − |Du∞,0| ≥ −1,

see [6].

On the other hand, when we deal with the problems in the strips, again up to a
Lagrange multiplier that converges to one, the functions up,ε are weak (and hence
viscosity) solutions to the problem,

(18)

{

−∆pu = gε in Ω,

|Du|p−2 ∂u
∂ν = 0 on ∂Ω.

Passing to the limit as p → ∞ in these problems we get that the function u∞,ε

satisfy the following properties in the viscosity sense (see again [6]):

(19)

{

|Du| ≤ 1 in Ω,

−|Du| ≥ −1 in Ω,

and, in the different regions determined by gε:

(20)



























































−∆∞u = 0 in Ω \ ωǫ,

min{|Du| − 1, −∆∞u} = 0 in {gǫ > 0},

max{1 − |Du|, −∆∞u} = 0 in {gǫ < 0},

−∆∞u ≥ 0 in Ω ∩ ∂{gǫ > 0} ∩ (∂{gǫ < 0})c,

−∆∞u ≤ 0 in Ω ∩ ∂{gǫ < 0} ∩ (∂{gǫ > 0})c.

∂u

∂ν
= 0 on ∂Ω.

Notice that the equations in {gǫ > 0} and {gǫ < 0} can be simplified by the
estimate (19), however to understand the boundary condition in viscosity sense it
is necessary to consider such equations in its full generality.
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We split our following results in two theorems.

First, we have,

Theorem 5.

(1) The limit up,0 of a uniformly converging sequence up,ε of weak solutions to
(18) as ε→ 0 is a weak solution to (16) (and hence a viscosity solution).

(2) The limit u∞,0 of a uniformly converging sequence up,0 of viscosity solutions
to (16) as p→ ∞ is a viscosity solution to (17).

Let us to point out that when ε → 0, gε concentrates on the boundary, and
therefore the sequence {gε} is not uniformly bounded. This makes difficult to give
a sense to pass to the limit in the viscosity framework when ε → 0. Hence in this
case we consider the variational characterization of the sequence {up,ε} (that is
equivalent to the fact of being a weak solution). To the best of our knowledge, it
is not known that the notions of viscosity and weak solutions coincide for solutions
to (18), cf. [19] where such equivalence is only proved for Dirichlet boundary
conditions.

Now, we deal with the rest of the commutative diagram. To pass to the limit
in the sequence u∞,ε we need the variational characterization, and we also need
a uniqueness result for the limit problem, which has been proved in [13]. This
uniqueness result says that:

If Ω is convex and {g = 0}o = ∅, then there is a unique function which satisfies
the extremal property (3).

Let us to point out that the hypothesis {g = 0}o = ∅ implies also the uniqueness
of the extremals to (11). Therefore, under this hypothesis there exists a unique
u∞,ε reached as a limit of the solutions up,ε as p→ ∞.

Now, we can state our second theorem, see [15] for the proof.

Theorem 6.

(1) The limit u∞,ε of a uniformly converging sequence up,ε of viscosity solutions
to (18) as p→ ∞ is a viscosity solution to (19)-(20).

(2) Assume that Ω is convex and {g = 0}o = ∅. Consider the viscosity solutions
u∞,ε to (19)-(20), obtained as a uniform limit as p → ∞ of the solutions
up,ε. Then, the sequence {u∞,ε} converges uniformly to a viscosity solution
to (17), u∞,0.

5. Connections with game theory. Tug-of-War games

In this section we deal with an approach to these type of problems based on
game theory.

A Tug-of-War is a two-person, zero-sum game, that is, two players are in contest
and the total earnings of one are the losses of the other. Hence, one of them,
say Player I, plays trying to maximize his expected outcome, while the other, say
Player II is trying to minimize Player I’s outcome (or, since the game is zero-sum,
to maximize his own outcome). Recently, these type of games have been used in
connection with some PDE problems, see [5], [20], [22], [23].
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For the reader’s convenience, let us first describe briefly the game introduced in
[23] by Y. Peres, O. Schramm, S. Sheffield and D. Wilson. Consider a bounded
domain Ω ⊂ R

n, and take ΓD ⊂ ∂Ω and ΓN ≡ ∂Ω \ ΓD. Let F : ΓD → R be
a Lipschitz continuous function. At an initial time, a token is placed at a point
x0 ∈ Ω \ ΓD. Then, a (fair) coin is tossed and the winner of the toss is allowed

to move the game position to any x1 ∈ Bε(x0) ∩ Ω. At each turn, the coin is

tossed again, and the winner chooses a new game state xk ∈ Bε(xk−1) ∩ Ω. Once
the token has reached some xτ ∈ ΓD, the game ends and Player I earns F (xτ )
(while Player II earns −F (xτ )). This is the reason why we will refer to F as the
final payoff function. In more general models, it is considered also a running payoff
f(x) defined on Ω, which represents the reward (respectively, the cost) at each
intermediate state x, and gives rise to nonhomogeneous problems. We will assume
throughout this paper that f ≡ 0. This procedure gives a sequence of game states
x0, x1, x2, . . . , xτ , where every xk except x0 are random variables, depending on the
coin tosses and the strategies adopted by the players.

Now we want to give a definition of the value of the game. To this end we
introduce some notation and the normal or strategic form of the game (see [22]
and [21]). The initial state x0 ∈ Ω \ ΓD is known to both players (public knowl-

edge). Each player i chooses an action ai
0 ∈ Bε(0); this defines an action profile

a0 = {a1
0, a

2
0} ∈ Bε(0) × Bε(0) which is announced to the other player. Then,

the new state x1 ∈ Bε(x0) (namely, the current state plus the action) is selected
according to the distribution p(·|x0, a0) in Ω. At stage k, knowing the history
hk = (x0, a0, x1, a1, . . . , ak−1, xk), (the sequence of states and actions up to that
stage), each player i chooses an action ai

k. If the game terminated at time j < k,
we set xm = xj and am = 0 for j ≤ m ≤ k. The current state xk and the profile
ak = {a1

k, a
2
k} determine the distribution p(·|xk, ak) of the new state xk+1.

Denote Hk = (Ω \ΓD)×
(

Bε(0)×Bε(0)×Ω
)k

, the set of histories up to stage k,
and by H =

⋃

k≥1Hk the set of all histories. Notice that Hk, as a product space,
has a measurable structure. The complete history space H∞ is the set of plays
defined as infinite sequences (x0, a0, . . . , ak−1, xk, . . .) endowed with the product
topology. Then, the final payoff for Player I, i.e. F , induces a Borel-measurable
function on H∞. A pure strategy Si for Player i, is a mapping from histories to
actions, namely, a mapping from H to Bε(0) such that Sk

i is a Borel-measurable

mapping from Hk to Bε(0) that maps histories ending with xk to elements of Bε(0)
(roughly speaking, at every stage the strategy gives the next movement for the
player, provided he win the coin toss, as a function of the current state and the
past history). The initial state x0 and a profile of strategies {SI , SII} define (by
Kolmogorov’s extension theorem) a unique probability P

x0

SI ,SII
on the space of plays

H∞. We denote by E
x0

SI ,SII
the corresponding expectation. Then, if SI and SII

denote the strategies adopted by Player I and II respectively, we define the expected
payoff for player I as

Vx0,I(SI , SII) =

{

E
x0

SI ,SII
[F (xτ )], if the game terminates a.s.

−∞, otherwise.

Analogously, we define the expected payoff for player II as

Vx0,II(SI , SII) =

{

E
x0

SI ,SII
[F (xτ )], if the game terminates a.s.

+∞, otherwise.
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The ε-value of the game for Player I is given by

uε
I(x0) = sup

SI

inf
SII

E
x0

SI ,SII
[F (xτ )],

while the ε-value of the game for Player II is defined as

uε
II(x0) = inf

SII

sup
SI

E
x0

SI ,SII
[F (xτ )].

In some sense, uε
I(x0), u

ε
II(x0) are the least possible outcomes that each player

expects to get when the ε-game starts at x0. As in [23], we penalize severely the
games that never end. If the game does not stop then we define uε

I(x0) = −∞ and
uε

II(x0) = +∞.

If uε
I = uε

II := uε, we say that the game has a value. In [23] it is shown that,
under very general hypotheses, that are fulfilled in the present setting, the ε-Tug-
of-War game has a value.

All these ε−values are Lipschitz functions which converge uniformly when ε→ 0.
The uniform limit as ε → 0 of the game values uε is called the continuous value
of the game that we will denote by u. Indeed, see [23], it turns out that u is a
viscosity solution to the problem

(21)

{

−∆∞u(x) = 0 in Ω,

u(x) = F (x) on ΓD,

where ∆∞u = |∇u|−2
∑

ij uxi
uxixj

uxj
is the 1−homogeneous infinity Laplacian.

When ΓD ≡ ∂Ω, it is known that problem (21) has a unique viscosity solution,
(as proved in [17], and in a more general framework, in [23]). Moreover, it is the
unique AMLE (absolutely minimal Lipschitz extension) of F : ΓD → R in the sense
that LipU (u) = Lip∂U∩Ω(u) for every open set U ⊂ Ω\ΓD. AMLE extensions were
introduced by Aronsson, see the survey [3] for more references and applications of
this subject.

When ΓD 6= ∂Ω the PDE problem (21) is incomplete, since there is a missing
boundary condition on ΓN = ∂Ω \ ΓD. Our main concern is to find the boundary
condition that completes the problem. We have that it is in fact the homogeneous
Neumann boundary condition

∂u

∂n
(x) = 0.

On the other hand, we give an alternative proof of the property −∆∞u(x) = 0 by
using direct viscosity arguments. We have the following result:

Theorem 7. Let u(x) be the continuous value of the Tug-of-War game introduced
in [23]. Then,

i) u(x) is a viscosity solution to the mixed boundary value problem

(22)



















−∆∞u(x) = 0 in Ω,

∂u

∂n
(x) = 0 on ΓN ,

u(x) = F (x) on ΓD.
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ii) Reciprocally, assume that Ω verifies for every z ∈ Ω and every x∗ ∈ ΓN

z 6= x∗ that
〈 x∗ − z

|x∗ − z|
;n(x∗)

〉

> 0.

Then, if u(x) is a viscosity solution to (22), it coincides with the unique
continuous value of the game.

The hypothesis imposed on Ω in part ii) holds for the case which ΓN is strictly
convex. The first part of the theorem comes as a consequence of the Dynamic
Programming Principle read in the viscosity sense. To prove the second part we use
that the continuous value of the game enjoys comparison with quadratic functions,
and this property uniquely determine the value of the game.

We have found a PDE problem, (22), which allows to find both the continuous
value of the game and the AMLE of the Dirichlet data F (which is given only
on a subset of the boundary) to Ω. To summarize, we point out that a complete
equivalence holds, in the following sense:

Theorem 8. It holds

u is AMLE of F ⇔ u is the value of the game ⇔ u solves (22).

The first equivalence was proved in [23] and the second one is just Theorem 7.

Another consequence of Theorem 7 is the following:

Corollary 2. There exists a unique viscosity solution to (22).

The existence of a solution is a consequence of the existence of a continuous value
for the game together with part i) in the previous theorem, while the uniqueness
follows by uniqueness of the value of the game and part ii).

Note that to obtain uniqueness we have to invoke the uniqueness of the game
value. It should be interesting to obtain a direct proof (using only PDE methods) of
existence and uniqueness for (22) but we have not been able to find the appropriate
perturbations near ΓN to obtain uniqueness (existence follows easily by taking the
limit as p→ ∞ in the mixed boundary value problem problem for the p−laplacian).

Remark 3. Corollary 2 allows to improve the convergence result given in [13] for
solutions to the Neumann problem for the p−laplacian as p→ ∞. The uniqueness
of the limit holds under weaker assumptions on the data (for example, Ω strictly
convex).

6. Eigenvalue problems

We end this note by briefly describe a similar limit in an eigenvalue problem.

Eigenvalues of −∆pu = λ|u|p−2u with Dirichlet boundary conditions, u = 0 on
∂Ω, have been extensively studied since [12]. The limit as p → ∞ was studied in
[18].

Our last aim here is to state a result concerning the limit as p → ∞ for the
Steklov eigenvalue problem

(23)

{

−∆pu = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.
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Theorem 9. For the first eigenvalue of (23) we have,

lim
p→∞

λ
1/p
1,p = λ1,∞ = 0,

with eigenfunction given by u1,∞ = 1.

For the second eigenvalue, it holds

lim
p→∞

λ
1/p
2,p = λ2,∞ =

2

diam(Ω)
.

Moreover, given u2,p eigenfunctions of (23) of λ2,p normalized by ‖u2,p‖L∞(∂Ω) = 1,

there exits a sequence pi → ∞ such that u2,pi
→ u2,∞, in Cα(Ω). The limit u2,∞

is a solution of

(24)

{

∆∞u = 0 in Ω,
Λ(x, u,∇u) = 0, on ∂Ω,

in the viscosity sense, where

Λ(x, u,∇u) ≡







min
{

|∇u| − λ2,∞|u| , ∂u
∂ν

}

if u > 0,
max{λ2,∞|u| − |∇u| , ∂u

∂ν } if u < 0,
∂u
∂ν if u = 0.

For the k-th eigenvalue we have that if λk,p is the k-th variational eigenvalue of (23)
with eigenfunction uk,p normalized by ‖uk,p‖L∞(∂Ω) = 1, then for every sequence
pi → ∞ there exists a subsequence such that

lim
pi→∞

λ
1/p
k,p = λ∗,∞

and uk,pi
→ u∗,∞ in Cα(Ω), where u∗,∞ and λ∗,∞ is a solution of (24).
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