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Abstract. We summarize in this paper some of our recent results on the nonlocal, nonlinear
evolution problem given by

8
<
:

ut(x, t) =

Z

Ω

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy,

u(x, 0) = u0(x), x ∈ Ω, t > 0.

Here Ω ⊂ RN is a bounded domain and 1 ≤ p ≤ +∞. We deal with existence, uniqueness and
the asymptotic behaviour of solutions. In addition, we show a convergence results of solutions
to nonlocal problems to the solution to the local p−Laplacian evolution equation, vt(x, t) =
div(|∇v|p−2∇v) with Neumann boundary conditions |∇v|p−2∇v · η = 0 and the same initial
condition when the kernel J is rescaled in an appropriate way.

1. Introduction

The goal of this article is to present recent results concerning existence, uniqueness and as-
ymptotic behaviour of solutions of the nonlocal nonlinear diffusion problems, called nonlocal
p-Laplacian problems, with homogeneous Neumann boundary conditions (see [7] and the recent
book [10]):

(1.1)





ut(x, t) =
∫

Ω
J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy,

u(x, 0) = u0(x), x ∈ Ω, t > 0,

where Ω ⊂ RN is a bounded domain. The kernel J : RN → R is a nonnegative continuous radial
function with compact support, J(0) > 0 and

∫
RN J(x)dx = 1 (this last condition is imposed only

for normalization) and p is a fixed but arbitrary number between 1 and +∞.

To make this note short and avoid entering into subtle technicalities we present only a brief
sketch of each proof and refer to [7, 10].

For other problems involving nonlocal p−Laplacian problems, including problems with weights,
with nonhomogeneous Dirichlet boundary conditions, etc, see [11, 9, 10].

We also give some results concerning limits of such solutions when a rescaling parameter goes
to zero ([7, 10]), recovering the well-known local diffusion model of the p-Laplacian evolution
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equation with Neumann boundary conditions, that is,




vt = ∆pv in Ω× (0, T ),

|∇v|p−2∇v · η = 0 on ∂Ω× (0, T ),

v(x, 0) = u0(x) in Ω.

The limit cases p = 1 and p = +∞ will be also treated ([7, 8, 10]). They correspond, respec-
tively, to a nonlocal version of the total variation flow, which has been used as a model in image
processing, and to a nonlocal model for the evolution of sandpiles.

For a different approach to this kind of nonlinear problems, with integral equations with a
degenerate kernel, see [35].

To finish this introduction, let us briefly introduce some references for the prototype of non-
local problem considered along this work. Nonlocal evolution equations of the form ut(t, x) =∫
RN J(x− y)u(t, y) dy − u(t, x), and variations of it, have been recently widely used to model dif-

fusion processes. More precisely, as stated in [31], if u(t, x) is thought of as a density at the point
x at time t and J(x − y) is thought of as the probability distribution of jumping from location
y to location x, then

∫
RN J(y − x)u(t, y) dy = (J ∗ u)(t, x) is the rate at which individuals are

arriving at position x from all other places and −u(t, x) = − ∫
RN J(y − x)u(t, x) dy is the rate at

which they are leaving location x to travel to all other sites. This consideration, in the absence of
external or internal sources, leads immediately to the fact that the density u satisfies the equation
ut = J ∗ u− u. These kind of equations are called nonlocal diffusion equations since in them the
diffusion of the density u at a point x and time t depends not only on u(x, t) and its derivatives,
but also on all the values of u in a neighbourhood of x through the convolution term J ∗ u. This
equation shares many properties with the classical heat equation, ut = ∆u, such as: bounded
stationary solutions are constant, a maximum principle holds for both of them and, even if J
is compactly supported, perturbations propagate with infinite speed, [31]. However, there is no
regularizing effect in general.

Let us now fix a bounded domain Ω in RN . When looking at boundary conditions for nonlocal
problems, one has to modify the usual formulations for local problems. As an analog for nonlocal
problems of Neumann boundary conditions we consider





ut(x, t) =
∫

Ω
J(x− y)(u(y, t)− u(x, t)) dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In this model, the integral term takes into account the diffusion inside Ω. In fact, as we have
explained, the integral

∫
J(x− y)(u(y, t)− u(x, t)) dy takes into account the individuals arriving

at or leaving position x from other places. Since we are integrating over Ω, we are assuming
that diffusion takes place only in Ω. The individuals may not enter or leave the domain. This is
analogous to what is called homogeneous Neumann boundary conditions in the literature. Note
that this problem is just (1.1) for p = 2.

For the linear case see [23, 25, 26] and [10]. For a general vector calculus of this kind of nonlocal
problems, in the linear case, see [34, 27].

Nonlocal diffusion equations have been recently widely studied and have connections with
probability theory (for example, Levy processes are related to the fractional Laplacian), see [6],
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[7], [8], [14], [21], [22], [23], [24], [25], [26], [31], [44], the book [10] and references therein. They
have also been used to model very different applied situations, for example in biology ([22],
[39]), image processing ([33], [38]), particle systems ([19]), coagulation models ([32]), nonlocal
anisotropic models for phase transition ([1], [2]), mathematical finances using optimal control
theory ([17], [36]), etc.

2. Existence and uniqueness results

A solution of (1.1) in [0, T ] is a function u ∈ W 1,1(0, T ; L1(Ω)) that satisfies u(x, 0) = u0(x)
a.e. x ∈ Ω and

ut(x, t) =
∫

Ω
J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy a.e. in Ω× (0, T ).

Let us note that the evolution problem (1.1) is the gradient flow associated to the functional

GJ
p (u) =

1
2p

∫

Ω

∫

Ω
J(x− y)|u(y)− u(x)|p dy dx,

which is the nonlocal analog of the energy functional associated to the local p-Laplacian

Fp(v) =
1
p

∫

Ω
|∇v|p.

Theorem 2.1. Suppose p > 1 and let u0 ∈ Lp(Ω). Then, for any T > 0, there exists a unique
solution to (1.1). Moreover, if ui0 ∈ L1(Ω), and ui is a solution in [0, T ] of (1.1) with initial
data ui0, i = 1, 2, respectively, then we have the following contraction principle:∫

Ω
(u1(t)− u2(t))+ ≤

∫

Ω
(u10 − u20)+ for every t ∈ [0, T ].

Sketch of proof. Let BJ
p be defined by

BJ
p u(x) = −

∫

Ω
J(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ Ω.

We prove that BJ
p is completely accretive (see [15]) and satisfies the range condition Lp(Ω) ⊂

R(I +BJ
p ). In short, this means that for any φ ∈ Lp(Ω) there is a unique solution of the problem

u + BJ
p u = φ and the resolvent (I + BJ

p )−1 is a contraction in Lq(Ω) for all 1 ≤ q ≤ +∞.
Therefore, the Nonlinear Semigroup Theory (see, e.g.,[16]) gives us the existence of solutions and
the contraction principle.

3. Rescaling

Let Ω be a bounded smooth domain in RN . For fixed p > 1 and J we consider the rescaled
kernels

Jp,ε(x) :=
CJ,p

εp+N
J

(x

ε

)
,

where C−1
J,p := 1

2

∫
RN J(z)|zN |p dz is a normalizing constant. Associated with these rescaled kernels

we have solutions uε of problem (1.1) with J replaced by Jp,ε and the same initial condition u0.
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The main result now states that these functions uε converge strongly in Lp(Ω) to the solution of
the local p-Laplacian Neumann problem with homogeneous Neumann boundary conditions

(3.1)





vt = ∆pv in Ω× (0, T ),

|∇v|p−2∇v · η = 0 on ∂Ω× (0, T ),

v(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω and ∆pv = div(|∇v|p−2∇v) is the so-called p-Laplacian
of v.

Theorem 3.1. Assume that J(x) ≥ J(y) if |x| ≤ |y|. Let T > 0, u0 ∈ Lp(Ω) and let uε be the
unique solution of (1.1) with J replaced by Jp,ε. Then, if v is the unique solution of (3.1),

lim
ε→0

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖Lp(Ω) = 0.

A formal calculation: Let us perform a formal calculation just to convince the reader that the
above convergence result is true. Let N = 1. Let u(x) be a smooth function and consider

Aε(u)(x) =
1

εp+1

∫

R
J

(
x− y

ε

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy.

Changing variables, y = x− εz, we get

(3.2) Aε(u)(x) =
1
εp

∫

R
J(z)|u(x− εz)− u(x)|p−2(u(x− εz)− u(x)) dz.

Now, we expand in powers of ε to obtain

|u(x− εz)− u(x)|p−2 = εp−2
∣∣∣u′(x)z + u′′(x)

2 εz2 + O(ε2)
∣∣∣

= εp−2|u′(x)|p−2|z|p−2 + εp−1(p− 2)|u′(x)z|p−4u′(x)z
u′′(x)

2
z2 + O(εp),

and

u(x− εz)− u(x) = εu′(x)z +
u′′(x)

2
ε2z2 + O(ε3).

Hence, (3.2) becomes

Aε(u)(x) =
1
ε

∫

R
J(z)|z|p−2z dz|u′(x)|p−2u′(x)

+
1
2

∫

R
J(z)|z|p dz

(
(p− 2)|u′(x)|p−2u′′(x) + |u′(x)|p−2u′′(x)

)
+ O(ε).

Using that J is radially symmetric, the first integral vanishes and therefore

lim
ε→0

Aε(u)(x) = C−1
J,p(|u′(x)|p−2u′(x))′.

A way of making this formal calculation rigorous is using the Nonlinear Semigroup Theory.
More precisely, since the solutions of the problems are obtained via Crandall-Liggett’s Theorem,
by a classical result of Brezis-Pazy ([20]) it is enough to prove the convergence of the resolvents,
that is the following result.
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Theorem 3.2. Suppose J(x) ≥ J(y) if |x| ≤ |y|. For any φ ∈ L∞(Ω),
(
I + B

Jp,ε
p

)−1
φ → (I + Bp)

−1 φ in Lp(Ω) as ε → 0.

The main ingredient for the proof of convergence to the local problems is the following pre-
compactness lemma inspired by a result due to Bourgain, Brezis and Mironescu, [18, Theorem 4].

For a function g defined in a set Ω, we define

g(x) =

{
g(x) if x ∈ Ω,

0 otherwise.

We denote by BV (Ω) the space of functions of bounded variation.

Theorem 3.3. Let 1 ≤ q < +∞ and Ω ⊂ RN open. Let ρ : RN → R be a nonnegative continuous
radial function with compact support, non identically zero, and ρn(x) := nNρ(nx). Let {fn} be a
sequence of functions in Lq(Ω) such that

∫

Ω

∫

Ω
|fn(y)− fn(x)|qρn(y − x) dx dy ≤ M

nq
.

1. If {fn} is weakly convergent in Lq(Ω) to f , then
(i) For q > 1, f ∈ W 1,q(Ω), and moreover

(ρ(z))1/q χΩ

(
x +

1
n

z

)
fn

(
x + 1

nz
)− fn(x)

1/n
⇀ (ρ(z))1/q z · ∇f(x)

weakly in Lq(Ω)× Lq(RN ).
(ii) For q = 1, f ∈ BV (Ω), and moreover

ρ(z)χΩ

(
. +

1
n

z

)
fn

(
. + 1

nz
)− fn(.)

1/n
⇀ ρ(z)z ·Df

weakly in the sense of measures.
2. Suppose Ω is a smooth bounded domain in RN and ρ(x) ≥ ρ(y) if |x| ≤ |y|. Then {fn} is
relatively compact in Lq(Ω), and consequently, there exists a subsequence {fnk

} such that
(i) if q > 1, fnk

→ f in Lq(Ω) with f ∈ W 1,q(Ω);
(ii) if q = 1, fnk

→ f in L1(Ω) with f ∈ BV (Ω).

4. The nonlocal total variation flow

Motivated by problems in image processing, the Neumann problem for the total variation flow
is studied in [4])

(4.1)





vt = div
(

Dv

|Dv|
)

in Ω× (0,+∞),

Dv

|Dv| · η = 0 on ∂Ω× (0,+∞),

v(·, 0) = u0 in Ω,



6 J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

In the literature the operator div
(

Dv
|Dv|

)
is also called the 1-Laplacian. Problem (4.1) appears

when one uses the steepest descent method to minimize the total variation, a method introduced
by L. Rudin, S. Osher and E. Fatemi [40] in the context of image denoising and reconstruction.
Then solving (4.1) amounts to regularizing or, in other words, filtering the initial datum u0. This
filtering process has less destructive effect on the edges than filtering with a Gaussian, i.e., than
solving the heat equation with initial condition u0. In this context the given image u0 is a function
defined on a bounded smooth or piecewise smooth open subset Ω of RN ; typically, Ω will be a
rectangle in R2.

The nonlocal version of problem (4.1) can be written formally as

(4.2)





ut(x, t) =
∫

Ω
J(x− y)

u(y, t)− u(x, t)
|u(y, t)− u(x, t)| dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

J as above. This problem is the gradient flow associated to the functional

GJ
1 (u) =

1
2

∫

Ω

∫

Ω
J(x− y)|u(y)− u(x)| dy dx,

which is the nonlocal analog of the energy functional associated to the total variation: F1(v) =∫
Ω |Dv|.
A solution of (4.2) in [0, T ] is a function u ∈ W 1,1(0, T ; L1(Ω)) which satisfies u(x, 0) = u0(x)

for a.e. x ∈ Ω and

ut(x, t) =
∫

Ω
J(x− y)g(x, y, t) dy a.e. in Ω× (0, T ),

for some g ∈ L∞(Ω× Ω× (0, T )) with ‖g‖∞ ≤ 1 such that g(x, y, t) = −g(y, x, t) and

J(x− y)g(x, y, t) ∈ J(x− y)sgn(u(y, t)− u(x, t)).

Here,

sgn(r) :=





r

|r| if r 6= 0,

[−1, 1] if r = 0.

Observe that the formal expression u(y,t)−u(x,t)
|u(y,t)−u(x,t)| in the evolution equation has to be interpreted

as an L∞ function g(x, y, t) antisymmetric in the space variables and such that it is related to
the above expression by using the multivalued function sgn.

To prove the existence and uniqueness of this kind of solutions, the idea is to take the limit as
p ↘ 1 of the solutions of (1.1) studied in Section 2, see [10] for details.
Rescaling. Let now Ω be a smooth bounded domain in RN and set

J1,ε(x) :=
CJ,1

ε1+N
J

(x

ε

)
,

with C−1
J,1 := 1

2

∫
RN J(z)|zN | dz. Associated with these rescaled kernels are the solutions uε of the

equation in (4.2) with J replaced by J1,ε and the same initial condition u0. Then we prove, using
again the Nonlinear Semigroup Theory and Theorem 3.3, the following result:
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Theorem 4.1. Suppose J(x) ≥ J(y) if |x| ≤ |y|. Let T > 0 and u0 ∈ L1(Ω). Let uε be the
unique solution in [0, T ] of (4.2) with J replaced by J1,ε and v the unique weak solution of (4.1).
Then

lim
ε→0

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖L1(Ω) = 0.

5. Asymptotic behaviour

In this section we focus our attention on the behaviour of the solutions as t goes to infinity.
For this study the following Poincaré type inequality plays a crucial role.

Proposition 5.1. Given q ≥ 1, J as above and Ω a bounded domain in RN , there exists cq > 0
such that:

cq

∫

Ω

∣∣∣∣u−
1
|Ω|

∫

Ω
u

∣∣∣∣
q

≤ 1
2

∫

Ω

∫

Ω
J(x− y)|u(y)− u(x)|q dy dx,

for every u ∈ Lq(Ω).

Using the above Poincaré’s inequality we show that the solution of this nonlocal problem
converges to the mean value of the initial condition as t →∞.

Theorem 5.2. Let u0 ∈ L∞(Ω). Let u be the solution of (1.1); then
∥∥∥∥u(t)− 1

|Ω|
∫

Ω
u0(x) dx

∥∥∥∥
p

Lp(Ω)

≤ C
||u0||2L2(Ω)

t
∀ t > 0,

where C = C(J,Ω, p).

6. A nonlocal model for sandpiles

In the last years an increasing attention has been paid to the study of differential models
in granular matter theory (see, e.g., [12] for an overview of different theoretical approaches and
models). This field of research, which is of course of strong relevance in applications, has also been
the source of many new and challenging problems in the theory of partial differential equations.
In this context, the continuous models for the dynamics of a sandpile, introduced, independently,
by L. Prigozhin ([42], [43]) and by G. Aronsson, L. C. Evans and Y. Wu ([13]) have been of special
interest. These two pile growth models, obtained using different arguments, yield to a model in
the form of a variational inequality. Our next purpose now is to present the nonlocal version of
the Aronsson-Evans-Wu model (see [9, 10] for a nonlocal model of the Prigozhin model).

6.1. The Aronsson-Evans-Wu model for sandpiles. In [29], [13] and [28] the authors inves-
tigated the limiting behaviour as p →∞ of solutions to the quasilinear parabolic problem

(6.1)

{
(vp)t −∆pvp = f in RN × (0, T ),

vp(x, 0) = u0(x) in RN ,

where f is a nonnegative function that represents a given source term, which is interpreted
physically as adding material to an evolving system, within which mass particles are continually
rearranged by diffusion.
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Let us define for 1 < p < ∞ the functional

Fp(v) =





1
p

∫

RN

|∇v(y)|p dy if v ∈ L2(RN ) ∩W 1,p(RN ),

+∞ if v ∈ L2(RN ) \W 1,p(RN ).

Then the PDE problem (6.1) can be written as the abstract Cauchy problem associated to the
subdifferential of Fp, that is,{

f(·, t)− (vp)t(·, t) = ∂Fp(vp(·, t)) a.e. t ∈ (0, T ),

vp(x, 0) = u0(x) in RN .

In [13], assuming that u0 is a Lipschitz function with compact support such that ‖∇u0‖∞ ≤ 1,
and f is a smooth nonnegative function with compact support in RN × (0, T ), it is proved that
there exist a sequence pi → +∞ and a limit function v∞ such that, for each T > 0,{

vpi → v∞ in L2(RN × (0, T )) and a.e.,

∇vpi ⇀ ∇v∞, (vpi)t ⇀ (v∞)t weakly in L2(RN × (0, T )).

Moreover, the limit function v∞ satisfies

(6.2)

{
f(·, t)− (v∞)t(., t) ∈ ∂F∞(v∞(·, t)) a.e. t ∈ (0, T ),

v∞(x, 0) = u0(x) in RN

where the limit functional is given by

F∞(v) =

{
0 if v ∈ L2(RN ), |∇v| ≤ 1,

+∞ otherwise.

This limit problem (6.2) is interpreted in [13] to explain the movement of a sandpile (v∞(x, t)
describes the amount of the sand at the point x at time t), the main assumption being that
the sandpile is stable when the slope is less than or equal to one and unstable if not. So, this
local model are based on the requirement that the slope of sandpiles is at most one. However,
a more realistic model would require the slope constraint only on a larger scale, with no slope
requirements on a smaller scale. This is exactly the case for the nonlocal models presented here.

6.2. The nonlocal model. Let Ω be a convex domain in RN and consider the evolution problem

(6.3)





ut(x, t)=
∫

Ω
Jp,ε(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t))dy + f(x, t),

u(x, 0) = u0(x), x ∈ Ω, t > 0.

Associated to this problem is the energy functional G
Jp,ε
p given in Section 2. With a formal

computation, taking limits as p → +∞, we arrive at the limit problems

(6.4)

{
f(·, t)− ut(·, t) ∈ ∂Gε

∞(u(., t)) a.e. t ∈ (0, T ),

u(x, 0) = u0(x) in Ω,

with associated functionals

Gε
∞(u) =

{
0 if |u(x)− u(y)| ≤ ε, for |x− y| ≤ ε; x, y ∈ Ω,

+∞ otherwise.
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The limit problem for the local model is

(6.5)

{
f(·, t)− (v∞)t(·, t) ∈ ∂F∞(v∞(·, t)) a.e. t ∈ (0, T ),

v∞(x, 0) = g(x) in Ω,

where the functional F∞ is defined in L2(Ω) by

F∞(v) =

{
0 if |∇v| ≤ 1,

+∞ otherwise.

Observe that in these limit problems we assume that the material is confined in a domain Ω; thus
we are looking at models for sandpiles inside a container (see [30] for a local model).

The main results concerning these problems are stated in the following theorem.

Theorem 6.1. Let Ω be a convex domain in RN .

(1) Let T > 0, u0 ∈ L∞(Ω) such that |u0(x) − u0(y)| ≤ 1 for x − y ∈ Ω ∩ supp(J). Take
f ∈ L2(0, T ; L∞(Ω)) and let up be the unique solution of (6.3). Then, if u∞ is the unique
solution of (6.4) with ε = 1,

lim
p→∞ sup

t∈[0,T ]
‖up(·, t)− u∞(·, t)‖L2(Ω) = 0.

(2) Let T > 0, u0 ∈ W 1,∞(Ω) such that |∇u0| ≤ 1, take f ∈ L2(0, T ; L2(Ω)) and consider
u∞,ε, the unique solution of (6.4). Then, if v∞ is the unique solution of (6.5), we have

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(·, t)− v∞(·, t)‖L2(Ω) = 0.

Observe the statement (1) proves the formal computation resulting in (6.4), and (2) states that
when the scale converges to zero we cover the local model.
A mass transport interpretation. If we define

K∞ :=
{
u ∈ L2(Ω) : |u(x)− u(y)| ≤ 1, for x− y ∈ supp(J)

}
,

we have that the above functional G1∞ is given by the indicator function of K∞, that is, GJ∞ =
IK∞ . Then the nonlocal limit problem (6.5) can be written as

(6.6)

{
f(·, t)− ut(·, t) ∈ ∂IK∞(u(·, t)) a.e. t ∈ (0, T ),

u(x, 0) = u0(x).

Then , we can also give an interpretation of the limit problem (6.6) in terms of Monge-Kantorovich
mass transport theory as in [29], [30] (see [45] for a general introduction to mass transportation
problems, and [5] for a detailed study of this situation). Let us see this. Consider the distance

d1(x, y) =





0 if x = y,
1 if 0 < |x− y| ≤ 1,
2 if 1 < |x− y| ≤ 2,
...
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where | . | denotes the Euclidean norm. Note that this function d measures distances with jumps
of length one. Then, given two measures f+, f− in L1(Ω), and supposing the overall condition of
mass balance

(6.7)
∫

Ω
f+ dx =

∫

Ω
f− dy,

the Monge problem associated to the cost function the distance d is given by

minimize
∫

d1(x, s(x)) f+(x)dx

among the set of maps s that transport f+ into f−, which means that∫

RN

h(s(x))f+(x) dx =
∫

RN

h(y)f−(y) dy

for each continuous function h : RN → R.
The original problem studied by Monge corresponds to the cost function d(x, y) := |x− y| the

Euclidean distance. In general, the Monge problem is ill-posed. To overcome the difficulties, in
1942 L. V. Kantorovich, [37], proposed to study a relaxed version of the Monge problem and,
what is more relevant here, introduced a dual variational principle.

Denote by πi : RN × RN the projections, π1(x, y) := x, π2(x, y) := y. Given a Radon measure
µ in Ω×Ω, its marginals are defined by projx(µ) := π1#µ, projy(µ) := π2#µ. Let π(f+, f−) the
set of transport plans between f+ and f−, that is the set of nonnegative Radon measures µ in
Ω×Ω such that projx(µ) = f+(x) dx and projy(µ) = f−(y) dy. The Monge-Kantorovich relaxed
problem for d1 consists in finding a measure µ∗ ∈ π(f+, f−) which minimizes the cost functional

Kd1(µ) :=
∫

Ω×Ω
d1(x, y) dµ(x, y),

in the set π(f+, f−). A minimizer µ∗ is called an optimal transport plan between f+ and f−. In
general (see [3, Propostion 2.1]), inf{Kd1(µ) : µ ∈ π(f+, f−)} ≤ inf{Fd1(T ) : T ∈ A(f+, f−)}.

Since d1 is a lower semi-continuous metric, it is well known the existence of an optimal transport
plan (see [3, 41] and the references therein), and what is quite interesting (see for instance [45,
Theorem 1.14]):

(6.8) min{Kd1(µ) : µ ∈ π(f+, f−)} = sup
{Pf+,f−(u) : u ∈ Kd1(Ω)

}
,

where
Pf+,f−(u) :=

∫

Ω
u(x)(f+(x)− f−(x)) dx,

and Kd1(Ω) is the set of 1-Lipschitz funtions w.r.t. d1,

Kd1(Ω) :=
{
u ∈ L2(Ω) : |u(x)− u(y)| ≤ d1(x, y) for all x, y ∈ Ω

}
.

The maximizers u∗ of the right hand side of (6.8) are called Kantorovich (transport) potentials.
With these definitions and notation we have the following result.

Theorem 6.2. The solution u∞(·, t) of the limit problem (6.6) is a solution of the dual problem

max
u∈K∞

∫

RN

u(x)(f+(x)− f−(x))dx
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when the involved measures are the source term f+ = f(x, t) and the time derivative of the solution
f− = ut(x, t).
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