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Abstract. This paper deals with the obstacle problem for the
infinity Laplacian. The main results are a characterization of the
solution through comparison with cones that lie above the obstacle
and the sharp C1, 13 –regularity at the free boundary.

1. Introduction

The regularity of infinity harmonic functions is an outstanding issue
in the theory of nonlinear partial differential equations. The belief
that viscosity solutions of ∆∞u = 0 are of class C1, 1

3 has hitherto
remained unproven despite some recent exciting developments. The
flatland example of Aronsson

u(x, y) = |x|
4
3 − |y|

4
3

sets the framework to what can be expected: the first derivatives of u
are Hölder continuous with exponent 1/3, whereas its second deriva-
tives do not exist on the lines x = 0 and y = 0. The sharpest results
to date are due to Evans and Savin, who prove in [8] that infinity har-
monic functions in the plane are of class C1,α, building upon Savin’s
breakthrough in [17] (the optimal α remains unknown even in 2-D),
and to Evans and Smart, who recently obtained in [9] the everywhere
differentiability, irrespective of the dimension.

This paper addresses the obstacle problem for the infinity Laplacian
and its most striking results concern the behaviour at the free bound-
ary. We prove, under natural assumptions on the obstacle, that the
solution leaves the obstacle as a C1, 1

3 –function and that this regularity
is optimal. The sharp estimates we derive are yet another conspicuous
hint towards the optimal regularity for infinity harmonic functions.

Obstacle problems in infinite dimensional spaces, where operators
are naturally degenerate, are studied in [18]. A prototype example is
given by F (D2u) = Trace(AD2u), for A ∈ S(H) in the trace class, i.e.,
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|λj| <∞, where λj are the eigenvalues of A. The main result in [18]

is that the solution of the obstacle problem satisfies the bounds

|λj||Djju| < C, ∀j,
provided the obstacle is semi-concave. It is a perfect generalization
of the optimal C1,1–regularity for the obstacle problem in finite di-
mensional spaces. For problems governed by the infinity Laplacian, a
naive inference indicates that |Du∞|2|D2u∞| should remain bounded
for points at the free boundary. Such observation brings us to the
recent work [1], where it is proven that

|D2v| . |Dv|−δ =⇒ v ∈ C1, 1
1+δ .

Taking δ = 2 discloses the optimal regularity at the free boundary for
the infinity obstacle problem, ultimately proven in this paper.

The heuristics behind the proof is the following: showing that a given
function v is of class C1, 1

3 at a point x0 amounts to finding an affine
function ` for which

|v(x)− `(x)| = O(|x− x0|4/3).

As mentioned above, such a task remains unaccomplished for an ar-
bitrary infinity harmonic function; however, for a solution u∞ of the
infinity obstacle problem, it is expected that at a free boundary point
x0 ∈ ∂{u∞ > Ψ},

∇(u∞ −Ψ)(x0) = 0.

In such a geometric scenario, establishing the C1, 1
3 –regularity of u∞−Ψ

reduces to proving

(u∞ −Ψ)(x) = O(|x− x0|4/3).

Thus, a scaling-sharp flatness improvement, in the same spirit as in
[20], gives the full optimal regularity for u∞ −Ψ; this, in turn, implies

u∞ ∈ C1, 1
3

along the free boundary, provided the obstacle Ψ is smooth enough.

The obstacle problem for elliptic operators has been extensively stud-
ied. The classical setting amounts at minimizing the energy

E(u) =

∫
Ω

|Du|2

among the functions that coincide with a given function F at the
boundary of Ω ⊂ Rd and remain above a prescribed obstacle Ψ. Such
a problem is motivated by the description of the equilibrium position
of a membrane (the graph of the solution) attached at level F along
the boundary of Ω and that is forced to remain above the obstacle
in the interior of Ω. The same mathematical framework appears in
many other contexts: fluid filtration in porous media, elasto-plasticity,
optimal control or financial mathematics, to name just a few.
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On the other hand, if we pass to the limit, as p→∞, in a sequence
(up) of p−harmonic functions, that is, solutions of ∆pup = 0, with
given boundary values, the limit exists (in the uniform topology) and
is a solution of the infinity Laplace equation (see [3])

∆∞u =
d∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.

The infinity Laplacian is connected with the optimal Lipschitz exten-
sion problem [11], and arises also in the context of certain random
tug-of-war games [2, 16], mass transportation problems [10] and sev-
eral other applications, such as image reconstruction and enhancement
[6]. See also the recent approach of [14] to a two-phase problem of
mixed type.

In the next section, we introduce the infinity obstacle problem and
obtain a solution u∞, passing to the limit, as p → ∞, in a sequence
of solutions up to the obstacle problem for the p-Laplacian. We gather
a few elementary properties of the solution and study a radially sym-
metric explicit example. Let us remark that the limit obtained here
does not necessarily coincide with the solution of the infinity obstacle
problem obtained by direct methods in [4].

Section 3 of the paper deals with characterizations of the limit. We
first show that u∞ is the smallest infinity superharmonic function in
Ω that is above the obstacle and equals F on the boundary, a result
that implies its uniqueness. Then we establish a sort of comparison
with cones that lie above the obstacle. This characterization is inter-
esting in its own right but it also implies a regularity result at the
free boundary, a warm-up for what will come later. The section closes
with the analysis of the behaviour at infinity of the coincidence sets for
the p-obstacle problem and its relation with the coincidence set of the
limiting problem.

The heart of the paper is Section 4, where the behaviour of the
solution at the free boundary is analyzed. We establish the optimal
asymptotic profile near the free boundary, showing u∞ behaves as a
C1, 1

3 –function. We use this sharp information to deduce the uniform
positive density of the region {u∞ > Ψ}. In particular, the free bound-
ary does not develop cusps pointing inwards to the coincidence set.

2. The limit as p→∞ for the p–obstacle problem

Let Ω ⊂ Rd be a bounded smooth domain, F a Lipschitz function
on ∂Ω and 1 < p <∞. Given an obstacle Ψ: Ω→ R, with

sup
∂Ω

Ψ < inf
∂Ω
F, (2.1)
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the p-degenerate obstacle problem for Ψ refers to the minimization
problem

Min

{∫
Ω

|Dv(x)|pdx
∣∣ v ∈ W 1,p

F and v ≥ Ψ

}
. (2.2)

Here W 1,p
F means the set of functions in W 1,p(Ω) with trace F on ∂Ω.

Simple soft functional analysis arguments assure that (2.2) has a
unique solution up. Let z be a Lipschitz extension of F such that
z ≥ Ψ (for the proof of the existence of such z see Proposition 3.3).
Since z competes in the minimization problem (2.2) for every p, if L
denotes the Lipschitz norm of z, we have(∫

Ω

|Dup|p
)1/p

≤ L|Ω|1/p.

For a fixed q, we can write(∫
Ω

|Dup|q
)1/q

≤
(∫

Ω

|Dup|p
)1/p

|Ω|
p−q
pq ≤ L|Ω|1/p|Ω|

p−q
pq .

Hence, we have a uniform bound for the sequence (up) in every W 1,q(Ω).
Taking the limit as p → ∞, we conclude that there exists a function
u∞ such that, up to a subsequence, up → u∞, locally uniformly in Ω
and weakly in every W 1,q(Ω). Clearly, u∞ ≥ Ψ pointwise. Also,(∫

Ω

|Du∞|q
)1/q

≤ L|Ω|
1
q ∀q > 1.

We then conclude that u∞ is a Lipschitz function, with

‖Du∞‖L∞(Ω) ≤ L.

Since this holds being L the Lipschitz constant of any extension of F
that is above Ψ, we conclude that u∞ is a solution of the minimization
problem

min
w|∂Ω=F ; w≥Ψ in Ω

Lip(w). (2.3)

The minimizers up are weak, and hence viscosity, solutions (see [10])
of the following obstacle problem:

up(x) = F (x) on ∂Ω,
up(x) ≥ Ψ(x) in Ω,
−∆pup = 0 in Ω \ Ap := {up > Ψ},
−∆pup ≥ 0 in Ω.

Concerning the PDE problem satisfied by u∞, we verify that it is a
viscosity solution to the obstacle problem for the infinity Laplacian:
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u∞(x) = F (x) on ∂Ω,
u∞(x) ≥ Ψ(x) in Ω,
−∆∞u∞ = 0 in Ω \ A∞ = {u∞ > Ψ},
−∆∞u∞ ≥ 0 in Ω.

Indeed, fix a point y in the set {u∞ > Ψ}. From the uniform conver-
gence, up > Ψ in a neighbourhood of y, provided p� 1. Hence, taking
the limit as p→∞ in the viscosity sense, we obtain

−∆∞u∞ = 0 in {u∞ > Ψ}.

On the other hand, a uniform limit of up verifies

−∆∞u∞ ≥ 0, in Ω,

since for every p, up verifies

−∆pup ≥ 0, in Ω

in the viscosity sense.

To gain some insight on the problem, we next construct a radially
symmetric explicit example. Let us consider the p-obstacle problem in
B2 ⊂ Rd, with zero boundary data and the spherical cap

ψ(x) = 1− |x|2

as the obstacle. It is formulated as the following minimization problem:

Min

{∫
B2

|Dv(x)|pdx
∣∣ v ∈ W 1,p

0 (B2) and v(x) ≥ ψ(x)

}
.

As mentioned before, the above minimization problem has a unique
minimizer up. By symmetry, we conclude up is radially symmetric, i.e.,
up(x) = up(|x|). By the geometry of the obstacle problem, as well as
its regularity theory, we know that there exists an h = h(p, d), that
depends on p and dimension, such that

up(x) = ψ(x) in |x| ≤ h
∆up = 0 in 2 > |x| > h
up ∈ C1,αp in B2

‖Dup‖L∞(Bρ) ≤ C(ρ, d),

(2.4)

for a constant C(ρ, d) independent of p. Such an estimate has been
obtained in the previous section. In particular, as observed before,
up to a subsequence, up converges locally uniformly to a function u∞.
Furthermore, u∞ solves ∆∞u∞ = 0 within {u∞ > ψ} in the viscosity
sense.

Our goal is to solve the p-obstacle problem explicitly and then ana-
lyze the limiting function u∞. In view of the properties listed in (2.4),



6 ROSSI, TEIXEIRA AND URBANO

we are initially led to search for p-harmonic radially symmetric func-
tions. If g(x) = f(r), then

∆pg = |f ′(r)|p−2

{
(p− 1)f ′′(r) +

d− 1

r
f ′(r)

}
. (2.5)

Solving the homogeneous ODE, we obtain

f(r) =

{
a+ b · r

1−d
p−1

+1 if p 6= d
a+ b · ln r if p = d,

(2.6)

for any constants a, b ∈ R. Returning to the obstacle problem (we will
only deal with the case, p 6= d > 1, as we are interested in the limiting
problem as p → ∞), by regularity considerations, we end up with the
following system of equations:

a+ b · h−α+1 = 1− h2 and b · (−α + 1)hα = −2h, (2.7)

where the exponent α = α(p) is given by

α(p) =
d− 1

p− 1

and verifies

lim
p→∞

α(p) = 0. (2.8)

The first equation in (2.7) comes from continuity and the second from
C1–estimates. By the boundary condition, we have

a+ b · 2−α+1 = 0.

Subtracting the first equality from the above equation, we obtain

b · (2−α+1 − h−α+1) = −1 + h2,

which simplifies out to

(−α + 1)b · h−α = −2h.

Combining the above with the second equation in (2.7), we end up with

2

1− α
(2−α+1h1+α − h2) = 1− h2,

that is, (
2

1− α
− 1

)
h2 − 4

(
2−α

1− α

)
h1+α + 1 = 0.

Now, we observe that, from (2.8), this equation converges to

h2 − 4h+ 1 = 0,

which has as solution in (0, 1) (the free boundary must lie in this in-
terval)

h∞ =
4−
√

12

2
.
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With this limit, we can also compute the limit of

fp(r) = ap + bpr
− d−1
p−1

+1 = ap + bpr
−α(p)+1

that is given by
f∞(r) = a∞ + b∞r,

with
a∞ = 4h∞

and
b∞ = −2h∞.

Note that f∞(r) is infinity harmonic in B2 \Bh∞ and verifies

f∞(h∞) = 1− h2
∞

and
f ′∞(h∞) = −2h∞.

It is the solution of the limit obstacle problem.

3. Characterizations of the limit

A crucial issue, with striking implications, is to characterize the limit
u∞. We give two characterizations, one involving supersolutions of the
infinity Laplacian, the other making use of appropriately defined cones.
From both we will derive important properties of the limit.

Theorem 3.1. The limit u∞ is the smallest infinity superharmonic
function in Ω that is above the obstacle and equals F on the boundary.

Proof. Let F be the set of all functions v that are infinity super-
harmonic in Ω and satisfy v ≥ Ψ in Ω and v = F on ∂Ω. This set
is not empty because u∞ ∈ F . Let

v∞ := inf
v∈F

v,

which is upper semicontinuous (as it is the infimum of continuous func-
tions) and infinity superharmonic in Ω. Since u∞ ∈ F , it is obvious
that

u∞ ≥ v∞ in Ω.

Now, define the open set

W = {x ∈ Ω : u∞(x) > v∞(x)} .
On ∂W ⊂ Ω, we have v∞ = u∞. Moreover,

u∞ > v∞ ≥ Ψ in W

so W ⊂ {u∞ > Ψ} and u∞ is infinity harmonic in W . Thus, by the
comparison principle,

u∞ ≤ v∞ in W,

a contradiction that shows that W = ∅. Consequently, u∞ ≡ v∞. �

Corollary 3.2. The limit u∞ is unique.
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Proof. Suppose we have two limits, say u1,∞ and u2,∞. Then

v = u1,∞ ∧ u2,∞

is also an infinity superharmonic function in Ω that is above the obsta-
cle and equals F on the boundary. By the theorem, we have

ui,∞ ≤ v, i = 1, 2

and since, trivially, v ≤ ui,∞, i = 1, 2, we conclude that

u1,∞ = v = u2,∞.

�

Let’s now turn to our second characterization of the limit. For this,
consider the family of cones with vertex at a boundary point and posi-
tive opening, which lie above both the obstacle and the boundary data.
For more on comparison with cones and the characterization of infinity
harmonic functions see [7].

To be concrete, for y ∈ ∂Ω and b = (b1, b2), with b1 ≥ 0, we consider
the cones

Kb
y(x) = b1|x− y|+ b2

such that
Kb
y(x) ≥ F (x), x ∈ ∂Ω

and
Kb
y(x) ≥ Ψ(x), x ∈ Ω.

Note that, since the vertex of the cone is at the boundary of Ω, these
cones are infinity harmonic in Ω, that is, −∆∞K

b
y = 0 in Ω. We denote

by K the family of all such cones.
Now, we define

K∞(x) := inf
K
Kb
y(x), x ∈ Ω.

It is obvious that
K∞(x) ≥ F (x), x ∈ ∂Ω

and
K∞(x) ≥ Ψ(x), x ∈ Ω.

Proposition 3.3. The function K∞ is Lipschitz continuous in Ω and
infinity superharmonic in Ω. Moreover,

K∞(y) = F (y), y ∈ ∂Ω.

Proof. Since we assume that F is Lipschitz, we have that for every
point y ∈ ∂Ω, there exists a constant L such that, for every b1 > L and
every b2 > L,

Kb
y(x) ≥ F (x) and Kb

y(x) ≥ Ψ(x).

Hence, when computing the infimum that defines K∞(x), we can re-
strict to cones with b = (b1, b2) in a compact set and since y ∈ ∂Ω
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(which is also compact), we conclude that the infimum is in fact a min-
imum. This means that, for every x ∈ Ω, there exists a y ∈ ∂Ω and a
b = (b1, b2), with |bi| ≤ L, depending on x, such that

K∞(x) = K
b(x)
y(x)(x).

From this fact, it follows that K∞ is Lipschitz continuous in Ω. Let’s
show why. Take any two points x̂, x̃ ∈ Ω; we have

K∞(x̂) = K
b(x̂)
y(x̂)(x̂) and K∞(x̃) = K

b(x̃)
y(x̃)(x̃).

From the definition, it is clear that K∞(x̂) ≤ K
b(x̃)
y(x̃)(x̂) and thus

K∞(x̂)−K∞(x̃) ≤ K
b(x̃)
y(x̃)(x̂)−Kb(x̃)

y(x̃)(x̃)

= b1(x̃) (|x̂− y(x̃)| − |x̃− y(x̃)|)
≤ L |x̂− x̃| .

Reversing the role of x̂ and x̃ gives the desired Lipschitz regularity.
Moreover, as the infimum of infinity harmonic functions, K∞ is infi-

nity superharmonic, i.e.,

−∆∞K∞ ≥ 0 in Ω. (3.1)

Finally, by taking b1 large enough and b2 = F (y), we also have,
recalling (2.1),

F (y) ≤ K∞(y) ≤ Kb
y(y) = F (y)

and, hence, K∞(y) = F (y), for y ∈ ∂Ω. �

Theorem 3.4. The limit u∞ is such that

u∞(x) ≤ K∞(x), x ∈ Ω. (3.2)

Equality holds if, and only if, K∞(x) is infinity harmonic outside of its
coincidence set {K∞ = Ψ}.

Proof. Inequality (3.2) follows immediately from Proposition 3.3 and
Theorem 3.1. If we have an equality it is also immediate that K∞(x)
is infinity harmonic outside of its coincidence set {K∞ = Ψ} So we are
left to prove the other implication.

Arguing by contradiction, assume that

W = {x ∈ Ω : K∞(x) > u∞(x)} 6= ∅.

Note that W is open because u∞ and K∞ are continuous functions.
Since W ⊂ {K∞ > Ψ}, we deduce that −∆∞K∞ = 0 in W . But
−∆∞u∞ ≥ 0 in Ω (thus in W ) and u∞ = K∞ on ∂W so, by the
comparison principle for the infinity Laplacian, we conclude that

u∞ ≥ K∞ in W,

a contradiction that shows that W = ∅ and completes the proof. �
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Remark 3.5. The condition that K∞(x) is infinity harmonic outside of
its coincidence set {K∞ = Ψ} strongly depends on the geometry of
the problem. In the radial example explicitly computed in Section 2,
the condition holds. However, in general, this is not the case, as the
following example shows. Consider Ω to be the union of two disjoints
balls connected by a narrow tube of width δ, an obstacle placed in one
of the balls and boundary data F = 0. It can be readily checked that,
as δ → 0, u∞ → 0 in the ball without obstacle. But K∞ is uniformly
bounded below inside this ball since the opening of the corresponding
cones is uniformly bounded below (as these cones have to be above the
obstacle).

Corollary 3.6. Assume the obstacle Ψ is differentiable and equality
holds in (3.2). Then u∞ is differentiable at the free boundary and

Du∞(x0) = DΨ(x0), ∀x0 ∈ ∂{u∞ = Ψ}.

Proof. Let x0 ∈ ∂{u∞ = Ψ}. It follows from the previous results that
there exists a cone Kb

y0
such that

Kb
y0

(x0) = K∞(x0) = u∞(x0) = Ψ(x0) (3.3)

and

Kb
y0

(x) ≥ K∞(x) = u∞(x) ≥ Ψ(x), ∀x ∈ Ω. (3.4)

Hence, Kb
y0

(x) − Ψ(x) attains a minimum at x0 and, since it is differ-
entiable,

DKb
y0

(x0) = DΨ(x0).

From (3.3) and (3.4), we conclude that u∞ is also differentiable at x0,
with

Du∞(x0) = DΨ(x0),

as claimed. �

Remark 3.7. As a consequence of this corollary, we conclude that u∞ is
differentiable everywhere in Ω. In fact, in the interior of the coincidence
set, it coincides with the differentiable obstacle and, in the interior
of the non-coincidence set, it is infinity harmonic, thus differentiable
everywhere by the results of [9]. Also note that the radial solution
constructed in Section 2 is a C1–solution that can be characterized by
the equality in (3.2).

We close this section with the analysis of the behaviour at infinity of
the coincidence sets for the p-obstacle problem and relate it with the
coincidence set of the limiting problem. We recall that

lim sup
p→∞

Ap =
∞⋂
p=1

⋃
n≥p

An and lim inf
p→∞

Ap =
∞⋃
p=1

⋂
n≥p

An.
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Theorem 3.8. Let Ap = {up = Ψ} be the coincidence sets of the p-
obstacle problems and A∞ = {u∞ = Ψ} be the coincidence set of the
limiting problem. Then

int(A∞) ⊂ lim inf
p→∞

Ap ⊂ lim sup
p→∞

Ap ⊂ A∞. (3.5)

Proof. Given a neighbourhood V of A∞, Ω\V is a closed set contained
in {u∞ > Ψ}. Thus, the continuity of u∞ − Ψ gives us a η > 0 such
that u∞−Ψ > η in Ω \V . Using the uniform convergence of up to u∞,
we conclude that, for p large enough, we also have up−Ψ > η in Ω\V .
Therefore, we conclude that Ω\V ⊂ {up > Ψ} and, consequently, that

Ap ⊂ V,

for every large enough p. This shows that

lim sup
p→∞

Ap ⊂ V,

for any neighbourhood V of A∞, and since A∞ is compact, we also
obtain

lim sup
p→∞

Ap ⊂ A∞.

Next, assume that Ψ is smooth and verifies

−∆∞Ψ > 0.

Then, given x0 ∈ int(A∞), if we have

upj(x0) > Ψ(x0),

for a subsequence pj →∞, then

−∆pjupj(x0) = 0.

Passing to the limit as before, we conclude that

−∆∞Ψ(x0) = −∆∞u∞(x0) = 0,

a contradiction with −∆∞Ψ > 0. Therefore, we conclude that for every
x0 ∈ int(A∞), there exists p0 = p0(x0) such that

un(x0) = Ψ(x0),

for every n ≥ p0. This means that

x0 ∈
⋂
n≥p0

An

and consequently
int(A∞) ⊂ lim inf

p→∞
Ap.

Since the larger set is closed, we also obtain

int(A∞) ⊂ lim inf
p→∞

Ap

and the proof is complete. �
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4. C1, 1
3 –behaviour at the free boundary

In this section, we show that, along the free boundary, u∞ behaves as
a C1, 1

3 –function. This result is in connection with the celebrated opti-
mal regularity conjecture for infinity harmonic functions. The ultimate
goal is to show that u∞ −Ψ grows precisely as

[dist(x, ∂{u∞ −Ψ})]4/3

away from the free boundary. We shall use this sharp information to
establish the uniform positive density of the region {u∞ > Ψ}. In
particular, it follows that the free boundary does not develop cusps
pointing inwards to the coincidence set.

The assumptions we shall impose on the obstacle in this section are
the following:

Ψ ∈ C1,1; (4.1)

sup
Ω
|∆∞ (u∞ −Ψ)| ≤M ; (4.2)

inf
{u∞>Ψ}

∆∞ (u∞ −Ψ) =: ν > 0. (4.3)

Both (4.2) and (4.3) are to be understood in the viscosity sense.
Condition (4.2) is rather natural in the context of obstacle-type prob-

lems, namely for

Lv = f(x)χ{v>0}, (4.4)

and it concerns the boundedness of the function f(x) (cf. [15]). In
the linear case, the physical obstacle problem is transformed into an
obstacle-type equation of the form (4.4) by defining v as the difference
between the membrane and the obstacle. In this case, f(x) is the
negative of the operator L applied to the obstacle; it is then bounded
provided the obstacle is of class C1,1.

Condition (4.3), in turn, refers to the appropriate infinity concavity
of the obstacle. We recall it has been well established that in order to
study geometric properties of the free boundary, a sort of concavity-
type non-degeneracy condition on the obstacle is needed. In fact, if
no such assumption is imposed, one could produce arbitrary contact
sets, just by lifting up subregions of the obstacle previously below the
membrane, making them touch the original solution.

Our first result in this section gives the optimal regularity estimate
for solutions of the infinity obstacle problem along the free boundary.

Theorem 4.1. Let x0 ∈ ∂{u∞ > Ψ} be a generic free boundary point.
Then

sup
Br(x0)

|u∞ −Ψ| ≤ C r4/3, (4.5)

for a constant C that depends only upon the data of the problem.
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Proof. For simplicity, and without loss of generality, assume x0 = 0,
and denote v := u∞ − Ψ. By combining discrete iterative techniques
and a continuous reasoning (see, for instance, [5]), it is well established
that proving estimate (4.5) is equivalent to verifying the existence of a
constant C > 0, such that

sj+1 ≤ max
{
C 2−4/3(j+1), 24/3sj

}
, ∀ j ∈ N, (4.6)

where

sj = sup
B

2−j

|v|.

Let us suppose, for the sake of contradiction, that (4.6) fails to hold,
i.e., that for each k ∈ N, there exists jk ∈ N such that

sjk+1 > max
{
k 2−4/3(jk+1), 24/3sjk

}
. (4.7)

Now, for each k, define the rescaled function vk : B1 → R by

vk(x) :=
v(2−jkx)

sjk+1

.

One easily verifies that

0 ≤ vk(x) ≤ 2−4/3, ∀x ∈ B1; (4.8)

vk(0) = 0; (4.9)

sup
B 1

2

vk = 1. (4.10)

Moreover, we formally have

∆∞vk(x) =
2−jk

sjk+1

Dv(2−jkx) ·
(

2−2jk

sjk+1

D2v(2−jkx)

)
· 2−jk

sjk+1

Dv(2−jkx)

=
2−4jk

s3
jk+1

∆∞v(2−jkx) =: fk

and, using assumption (4.2) and (4.7), we conclude

|fk| ≤
2−4jk

2−4(jk+1) k3
M =

16M

k3
≤ 16M. (4.11)

It is a matter of routine to rigorously justify the above calculations
using the language of viscosity solutions (see, e.g., [19, section 2]).

Combining the uniform bounds (4.8) and (4.11), and local Lipschitz
regularity results for the inhomogeneous infinity Laplace equation (cf.,
for example, [12, Corollary 2]), we obtain both the equiboundedness
and the equicontinuity of the sequence (vk)k. By Ascoli’s theorem, and
passing to a subsequence if need be, we conclude that vk converges
locally uniformly to a infinity harmonic function v∞ in B1 such that

0 ≤ v∞ ≤ 2−4/3 and v∞(0) = 0.
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We now use Harnack’s inequality for infinity harmonic functions (see
[13, Corollary 2]) to obtain the bound

v∞(x) ≤ e2|x| v∞(0) = 0, ∀x ∈ B1/2.

It follows that v∞ ≡ 0 in B1/2, which contradicts (4.10). The theorem
is proven.

�

An immediate consequence of Theorem 4.1 is that u∞ is C1, 1
3 along

the free boundary, i.e., the membrane leaves the obstacle as a C1, 1
3 –

function.

Corollary 4.2 (Sharp C1, 1
3 –regularity at the free boundary). The

function u∞ is C1, 1
3 at any point of the free boundary. That is, there

exists a constant Λ > 0, depending only upon the data of the problem,
such that

|u∞(x)− [u∞(x0) +Du∞(x0) · (x− x0)]| ≤ Λ|x− x0|4/3,

for any point x0 ∈ ∂{u∞ > Ψ} and x ∈ Br(x0), for r � 1.

Proof. It readily follows from Theorem 4.1 that, for any free boundary
point x0 and x close to x0, there holds

(u∞ −Ψ)(x) ≤ sup
B2|x−x0|(x0)

(u∞ −Ψ) ≤ C 24/3 |x− x0|4/3.

In particular, we have

u∞(x0) = Ψ(x0) and Du∞(x0) = DΨ(x0).

Finally, using the C1,1 regularity of the obstacle, we conclude

|u∞(x)− [u∞(x0) +Du∞(x0) · (x− x0)]|

≤ |u∞(x)−Ψ(x)|+ |Ψ(x)− [Ψ(x0) +DΨ(x0) · (x− x0)]|
≤ C 24/3 |x− x0|4/3 + C ′ |x− x0|2
≤ Λ |x− x0|4/3

and the corollary is proven. �

Our next theorem establishes a C1, 1
3 –estimate from below, which im-

plies that u∞ leaves the obstacle trapped by the graph of two functions
of the order dist4/3(x, ∂{u∞ > Ψ}).

Theorem 4.3. Assume the non-degeneracy hypothesis (4.3) is in force.

Let y0 ∈ {u∞ > Ψ} be a generic point in the closure of the non-
coincidence set. Then

sup
Br(y0)

|u∞ −Ψ| ≥ c r4/3,

for a constant c > 0 that depends only upon ν.
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Proof. By continuity arguments, if is enough to prove the result for
points in the non-coincidence set. For simplicity, and without loss of
generality, take y0 = 0. Define the barrier

B∞(x) :=
3

4
3
√

3ν |x|4/3,

which satisfies, by direct computation,

∆∞B∞ = ν.

Thus, by (4.3), there holds

∆∞ (u∞ −Ψ) ≥ ν = ∆∞B∞, in {u∞ > Ψ},
in the viscosity sense.

On the other hand,

u∞ −Ψ ≡ 0 < B∞ on ∂{u∞ > Ψ} ∩Br.

Therefore, for some point y? ∈ ∂Br ∩ {u∞ > Ψ}, there must hold

u∞(y?)−Ψ(y?) > B∞(y?); (4.12)

otherwise, by Jensen’s comparison principle for infinity harmonic func-
tions [11], we would have, in particular,

0 < u∞(0)−Ψ(0) ≤ B∞(0) = 0.

Estimate (4.12) implies the thesis of the theorem. �

As usual, as soon as we establish the precise sharp asymptotic be-
haviour for a given free boundary problem, it becomes possible to ob-
tain certain weak geometric properties of the phases. We conclude this
section by proving that the region where the membrane is above the
obstacle has uniform positive density along the free boundary, which
is then inhibited to develop cusps pointing inwards to the coincidence
set.

Corollary 4.4. Let x0 ∈ ∂{u∞ > Ψ} be a free boundary point. Then

L n (Bρ(x0) ∩ {u∞ > Ψ}) ≥ δ?ρ
n,

for a constant δ? > 0 that depends only upon the data of the problem.

Proof. It follows from Theorem 4.3 that there exists a point

z ∈ ∂Bρ(x0) ∩ {u∞ > Ψ}

such that (u∞−Ψ)(z) ≥ c ρ4/3. By C1, 1
3 –bounds along the free bound-

ary, Theorem 4.1, it follows that

Bλρ(z) ⊂ {u∞ > Ψ},
where the constant

λ :=
4

√( c

2C

)3
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depends only on the data of the problem. In fact, if this were not true,
there would exist a free boundary point y ∈ Bλρ(z). From (4.5), we
reach the absurd

c ρ4/3 ≤ (u∞ −Ψ)(z) ≤ sup
Bλρ(y)

|u∞ −Ψ| ≤ C (λρ)4/3 =
1

2
c ρ4/3.

Thus,
Bρ(x0) ∩Bλρ(z) ⊂ Bρ(x0) ∩ {u∞ > Ψ}

and, finally,

L n (Bρ(x0) ∩ {u∞ > Ψ}) ≥ L n (Bρ(x0) ∩Bλρ(z)) ≥ δ?ρ
n.

�
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