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Abstract

In this paper we study the behavior of the free boundary optimal design problem

min

{∫
Ω

|∇u(X)|pdX
∣∣ u ∈W 1,p(Ω), u = f on ∂Ω, L

n ({u > 0}) ≤ α
}

for large p. We obtain as the limit as p→∞ the following “limiting problem”:

min
{

Lip(u)
∣∣ u ∈W 1,∞(Ω), u = f, on ∂Ω, L

n ({u > 0}) ≤ α
}
.

where Lip(u) is the Lipschitz constant of u, given by Lip(u) = supx,y
|u(x)−u(y)|
|x−y| . In fact, we

show that any sequence of minimizers up converges (up to a subsequence) to a solution of the
limiting problem. Furthermore, the limiting function, u∞, is also an absolutely minimizing
Lipschitz extension, that is, an infinity harmonic function, ∆∞u = DuD2u(Du)t = 0, in
its positivity set, {u∞ > 0}. Under a mild compatibility condition upon Lip(f), Ω and
α, we prove uniqueness for minimizers of the limit problem. In addition, in this case, we
find precisely the optimal shape for the limiting problem. We also prove non-uniqueness
phenomenon showing that our assumptions are sharp. Finally, we address convergence issues
concerning the free boundaries.

1 Introduction

Let Ω be a smooth bounded domain in the Euclidean space Rn and α a fixed positive number
less than the Lebesgue measure of Ω. An optimal design problem with volume constraint can be
generally written as:

Min
{
J(O)

∣∣ O ⊂ Ω and Ln(O) ≤ α
}
. (1.1)

For most of applications, J(O) has an integral representation involving functions which are linked
to the competing configuration O by a prescribed PDE.

The modern history of this line of research probably starts at the pioneering work of Aguilera,
Alt and Caffarelli, [2]. In that paper, the authors address the question of minimizing the Dirichlet
integral when prescribed the volume of the zero set. Lederman in [17] establishes similar results for
non-homogeneous minimization problem:

∫
|Du|2− gu. Alt, Caffarelli and Spruck, [4], considered

the minimization problem (1.1) for J(O) =
∫

Ω
∆udX, where u is the harmonic function in O,

taking a prescribed boundary data ϕ on ∂Ω and zero on ∂O. This is a model for an optimal
shape problem in heat conduction theory with non-constant temperature distribution. Nonlinear
optimal design problems with non-constant temperature distribution was treated in [22]. The
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common feature of the aforementioned works is that all of them are governed by the Laplacian
operator. Their fine analysis rely on the revolutionary work of Alt and Caffarelli, [3].

Just recently, the study of optimal design problems ruled by degenerate quasilinear operators
was successfully developed. This theory is the starting point for the main goal of this present
work which we describe now. Let us consider the problem of minimizing the p-Dirichlet integral
with a given positive boundary data f and prescribed the maximum volume of the support. More
precisely, let us consider the following free boundary optimization problem:

min
{∫

Ω

|∇u(X)|pdX
∣∣ u ∈W 1,p(Ω), u = f on ∂Ω, Ln ({u > 0}) ≤ α

}
. (Pp)

Existence of a minimizer as well as smoothness properties of its free boundary have been established
in [10] and [21]. Further generalizations are addressed in [25, 26]. In the present paper we are
interested in the asymptotic behavior, as p goes to infinity, of optimal shapes to problem (Pp).
Driven by classical considerations, we are led to consider the following “limiting problem”:

min
{

Lip(u)
∣∣ u ∈W 1,∞(Ω), u = f, on ∂Ω, Ln ({u > 0}) ≤ α

}
. (P∞)

where Lip(u) is the Lipschitz constant of u:

Lip(u) = sup
x,y

|u(x)− u(y)|
|x− y|

. (1.2)

Our first concern is to prove that any sequence of minimizers up to problem (Pp) converges (up
to a subsequence) to a solution, u∞, of the limiting problem (P∞). In addition, we are interested
in finding the EDP u∞ satisfies in its set of positivity. In this direction and enforcing the fact
that u∞ is an extremal for the Lipschitz minimization problem, we show that u∞ is indeed an
absolutely minimizer for the Lipschitz constant within its set of positively, Ω∞ := {u∞ > 0}. That
is, it minimizes the Lipschitz constant in every subdomain of Ω∞ when testing against functions
with the same boundary data, see [5]. Hence it is an ∞−harmonic function in its positivity set.
These information are the contents of the first Theorem in this paper which we state now.

Theorem 1. Let up be a minimizer of (Pp), then, up to a subsequence,

up → u∞, as p→∞,

uniformly in Ω and weakly in every W 1,q(Ω) for 1 < q < ∞, where v∞ is a minimizer of (P∞).
The limiting function u∞ satisfies the PDE, ∆∞u∞ = 0, in {u∞ > 0} in the viscosity sense. Here
∆∞u := DuD2u(Du)t is the infinity Laplacian.

It is known that under the assumptions Ω convex and f ≡ const., one can prove uniqueness
for problem (Pp), [23] (see also [1, 12, 13, 14, 16] for related Bernoulli-type problems). However,
uniqueness is not expected in general. Surprisingly enough, under a mild compatibility condition
upon Lip(f), Ω and α, that does not involve convexity assumption on Ω, we prove uniqueness for
the limiting problem (P∞). In particular, any sequence of solutions to problem (Pp) converges to
a same optimal limiting configuration. Such a result such be read as an “asymptotic uniqueness
phenomenon” for problem (Pp). In addition, we have precisely found the optimal shape for the
limiting problem (P∞), that is, it revels where and how optimal configurations Ωp := {up > 0}
stabilize (see also Remark 2).

More precisely, for our next Theorem we shall work under the following geometric compatibility
condition:

Ln

 ⋃
y∈∂Ω

B f(y)
Lip(f)

(y) ∩ Ω

 ≥ α. (H)

It is understood that if f is constant, then (H) is automatically satisfied.
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Theorem 2. Assume (H) and let λ? be the unique positive real number such that the domain

Ω? :=
⋃
x∈∂Ω

B f(x)
λ?

(x) ∩ Ω

has Lebesgue measure precisely α. Then the function u∞, defined as ∆∞u∞ = 0 in Ω?,
u∞ = f on ∂Ω,
u∞ = 0 on ∂Ω? ∩ Ω,

is the unique minimizer for problem (P∞). Hence, if up is a minimizer of (Pp), then the whole
sequence up converges, up → u∞ ,uniformly in Ω and weakly in every W 1,q(Ω) for 1 < q <∞. In
addition, u∞ is given by the formula,

u∞ = max
y∈∂Ω

(f(y)− λ?|x− y|)+ .

Remark 1. As mentioned above, theorem 2 applies in particular to an important physical situation,
namely heat conduction problems with evenly heated domains, i.e., f ≡ T (constant).

Remark 2. From the applied point of view, Theorem 2 provides a rigorous mathematical proof
for the empirical, and widely employed, intuition that says that the configuration Ω? should be
approximately an optimal way of insulating a given body Ω with temperature distribution f .

Remark 3. The fact that the equation that rules the limit configuration is Aronsson’s equation
−∆∞u = 0 is not surprising. Infinity harmonic functions (solutions to −∆∞u = 0) appear
naturally as limits of p−harmonic functions (solutions to ∆pu = div(|∇u|p−2∇u) = 0), [6], and
have applications to optimal transport problems, [9], [11], image processing, etc, see the survey
[5].

In view of Theorem 2, it becomes natural to inquire what happens if condition (H) is violated.
In this direction, we show that (H) is a necessary and sufficient condition for uniqueness to problem
(P∞). Indeed, if (H) does not hold, we manage to find multiple solutions for problem (P∞).
Nevertheless, we could prove the existence of a minimal one.

Theorem 3. Assume that (H) does not hold, then there exists infinitely many minimizers for the
limit problem (P∞). The function

u∞(x) = max
y∈∂Ω

(f(y)− Lip(f)|x− y|)+ ,

is a minimizer with measure of its positivity set

{u∞ > 0} =
⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω

strictly less than α. Moreover, u∞ is the minimal solution, in the sense that any minimizer v∞
verifies v∞(x) ≥ u∞(x).

Remark 4. Note the support of the minimal minimizer for problem (P∞) is given by the set
Ω? :=

⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω.

Finally, we study geometric properties of the limiting free boundary, ∂{u∞ > 0}, as well as
convergence issues of the free boundaries ∂{up > 0}. The next Theorem we state shows that the
the limiting free boundary enjoys the appropriate geometric features suitable for the study of its
geometric measure properties.
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Theorem 4. Let up be extremals to problem (Pp) and assume up → u∞. Then u∞ is uni-
formly Lipschitz continuous in Ω, growths linearly away from the free boundary and is strongly
nondegenerate. That is, for a constant γ > 0,

u∞(x) ≥ γ dist(x, ∂{ux > 0}), ∀x ∈ Ω∞ := {u∞ > 0}

and for any fixed free boundary point x0 ∈ ∂{u∞ > 0}, there holds

sup
Br(x0)

u∞ ≥ γr.

The strategy for showing Theorem 4 is to revisit the p-Dirichlet optimization problem (Pp)
and verify that these properties hold uniformly in p. As a byproduct of this analysis, we obtain
convergence of the free boundaries ∂{up > 0} in the Hausdorff metric.

Theorem 5. Let up be a sequence of minimizers for problem (Pp) and assume up → u∞, solution
to (P∞). Then

∂{up > 0} −→ ∂{u∞ > 0}, as p→∞,

in the Hausdorff distance.

The variational optimization problem (Pp) relates, to some extent, to Bernoulli-type problems
governed by the p-Laplacian operator. This is done through a constant free boundary condition
proven to hold for minimizers of problem (Pp). Indeed, it has been shown (see [10], [21]) that
|∇up| = λup for a positive constant λup along its free boundary ∂{up > 0}. This is the so called
free boundary condition for the optimization problem (Pp): a key information when studying
geometric measure as well as smoothness properties of the free boundary. In this direction we
have proven the following convergence of free boundary conditions.

Theorem 6. Let up be a sequence of minimizers for problem (Pp) and |∇up| = λp along ∂{up >
0}. Denote Ω∞ := {u∞ > 0}. Then, up to a subsequence, (up, λp)→ (u∞, λ∞), with 0 < λ∞ <∞
and

lim
x→ ∂Ω∞
x ∈ Ω∞

u∞(x)
dist(x, ∂Ω∞)

= λ∞.

When Ω is convex and f is constant, Theorem 6 can be seen in connection to the results
of Manfredi, Petrosyan and Shahgholian, [18], who study convergence issues, as p → ∞, for
Bernoulli-type problems.

The rest of the paper is organized as follows: in the next section we prove Theorem 1; in
Section 3 we study the limit problem under condition (H) and in Section 4 we deal with the
complementary case; finally in Section 5 we include some uniform bounds for the sequence up
(showing uniform non-degeneracy of the free boundary) and we study the convergence of the free
boundaries.

2 Proof of Theorem 1

In this section we prove Theorem 1. The main issue of the proof is to find bounds for the energy(∫
Ω
|∇up|p

)1/p of a minimizer that are independent of p.

Proof of Theorem 1 Let us fix hereafter a Lipschitz extension of f , which we shall denoted by
v, among functions within

K∞ =
{
ϕ ∈W 1,∞(Ω)

∣∣ ϕ = f, on ∂Ω, |{ϕ > 0}| = α
}
. (2.1)
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Clearly, since Ω is bounded, v competes in the minimization problem (Pp). Thus using v as a test
function in problem (Pp) we obtain(∫

Ω

|∇up|p
)1/p

≤
(∫

Ω

|∇v|p
)1/p

≤ Lip(v)|Ω|1/p ≤ C,

where C is a constant independent of p. With exponent q <∞ fixed, we now argue as follows(∫
Ω

|∇up|q
)1/q

≤
(∫

Ω

|∇up|p
)1/p

|Ω|p/(q(p−q)) ≤ Lip(v)|Ω|1/p+p/(q(p−q)) ≤ C.

Therefore, the sequence up is uniformly bounded in W 1,q(Ω), and its weak limit as p → ∞, u∞
verifies (∫

Ω

|∇u∞|q
)1/q

≤ Lip(v)|Ω|1/q ≤ C.

Taking q → ∞ and performing a diagonal argument, we obtain a subsequence up that converges
weakly in every W 1,q(Ω), 1 < q <∞ to a limit u∞ ∈W 1,∞(Ω) such that

‖∇u∞‖L∞(Ω) ≤ Lip(v).

Let us now turn our attention towards estimating the Lebesgue measure of {u∞ > 0}. Fixed an
ε > 0, thanks to the uniform convergence, for p large enough, there holds

{u∞ > ε} ⊂ {up > 0}.

Hence we conclude that

Ln ({u∞ > 0}) = lim
ε→0

Ln ({u∞ > ε}) ≤ α.

Therefore, we have proved that u∞ is an extremal for the limit problem (P∞).
It remains to prove that u∞ is indeed ∞-harmonic in its set of positivity. Following [7] let us

recall the definition of viscosity solution.

Definition 2.1. Consider the boundary value problem

F (x,Du,D2u) = 0 in Ω. (2.2)

1. A lower semi-continuous function u is a viscosity supersolution if for every φ ∈ C2(Ω) such
that u− φ has a strict minimum at the point x0 ∈ Ω with u(x0) = φ(x0) we have:

F (x0, Dφ(x0), D2φ(x0)) ≥ 0.

2. An upper semi-continuous function u is a subsolution if for every φ ∈ C2(Ω) such that u−φ
has a strict maximum at the point x0 ∈ Ω with u(x0) = φ(x0) we have:

F (x0, Dφ(x0), D2φ(x0)) ≤ 0.

3. Finally, u is a viscosity solution if it is a super and a subsolution.

If we have a weak p−harmonic function (in the weak sense that is continuous then it is a
viscosity solution. This is the content of our next result.

Lemma 2.1. Let u be a continuous weak solution of ∆pu = 0 in some domain Ω for p > 2. Then
u is a viscosity solution of

−(p− 2)|Du|p−4∆∞u− |Du|p−2∆u = 0 in Ω. (2.3)
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Proof. Let x0 ∈ Ω and a test function φ such that u(x0) = φ(x0) and u− φ has a strict minimum
at x0. We want to show that

−(p− 2)|Dφ|p−4∆∞φ(x0)− |Dφ|p−2∆φ(x0) ≥ 0.

Assume that this is not the case, then there exists a radius r > 0 such that

−(p− 2)|Dφ|p−4∆∞φ(x)− |Dφ|p−2∆φ(x) < 0,

for every x ∈ B(x0, r). Set m = inf |x−x0|=r(u− φ)(x) and let ψ(x) = φ(x) + m/2. This function
ψ verifies ψ(x0) > u(x0) and

−div(|Dψ|p−2Dψ) < 0.

Multiplying by (ψ − u)+ extended by zero outside B(x0, r) we get∫
{ψ>u}

|Dψ|p−2DψD(ψ − u) < 0.

Taking (ψ − u)+ as test function in the weak form of the equation we get∫
{ψ>u}

|Du|p−2DuD(ψ − u) = 0.

Hence,

C(N, p)
∫
{ψ>u}

|Dψ −Du|p ≤
∫
{ψ>u}

〈|Dψ|p−2Dψ − |Du|p−2Du,D(ψ − u)〉 < 0,

a contradiction. This proves that u is a viscosity supersolution. The proof of the fact that u is a
viscosity subsolution runs as above, we omit the details.

We are now ready to prove that the limit limpi→∞ upi = u∞ satisfies the desired PDE in its
set of positivity. In fact, let us check that −∆∞u∞ = 0 in the viscosity sense in the set {u∞ > 0}.
Let us recall the standard proof. Let φ be a smooth test function such that u∞ − φ has a strict
maximum at x0 ∈ {u∞ > 0}. Since upi converges uniformly to u∞ we get that upi − φ has a
maximum at some point xi ∈ Ω with xi → x0 and moreover we have that upi > 0 in a whole fixed
neighborhood of x0 (and therefore upi(xi) > 0 and every upi is p−harmonic there). Next, we use
the fact that upi is a viscosity solution of −∆pup = 0 in the set {upi > 0} and we obtain

−(pi − 2)|Dφ|pi−4∆∞φ(xi)− |Dφ|pi−2∆φ(xi) ≤ 0. (2.4)

If Dφ(x0) = 0 we get −∆∞φ(x0) ≤ 0. If this is not the case, we have that Dφ(xi) 6= 0 for large i
and then

−∆∞φ(xi) ≤
1

pi − 2
|Dφ|2∆φ(xi)→ 0, as i→∞.

We conclude that
−∆∞φ(x0) ≤ 0.

That is u∞ is a viscosity subsolution of −∆∞u∞ = 0.
A similar argument shows that u∞ is also a supersolution and therefore a solution of−∆∞u∞ =

0 in Ω. The proof of Theorem 1 is completed. �
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3 Proof of Theorem 2

In this section we deal with the situation in which we have uniqueness for the limit problem. We
will assume that condition (H) holds, that is,

Ln

 ⋃
y∈∂Ω

B f(y)
Lip(f)

(y) ∩ Ω

 ≥ α.
Note that with the notations of the statement of Theorem 2 this implies that

λ? ≥ Lip(f).

This fact is crucial in the course of next proof.

Proof of Theorem 2 Let v∞ be a minimizer for problem (P∞). Existence of such a minimizer
is assured by Theorem 1. Let us denote

Ω∞ := {v∞ > 0} ⊂ Ω.

For each free boundary point y ∈ ∂Ω∞, let x ∈ ∂Ω be a point satisfying

|x− y| = dist(y, ∂Ω).

Using the Lipschitz continuity of v∞, we obtain the following estimate

f(x) ≤ Lip(v∞)|x− y|. (3.1)

From (3.1), we immediately conclude that⋃
x∈∂Ω

B f(x)
Lip(v∞)

(x) ∩ Ω ⊂ Ω∞, (3.2)

which, in particular, implies

Ln

( ⋃
x∈∂Ω

B f(x)
Lip(v∞)

(x) ∩ Ω

)
≤ α = Ln

( ⋃
x∈∂Ω

B f(x)
λ?

(x) ∩ Ω

)
. (3.3)

From above we obtain
λ? ≤ Lip(v∞). (3.4)

On the other hand, let
Ω? :=

⋃
x∈∂Ω

B f(x)
λ?

(x) ∩ Ω.

Then, u∞, defined as the solution to ∆∞u∞ = 0 in Ω?,
u∞ = f on ∂Ω,
u∞ = 0 on ∂Ω? ∩ Ω

competes in the minimization problem (P∞), thus

Lip(u∞) ≥ Lip(v∞) (3.5)

In the sequel, we will use the fact that u∞ is the best Lipschitz extension of the boundary data f
on ∂Ω and 0 on ∂Ω? ∩Ω together with the geometric compatibility condition (H) to bridge these
inequalities. For that we consider the auxiliary barrier function

ψ(x) := max
y∈∂Ω

(f(y)− λ?|x− y|)+ .
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We initially verify that
Lip(ψ) = λ?. (3.6)

Indeed, let x1 and x2 be two points in Ω. We assume 0 < ψ(x1) < ψ(x2). Let y1 and y2 be such
that

ψ(xi) = f(yi)− λ?|xi − yi|, i=1,2.

From the definition of ψ, we know

ψ(x1) ≥ f(y2)− λ?|x1 − y2|.

We now estimate

0 < ψ(x2)− ψ(x1) ≤ f(y2)− λ?|x2 − y2| − (f(y2)− λ?|x1 − y2|)
≤ λ? (|x1 − y2| − |x2 − y2|)
≤ λ?|x1 − x2|.

Our next step is to check that ψ matches the desired boundary conditions. Well, it is clear
from its definition that

ψ
∣∣
∂Ω?

= 0.

Proving ψ agrees with f on ∂Ω is equivalent to showing that

f(x) = max
y∈∂Ω

{(f(y)− λ?|x− y|)+} , ∀x ∈ ∂Ω. (3.7)

Let us assume, for sake of contradiction, that (3.7) does not hold. This would readily imply that
there exist two points x, y on ∂Ω with

λ?|x− y| < f(y)− f(x).

That is,

λ? < Lip(f) = sup
x,y∈∂Ω

{
|f(x)− f(y)|
|x− y|

}
.

which contradicts (H).
As a remark, note that when we take two pints x, y ∈ ∂Ω we get

|ψ(x)− ψ(y)| = |f(x)− f(y)| ≤ Lip(f)|x− y|

Thus Lip(ψ) = max(λ?,Lip(f)) = λ?.
Once verified that ψ has the same boundary condition as u∞, from the fact that u∞ is the

best Lipschitz extension its boundary data, we know

Lip(u∞) ≤ Lip(ψ) = λ?. (3.8)

Now let us show that u∞ coincides with the barrier

ψ(x) = max
y∈∂Ω

(f(y)− λ?|x− y|)+ .

We have that u∞ is a minimizer for the limit problem, hence we must have

u∞(x) ≥ max
y∈∂Ω

(f(y)− λ?|x− y|)+ .

In fact, assume that this is not the case, then there exists x0 such that u∞(x0) < ψ(x0). Now,
considering quotients that involve x0 and points on ∂Ω we can easily conclude that Lip(u∞) >
λ? = Lip(ψ), a contradiction since ψ is a competitor in the limit problem.

8



Therefore, we obtain that both functions have the same positivity set (both sets have the same
measure and one is included in the other).

Now, arguing as before, assume that there exists x0 such that u∞(x0) > ψ(x0). In this case,
comparing quotients defining the Lipschitz constant with x0 and points on the boundary of the
positivity set, we get Lip(u∞) > λ? = Lip(ψ). This contradicts again the fact that u∞ is optimal
for the limit problem.

Combining (3.2), (3.3) (3.4) and (3.8), together with the fact that u∞ and ψ are ∞-harmonic
in Ω∗ with the same value on the boundary of this set, we finish up the proof of Theorem 2. �

4 Proof of Theorem 3

Now let us show that when (H) does not hold there is no uniqueness for minimizers of the limit
problem.

Proof of Theorem 3 As before, let λ? be such that

Ω? :=
⋃
x∈∂Ω

B f(x)
λ?

(x) ∩ Ω

has Lebesgue measure precisely α and assume that (H) does not hold, that is,

Lip(f) > λ?.

Let
D :=

⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω.

We have
Ln(D) < α.

By our previous result we have that

ψ(x) := max
y∈∂Ω

(f(y)− Lip(f)|x− y|)+

is an extremal for the limit problem with measure Ln(D).
Now, let v∞ be an extremal for the limit problem with measure α. Then, as v∞ = f on ∂Ω

we have
Lip(v∞) ≥ Lip(f) = Lip(ψ).

On the other hand ψ is a competitor in the limit problem with measure α and hence

Lip(ψ) ≥ Lip(v∞).

We conclude that
Lip(ψ) = Lip(v∞) = Lip(f)

and then ψ is also a maximizer for the limit problem.
Moreover, we have that

ψ(x) ≤ v∞(x), x ∈ D,

if not the Lipschitz constant of v∞ is greater than Lip(ψ). Indeed, let us assume that there exists
x0 ∈ D such that

ψ(x0) > v∞(x0).

That is,
max
y∈∂Ω

(f(y)− Lip(f)|x0 − y|)+ > v∞(x0)
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From where we get that there exists y ∈ ∂Ω such that

f(y)− Lip(f)|x0 − y| > v∞(x0)

that is to say that (using that v∞ = f on ∂Ω),

v∞(y)− v∞(x0) > Lip(f)|x0 − y|

that clearly implies that
Lip(f) < Lip(v∞).

Therefore, we have that ψ is the minimal extremal for the limit problem and hence we obtain
the following estimate for the support of any extremal v∞,

D :=
⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω ⊂ {v∞ > 0}.

Now, let
Dδ :=

⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω +B(0, δ),

with δ small such that
Ln(Dδ) < α.

In this set Dδ, let us consider v∞ the solution to ∆∞v∞ = 0 in Dδ,
v∞ = f on ∂Ω,
v∞ = 0 on ∂Dδ.

Since D ⊂ Dδ, we have
Lip(v∞) = Lip(f).

To prove this fact, let us consider in the set Dδ the boundary value

F (x) =
{
f(x) x ∈ ∂Ω,
0 x ∈ ∂Dδ ∩ Ω.

This boundary datum F is a Lipschitz function with Lipschitz constant given by

Lip(F ) = sup
x,y∈∂Dδ

|F (x)− F (y)|
|x− y|

.

Let us estimate this Lipschitz constant Lip(F ). If x, y ∈ ∂Dδ ∩ Ω then

|F (x)− F (y)|
|x− y|

= 0 < Lip(f).

When x, y ∈ ∂Ω, clearly
|F (x)− F (y)|
|x− y|

≤ Lip(f).

And finally when x ∈ ∂Ω and y ∈ ∂Dδ ∩ Ω we have

|F (x)− F (y)|
|x− y|

=
|f(x)
|x− y|

< Lip(f).

We are using the fact that D ⊂ Ωδ and hence the distance |x− y| is bigger than f(x)/Lip(f), to
see this fact, just take y ∈ ∂D then for any x ∈ ∂Ω we have

f(x)− Lip(f)|x− y| ≤ 0
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that is to say

|x− y| ≤ f(x)
Lip(f)

.

Therefore we conclude that
Lip(F ) = Lip(f),

and since v∞ has the same Lipschitz constant as F (it is its best possible Lipschitz extension) we
conclude that

Lip(v∞) = Lip(f).

Hence v∞ is also an extremal for the limit problem that is positive on ∂D ⊂ (Dδ)o (the strong
maximum principle holds for ∞-harmonic functions) and hence we conclude that v∞ 6= ψ.

With these estimates we can conclude that there is no strict monotonicity with respect to the
measure in the limit problem. �

Now, we can state further consequences of our previous results.

Theorem 7. Assume that

β := Ln

( ⋃
x∈∂Ω

B f(x)
Lip(f)

(x) ∩ Ω

)
< α.

Then we have
lim
p→∞

Pp(α) = lim
p→∞

Pp(β)

in the sense that if up is an extremal for Pp(α) and vp is an extremal for Pp(β) then

lim
p→∞

(∫
Ω

|∇up(X)|pdX
)1/p

= lim
p→∞

(∫
Ω

|∇vp(X)|pdX
)1/p

and moreover,
vp → ψ and up → u∞

uniformly in Ω with

Lip(u∞) = Lip(ψ) = Lip(f) and ψ(x) ≤ u∞(x).

One possible conclusion of this fact is that the boundary datum f is so that the limit problem
has many solutions and hence we are “wasting measure” when considering the problem with α
instead of β. In fact, the value of the minimum for Pp(α) and for Pp(β) are almost the same
for p large and the minimal solution of the limit problem is ψ (which is the unique minimizer for
P∞(β)).

5 Uniform estimates and free boundary convergence issues

This section is devoted to establish Theorems 4, 5 and 6. For that we shall revisit the study of the
p-Dirichlet energy minimization problem with volume constraint, (Pp) carried out in [21] and in
[10]. Our strategy is to seize uniform-in-p properties and afterwards explore their impact on the
limiting problem (P∞).

It is well established in the literature that ordinary techniques from the Calculus of Variations
are not suitable to approach directly optimal design problems with volume constraints. Indeed, to
establish existence of a minimizer for Problem (Pp) requires a careful analysis, involving penalty
method and geometric measure perturbation techniques.

Penalization version of problem (Pp) can be easily set-up. Indeed, for each L > 0, let

%L(t) := L(t− α)+. (5.1)

11



We then define the L-penalized problem for the p-Dirichlet integral, as

min
{∫

Ω

|∇u(X)|pdX + %L ({u > 0})
∣∣ u ∈W 1,p(Ω), u = f on ∂Ω

}
. (PL

p )

Notice that problem (PL
p ) does not involve volume constraint anymore, thus the proof of existence

of a minimizer, uLp , for problem (PL
p ) follows a standard scheme from the Calculus of Variations.

It is also simply to check that uLp ≥ 0 and ∆pu
L
p is a non-negative Radon measure supported on

∂{uLp > 0}. In particular, uLp is p-harmonic in its set of positivity, that is, uLp satisfies the following
PDE

∆pu
L
p = 0, in {uLp > 0}.

Although locally C1,α within {uLp > 0}, notice that Lipschitz is the optimal regularity for uLp in
Ω. This is because ∇uLp jumps from positive slope to zero along the free boundary ∂{uLp > 0}.
Indeed it has been proven in [21, 10] that for each L fixed uLp is locally Lipschitz continuous in
Ω. Our next lemma gives the precise dependence of the Lipschitz norm of uLp with respect to p
and the penalty charge L. This lemma is essentially taken from [25]. We present a proof here as
a courtesy to the readers.

Lemma 1. Let uLp be a minimizer for (PL
p ). Then,

‖∇uLp ‖L∞(Ω) ≤ CL1/p,

where C is a constant that depends only on dimension, f and α.

Proof. Since we are interested in the limiting problem, we will only deal with the case p� 1. We
will follows the approach suggested in [3], keeping track of the precise constants that appear on
the estimates. From the minimality of uLp , we deduce, for any ball B = Bd(x0) ⊂ Ω, centered at
a free boundary point, i.e., x0 ∈ ∂{uLp > 0}, there holds

L · Ln
(
{x ∈ Bd(x0)

∣∣ uLp (x) = 0}
)
≥ c0

(∫
Ω

∣∣∇ (uLp − hp
)

(x)
∣∣p dx) , (5.2)

where hp is the p-harmonic function in Bd(x0) that agrees with uLp on ∂Bd(x0) and c0 is a constant
that depends only upon dimension. For any direction ν, we define

rν := min
{
r
∣∣ 1

4
≤ r ≤ 1 and uLp (x0 + drν) = 0

}
if such a set is nonempty; otherwise, we put rν = 1. Taking into account that

uLp (x0 + drνν) = 0

whenever rν < 1, we can compute,

hp(x0 + drνν) =
∫ 1

rν

d

dr
(uLp − hp)(x0 + drν)dr

≤ d · (1− rν)1/p′ ×
[∫ 1

rν

|∇(hp − uLp )(x0 + rν)|pdr
]1/p

.

(5.3)

Here 1
p + 1

p′ = 1. Now, by the Harnack inequality, we know

inf
B 2

3 d
(x0)

hp ≥ c1hp(x0), (5.4)
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for a constant c1 > 0 that depends only on dimension (see, for instance, [15]). Let us consider the
following barrier function, b, given by

∆pb = 0 in B1(0) \B 2
3
(0),

b = 0 on ∂B1(0),
b = c1 in B 2

3
(0),

(5.5)

where c1 is the universal constant in (5.4). By the Hopf’s maximum principle, there exists a
universal constant c2 > 0, depending only on dimension, such that

b(x) ≥ c2 (1− |x|) . (5.6)

By the maximum principle and (5.6) we can write

hp(x0 + dx) ≥ hp(x0) · b(x) ≥ c2hp(x0) · (1− |x|). (5.7)

Combining (5.2) and (5.7) we end up with

dp ·
[∫ 1

rν

|∇(hp − uLp )(x0 + rν)|pdr
]
≥ c3hpp(x0) · (1− rν). (5.8)

Integrating (5.8) with respect to ν over Sn−1, taking into account the definition of rν , we find(
hp(x)
d

)p
·
∫
Bd(x)\Bd/4(x)

χ{uLp=0}dx ≤ C4

∫
Bd(x)

∣∣∇ (hp − uLp ) (x)
∣∣p dx. (5.9)

If we replace, in all of our arguments so far, Bd/4(x) by Bd/4(x), for any x ∈ ∂Bd/2(x), we obtain(
hp(x)
d

)p
·
∫
Bd(x)\Bd/4(x)

χ{uLp=0}dx ≤ C̃4

∫
Bd(x)

∣∣∇ (hp − uLp ) (x)
∣∣p dx, (5.10)

for every x ∈ ∂Bd/2(x).
Integrating (5.10) with respect to x, yields:(

hp(x)
d

)p
·
∣∣{x ∈ Bd(x)

∣∣ uLp (x) = 0
}∣∣ ≤ C5

∫
Bd(x)

∣∣∇ (hp − uLp ) (x)
∣∣p dx. (5.11)

Now we argue as follows: let ρ := dist(x, ∂{uLp > 0}) and for each 0 < δ << 1, denote hδp the
p-harmonic function in Bρ+δ(x) that agrees with uLp on ∂Bρ+δ(x). Combining (5.2) and (5.11)
together with standard elliptic estimate, we deduce

uLp (x) = hδ(x) + o(1) ≤ C6L
1/p(ρ+ δ) + o(1), as δ ↘ 0, (5.12)

for a constant C6 that depends on dimension, f and α. Letting δ ↘ 0 in (5.12) we finally conclude

uLp (x) ≤ C6L
1/pdist (x, ∂Ω?λ) ,

which clearly implies that uLp is Lipschitz continuous up to the free boundary ∂{uLp > 0} and
‖∇uLp ‖∞ . L1/p. Lemma 1 is proven.

Another important piece of information concerns uniform non-degeneracy.

Lemma 2. Let x ∈ {uLp > 0} be a free boundary point. Then

L−1/pc · dist
(
x, ∂{uLp > 0}

)
≤ uLp (x) (5.13)
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for a constant c that depends only upon dimension, f and α. Moreover the following strong non-
degeneracy holds

sup
Br(x0)

uLp ≥ L−1/pc1r, (5.14)

for any free boundary point x0 ∈ ∂{uLp > 0}. The constant c1 depends only on dimension, f and
α and is independent of p.

The proof of Lemma 5.13 is, by now, classical in variational free boundary theory. It relies on
“cutting” a small hole around the free boundary point and comparing the result with the original
optimal design. For further details we refer the readers to [25], Theorem 6.2. As observed in the
proof of Lemma 1, the fact that c and c1 are universal is a consequence of uniform-in-p Harnack
inequality and uniform-in-p Hopf boundary maximum principle. We skip the details here.

The penalty method strategy is based on the idea that if L is large enough (but still fi-
nite), one expects that minimizers for (PL

p ) would rather prefer to obey the volume constraint,
Ln
(
{uLp > 0}

)
≤ α. Therefore it would be a solution for the original problem, (Pp). Such a

strategy does work, [21, 10] and [25], however it relies on a fine geometric measure perturbation
approach. The following theorem is a consequence of the analysis carried out in [25], section 7:

Lemma 3. There exists a universal constant C, depending only on dimension, f and α, but
independent of p, such that if

L ≥ Cp,
then

Ln
(
{uLp > 0}

)
≤ α.

Therefore, uCpp is a solution to problem (Pp).

It is important to notice that any minimizer, up, of problem (Pp) is also a minimizing function
for problem (PCp

p ). As a consequence, combining Lemma 1, 2 and 3, we obtain the following
Theorem, with estimates that are uniform in p.

Theorem 8. There exists a constant K > 0, depending on dimension, f and α, but independent
of p such that for any solution up of (Pp), there holds

‖∇up‖L∞(Ω) ≤ K. (5.15)

Moreover, up growth linearly uniform-in-p away from the free boundary, that is, for a constant
γ > 0 independent of p,

up(x) ≥ γ dist(x, ∂{up > 0}), ∀x ∈ {up > 0}. (5.16)

In addition, up is uniformly strong nondegenerate, that is, for any fixed free boundary point x0 ∈
∂{up > 0},

sup
Br(x0)

up ≥ γr, (5.17)

where γ > 0 is independent of p.

Proof of Theorem 4. Notice that lim
p→∞

p1/p = 1. Passing the limit as p goes to infinity in (5.15),

(5.16) and (5.17), we prove Theorem 4. �

Theorem 8 actually gives more qualitative information than Theorem 4 itself. Indeed, with
Theorem 8 we can address free boundary convergence issues. In what follows we prove convergence
of the free boundaries in the Hausdorff metric, Theorem 5.

Proof of Theorem 5. For any set A ⊂ Rn, and ε > 0 fixed, let Γε(A) denote the ε-neighborhood
of A, that is,

Γε(A) :=
{
x ∈ Rn

∣∣ dist(x,A) < ε
}
.
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We have to show that given ε > 0, for p� 1, depending on ε > 0, there hold

∂{up > 0} ⊂ Γε (∂{u∞ > 0})
and

∂{u∞ > 0} ⊂ Γε (∂{up > 0}) .

Let ξ be an arbitrary point on ∂{up > 0} and let us assume, for sake of contradiction, that
ξ 6∈ Γε(∂{u∞ > 0}), that is,

dist(ξ, ∂{u∞ > 0}) ≥ ε.

If u∞(ξ) > 0, then by linear growth, we would have

u∞(ξ) ≥ γdist(ξ, ∂{u∞ > 0}) ≥ γε,

Thus, from uniform convergence, if p � 1, up(ξ) ≥ 2
3γε, driving us to a contradiction. If we

assume u∞(ξ) = 0, then u∞
∣∣
Bε(ξ)

≡ 0. However, by strong nondegeneracy, we know that

sup
B ε

2

up ≥ γ0
ε

2
,

and again it would drive us to a contraction on the uniform convergence of up to u∞. We have
proven

∂{up > 0} ⊂ Γε (∂{u∞ > 0}) .

The other inclusion is proven similarly. �

Proof of Theorem 6. Initially let us recall some further facts from the p-Dirichlet minimization
problem (Pp). Recall that the free boundary ∂{up > 0} is a C1,α smooth surface up to a Hn−1

closed and negligible set (see [10], [21], [8]). From the free boundary condition |∇up| = λp, we
deduce that

lim
x→ ∂Ωp
x ∈ Ωp

up(x)
dist(x, ∂Ωp)

= λp. (5.18)

Hereafter, Ωp denotes the set of positivity of up. From uniform convergence, up ⇒ u∞, given
a point x ∈ Ω∞, we may assume x ∈ Ωp for p sufficiently large. Now, from the free boundary
convergence result, Theorem 5, there holds

dist(x, ∂Ω∞) = dist(x, ∂Ωp) + o(1), as p↗∞. (5.19)

Here, o(1) is an error that goes to zero as p goes to infinity. Thus, using once more the Hausdorff
metric convergence of the free boundary and uniform convergence of up to u∞, together with
(5.18) and (5.19), we reach the following chain

u∞(x)
dist(x, ∂Ω∞)

=
up(x)

dist(x, ∂Ωp)
+ o(1)

= λp + o(1) + o(dist(x, ∂Ωp))
= λ∞ + o(1) + o(dist(x, ∂Ωp))
= λ∞ + o(1) + o(dist(x, ∂Ω∞)).

Letting p→∞ the proof of Theorem 6 is complete. �
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