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Abstract. In this paper we consider positive boundary blow-up
solutions to the problem ∆u = uq(x) in a smooth bounded domain
Ω ⊂ Rn. The exponent q(x) is allowed to be a variable positive
Hölder continuous function. The issues of existence, asymptotic
behavior near the boundary and uniqueness of positive solutions
are considered. Furthermore, since q(x) is also allowed to take
values less than one, it is shown that the blow up of solutions on
∂Ω is compatible with the occurrence of dead cores, i.e., nonempty
interior regions where solutions vanish.

1. Introduction

Boundary blow-up problems for elliptic equations have been widely
considered in the last few years. In general, they take the form

(1.1)

{
∆u(x) = f(x, u(x)) in Ω,
u(x) = +∞ on ∂Ω,

where Ω is a smooth bounded domain of RN (say C2,η) and f(x, u)
is a given function. By a solution of (1.1) we understand a function
u ∈ C2(Ω) verifying the equation in the classical sense and u(x) →∞
as x → ∂Ω. The solutions to problem (1.1) are known as “large”
solutions. We refer to the pioneering papers [4], [17] and [25], and to
[14], [23] and [26] for a large list of references.

In most of the previous works, the dependence on x of f was not
really significative. Three types of nonlinearities have been frequently
treated: f = f(u), f(x, u) = a(x)g(u) or f(x, u) controlled in terms of
a function g(u) which does not depend on x.

For the particular case where f is increasing and does not depend
on x, f = f(u), it is well known that the so-called Keller-Osserman
condition is necessary and sufficient for existence of solutions to (1.1):

(1.2)

∫ ∞

x0

ds√
F (s)

< +∞

for some x0 ∈ R, where F (u) =
∫ u

0
f(s) ds is a primitive of f (see [17]

and [25]). Note that it has been recently shown that the monotonicity
of f is not necessary, even for large u as shown in [13] (see also [10],
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where an existence result was obtained with a nonmonotonic f which
is however increasing for large u).

When the dependence of f on x is of the form f(x, u) = a(x)g(u),
and the weight a(x) is bounded, the Keller-Osserman condition on g is
also necessary and sufficient for existence so that the presence of a(x)
is not really important. When a(x) is not bounded on ∂Ω the situation
is slightly different: if the growth of a near ∂Ω is not too strong then
solutions to (1.1) exist when g satisfies (1.2) (see [5], [6] and [28] for
the case g(t) = tp, p > 1). However, solutions may exist with a g not
satisfying (1.2), provided a is singular enough on ∂Ω. We refer the
reader to [5] and [24].

Thus, at this point it is natural to ask what happens for a function
f(x, u) that depends on x in such a way that condition (1.2) (where
F (u) is replaced by F (x, u) =

∫ u

0
f(x, s) ds) is satisfied at some points

of Ω and not at other points. If we assume f(x, u) to be continuous in
Ω×R (so the presence of an unbounded weight is ruled out), is it really
needed that (1.2) is satisfied at all points of Ω to obtain existence of a
solution to (1.1)?

In this direction, the problem (1.1) with f(x, u) = −λu + a(x)uq(x)

with a > 0 in Ω and q > 1 in Ω, q = 1 on ∂Ω, was considered in the
pioneering paper [21], and the existence of a maximal and a minimal
positive solution was obtained (see also [9] and [22] for works dealing
with nonlinearities with a variable exponent and homogeneous Dirichlet
boundary conditions). Notice that condition (1.2) (with F (x, u) =∫ u

0
f(x, s) ds) holds at points where q(x) > 1, while it ceases to be true

when q(x) ≤ 1. In this respect, the results in [21] show that (1.2) may
fail on the boundary ∂Ω, and the existence of positive solutions is still
possible.

In the present paper we are considering the problem:

(1.3)

{
∆u = uq(x) in Ω,
u = +∞ on ∂Ω,

where the exponent q(x) will be a positive Hölder continuous function.
We note that a distinctive feature in this work with respect to the
hypotheses in [21] is that q < 1 is permitted at some points in Ω. In
this respect, one of the contributions of the present work is to show
that condition (1.2) is only needed in a neighborhood of the boundary
in order to have a positive solution, while it may fail not only on the
boundary, but also at interior points.

We mention in passing that the case where q is constant is well
understood, see [2], [3], [7], [11], [12], [15], [16], [18], [20], [27], but, at
the best of our knowledge, the only previous work where large solutions
with nonlinearities with a variable exponent were considered is [21].



LARGE SOLUTIONS WITH VARIABLE EXPONENT 3

In addition to existence of positive solutions to (1.3), we also consider
uniqueness and the determination of the blow-up rate of solutions near
the boundary of the domain. Our techniques are mainly based on
comparison, using as a reference problem (1.3) with a q constant.

Now we state our results. We first show that positive solutions to
(1.3) are only possible if q ≥ 1 on ∂Ω. When q is constant, this is
known to hold (see Theorem 2 in [19] and Theorem 2.2 in [8]).

Theorem 1. Let q ∈ Cη(Ω) be a nonnegative function, and assume
there exists x0 ∈ ∂Ω such that q(x0) < 1. Then problem (1.3) has no
positive solutions. Moreover, the same conclusion holds if q ≤ 1 in a
whole neighborhood of x0 ∈ ∂Ω relative to Ω.

Remark 1. As kindly pointed out to the authors by the referee of this
paper, a nonexistence result for the variable exponent related problem{

∆u = −λu + a(x)uq(x) in Ω,
u = +∞ on ∂Ω,

can be obtained by means of Theorem 7.1 in [21] provided the set
{q(x) > 1} is strictly contained in Ω, q = 1 in a whole neighborhood
of ∂Ω and λ is conveniently large.

Thanks to Theorem 1 we always need q ≥ 1 on ∂Ω in order to
have positive solutions. We will make the assumption that q > 1 in a
neighborhood of ∂Ω, although q may be 1 on ∂Ω. We also remark that
q ≤ 1 is permitted at interior points, and still we get a solution.

Theorem 2. Let q ∈ Cη(Ω) be a positive function and assume q > 1
in the strip Uδ = {x ∈ Ω : dist(x, ∂Ω) < δ} for some δ > 0. Then
problem (1.3) admits at least a positive solution.

It is natural to ask under which conditions the solution provided by
Theorem 2 is unique. It turns out that q > 1 on ∂Ω is sufficient as long
as q ≥ 1 in the whole Ω.

Theorem 3. Assume q ∈ Cη(Ω) verifies q ≥ 1 in Ω and q > 1 on ∂Ω.
Then problem (1.3) admits a unique positive solution.

The approach for proving Theorem 3 is to obtain the boundary be-
havior of all positive solutions. We remark that this is a local issue,
and hence the obtained behavior is similar to that in the case where q
is constant, at least at points where q > 1. In the rest of the paper,
d(x) will stand for the function dist(x, ∂Ω).

Theorem 4. Assume q ∈ Cη(Ω) and let x0 ∈ ∂Ω with q(x0) > 1. If u
is a positive solution to (1.3), then

(1.4) lim
x→x0

d(x)α(x)u(x) = (α(x0)(α(x0) + 1))
1

q(x0)−1 ,

where α(x) = 2/(q(x)− 1).
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Remark 2. As a byproduct of the proof of Theorem 4, the exact rate
of the normal derivative of u can also be obtained. More precisely we
have

lim
x→x0

d(x)α(x)+1∇u(x) · ν(x̄) = α(x0)(α(x0)(α(x0) + 1))
1

q(x0)−1 ,

where ν is the outward unit normal and x̄ is the closest point to x lying
on ∂Ω.

Now, another natural question arises: is it essential that q ≥ 1 in
the whole Ω to have uniqueness? As we are showing next, the answer
is no. Uniqueness of positive solutions to (1.3) also holds if q < 1 at
interior points if we assume q is large enough on ∂Ω. As a technical
hypothesis, we also need q to be smooth in a neighborhood of ∂Ω.

Theorem 5. Assume q ∈ Cη(Ω) ∩ C2(Uδ) for some δ > 0 where Uδ =
{x ∈ Ω : dist(x, ∂Ω) < δ}, q > 0 in Ω and q > 3 on ∂Ω. Then there
exists a unique solution to (1.3), which in addition verifies

(1.5) u(x) = (α(x)(α(x) + 1))
1

q(x)−1 d(x)−α(x) + O(d(x)β)

for every β ∈ (0, q0−3
q0−1

), where α(x) = 2/(q(x)− 1) and q0 = min∂Ω q.

It should be noticed that in the case q constant it was shown in [18]
that u = Ad−α + O(1) as d → 0, α as above, A = α(α + 1)1/(q−1),
provided that q ≥ 3 (such feature was more precisely described in [16]
where a two-term asymptotic expansion for u near ∂Ω was obtained).
Theorem 5 provides in particular a substantial extension of the previous
results covering the case where q is variable.

On the other hand and as a counterpart to the uniqueness question
studied in Theorem 5, the fact that q achieves values less than one in Ω
allows the existence of solutions u of (1.3) that exhibit simultaneously
a singular behavior on ∂Ω together with the presence of a dead core,
i.e., a nonempty interior region O in Ω where u vanishes. Our next
result asserts that dead cores arise provided the subdomain Q of Ω
where q < 1 is large enough. We provide a statement with hypotheses
that are not optimal for the sake of clarity.

Theorem 6. Suppose that q ∈ Cη(Ω) is a positive functions satisfying
q > 1 on ∂Ω while Q := {x ∈ Ω : q(x) < 1} constitutes a smooth
subdomain of Ω. For λ > 0 let Ωλ = {λx : x ∈ Ω} and let qλ ∈ Cη(Ωλ)
be given by qλ(x) = q(x/λ). Then, there exists λ0 > 0 such that for
λ ≥ λ0 all positive solutions uλ to

(1.6)

{
∆u = u qλ(x) in Ωλ,
u = +∞ on ∂Ωλ,

possesses a nonempty dead core Oλ := {x ∈ Ωλ : uλ = 0}. Moreover,
Oλ progressively fills Qλ as λ →∞.
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Remark 3. It is possible to exhibit examples showing that dead cores
are absent in problem (1.3) if the region {q < 1} does not exceed a
critical size.

Finally, we briefly consider the issue of boundary behavior of positive
solutions to (1.3) in the case where q = 1 somewhere on ∂Ω. Since the
problem becomes linear there it is to be expected that the exact rate
of divergence of the solutions u can not be obtained, as happens in [5].
It is possible however to obtain the exact behavior of the logarithm of
u, provided q − 1 behaves like a nonnegative power of the distance.

Theorem 7. Assume q ∈ Cη(Ω) and let x0 ∈ ∂Ω be a point with
q(x0) = 1. If there exist positive constants γ and Q such that

lim
x→x0

q(x)− 1

d(x)γ
= Q

then for every positive solution to (1.3):

(1.7) lim
x→x0

d(x)γ log u(x)

− log d(x)
=

2γ + 2

Q
.

Of course it would be desirable to obtain uniqueness of solutions to
(1.3), at least in the very special case q(x) = 1 + Qd(x)γ. According
to (1.7), it would be natural to deal with the equation satisfied by
v = log u, that is,

(1.8)

{
∆v + |∇v|2 = eQd(x)γv in Ω,
v = +∞ on ∂Ω.

However, the operator in the left-hand side of (1.8) does not have the
right monotonicity, and it could even happen that uniqueness does not
hold. We leave this question as an open problem.

The paper is organized as follows: in Section 2 we prove Theorems 1
and 2. Section 3 will be dedicated to prove the boundary estimates,
Theorems 4 and 7. The uniqueness results, Theorems 3 and 5 will be
collected in Section 3 while the issue of dead cores (Theorem 6) will be
analyzed in Section 4.

2. Existence

In this section, we deal with the issues of existence and nonexistence
of positive solutions to problem (1.3). We first show that there are
no solutions if q < 1 somewhere on ∂Ω (alternatively, q ≤ 1 in a
neighborhood of a boundary point). Throughout the paper, we denote
by B(x, r) the ball of center x and radius r.

Proof of Theorem 1. Let r > 0 such that q < 1 in B(x0, 3r) ∩ Ω, and
choose a smooth subdomain D of B(x0, 3r) ∩ Ω such that ∂D ∩ ∂Ω
contains B(x0, 2r) ∩ ∂Ω. Let ψ be a smooth function supported on
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∂D which verifies 0 ≤ ψ ≤ 1, ψ = 1 on B(x0, r) ∩ ∂Ω and ψ = 0 on
∂D \ (B(x0, 2r) ∩ ∂Ω). It can be checked that the problem

{
∆z = zq(x) in D,
z = nψ on ∂D,

has a unique positive solution zn for every positive integer n (see the
proof of Theorem 2 for a similar argument). Moreover, if (1.3) has a
positive solution, it follows by comparison that

(2.1) u ≥ zn in D,

since u ≥ nψ on ∂D for every n.

On the other hand, we have zn = nwn, where wn solves
{

∆w = nq(x)−1wq(x) in D,
w = ψ on ∂D.

Now 0 ≤ wn ≤ 1 and q(x) < 1, so it is standard to conclude (for a
subsequence if necessary) that wn → w0 as n → ∞, where w0 is the
harmonic function in D which equals ψ on ∂D. Since w0 > 0 in D, we
obtain that zn → +∞ uniformly in compact subsets of D∪ (B(x0, r)∩
∂Ω). But then (2.1) implies u = +∞ in D ∪ (B(x0, r) ∩ ∂Ω), which is
not possible. Hence no positive solution to (1.3) exists.

Finally, observe that the previous argument continues to be valid
– with only minor changes – if q ≤ 1 in a neighborhood of a point
x0 ∈ ∂Ω. Thus the proof is concluded. ¤

Now we prove our existence result. The approach is the standard
one: we construct solutions with finite datum on ∂Ω and then show
that they are locally uniformly bounded.

Proof of Theorem 2. Let n be a positive integer. Then the problem

(2.2)

{
∆u = uq(x) in Ω,
u = n on ∂Ω,

has a unique positive solution. Indeed, u = 0 is a subsolution and
ū = n is a supersolution, and then, by a well-known approach (see
[1]) the existence of a classical solution u ∈ C2,η(Ω) follows. To prove
uniqueness, let u, v be positive solutions and consider the set Ω0 =
{x ∈ Ω : u < v}. If Ω0 is nonempty, since ∆u ≤ ∆v in Ω0 and u = v
on ∂Ω0, it follows from the maximum principle that u > v in Ω0, which
is impossible. Thus u ≥ v and the symmetric argument shows u = v,
giving uniqueness. The solution to (2.2) will be denoted by un.

Thanks to uniqueness, the solutions un is increasing in n. Indeed,
un+1 is a supersolution to (2.2) and by uniqueness un+1 ≥ un.

Let us prove next that un is bounded in compact subsets of Ω. Taking
δ small, we can assume un > 1 in a strip Uδ = {x : dist(x, ∂Ω) < δ} for
all n. Fix ε with 0 < ε < δ and a point x0 such that d(x0) = ε/2. Since
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q > 1 in Uδ, we have that q ≥ q0 > 1 in B(x0, ε/4) and thus ∆un ≥ uq0
n

in B(x0, ε/4). Hence un ≤ U , the unique solution to
{

∆U = U q0 in B(x0, ε/4),
U = +∞ on ∂B(x0, ε/4).

This shows that un is uniformly bounded in B(x0, ε/8). A compactness
argument proves that un is uniformly bounded in the set {x ∈ Ω :
d(x) = ε/2}, and since every un is subharmonic, we obtain uniform
bounds in the whole {x ∈ Ω : d(x) > ε/2}. Since ε was arbitrarily
small, the sequence {un} is locally uniformly bounded in Ω.

Finally, it is standard to obtain that {un} is precompact in C2
loc(Ω),

and thus, passing to a subsequence, un → u in C2
loc(Ω), where u verifies

∆u = uq(x) in Ω. Notice that, since un is increasing in n, it also follows
that the whole sequence converges to u. Moreover, u = +∞ on ∂Ω,
and is thus a positive solution to (1.3). This finishes the proof. ¤

3. Boundary estimates

This section is devoted to prove the assertions concerning the bound-
ary behavior of the solutions to (1.3). To prove Theorem 4 we use ideas
from [6]. To this aim, it is important to obtain first a rough estimate
for the solutions. This is the content of the next lemma.

Lemma 8. Assume x0 ∈ ∂Ω is such that q(x0) > 1, and let u be
a positive solution to (1.3). Then there exist a neighborhood V of x0

(relative to Ω) and positive constants C1, C2 such that

(3.1) C1d(x)−α(x) ≤ u(x) ≤ C2d(x)−α(x) in V ,

where α(x) = 2/(q(x)− 1).

Proof. Choose a neighborhood V ′ of x0 such that q > 1 in V ′ (we
can take for instance a ball centered at x0 intersected with Ω). By
diminishing the radius of V ′, we can select a smaller neighborhood V
such that B(x, d(x)/2) ⊂ V ′ for x ∈ V . Take x ∈ V and define the
scaled function

v(y) = d(x)α(x)u

(
x +

d(x)

2
y

)
,

for y ∈ B := B(0, 1). It can be checked that the function v solves the
equation

∆v =
1

4
d(x)α(x){q(x)− q(x + (d(x)/2)y)} vq(x + (d(x)/2)y) in B.

Since q is η−Hölder, there exists a constant such that∣∣∣∣q(x)− q(x +
d(x)

2
y)

∣∣∣∣ ≤ Cd(x)η,
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and hence

∆v ≥ Cvq(x + (d(x)/2)y) in B.

for some positive constant C (we are using throughout the paper the
letter C to denote constants, that may change from one line to another
but are independent of the relevant quantities). That is, v is a subso-

lution to the equation ∆v = Cvq(x + (d(x)/2)y) in B. Now we will
construct a supersolution to the same equation which blows up on the
boundary of B.

Let φ be the solution to −∆φ = 1 in B with φ = 0 on ∂B. For a large
positive A0 and some β > 0 to be chosen, we define v̄ = A0φ

−β. Then

v̄ will be a supersolution to ∆v = Cvq(x + (d(x)/2)y) in B provided
that

β(β + 1)|∇φ|2 + βφ

≤ CA
{q(x + (d(x)/2)y)− 1}
0 φ{β + 2− βq(x + (d(x)/2)y}

for all y ∈ B. This inequality can be obtained choosing β large in order
to have

β + 2− βq

(
x +

d(x)

2

)
< 0,

and then A0 large enough. By comparison, we arrive at v ≤ v̄ in B,
and setting y = 0 we obtain

u(x) ≤ A0φ(0)−βd(x)−α(x)

for x ∈ V . This shows the upper inequality in (3.1).

To prove the lower inequality we take a point x ∈ V ′ and denote
by x̄ the closest point to x on ∂Ω. Modulus an extra reduction of V ′
if necessary it can be assumed that d(x̄ + d(x)ν(x̄)) = d(x) for every
x ∈ V ′ where ν stands for the outward unit normal and d(x) designates
the distance from x to ∂Ω. Denoting by A the annulus

A = {y ∈ RN : 1 < |y| < 2 + τ},
where τ > 0, we introduce Ax = x̄+d(x)ν(x̄)+d(x)A and Qx = Ax∩Ω
(observe that x ∈ Qx, while the annulus Ax is tangent to ∂Ω at x̄). We
remark that the outer radius can be any fixed number greater than 2,
but for its later use in the proof of Theorem 7 we let it depend on the
parameter τ , which is of no importance in the present proof.

We can assume, by diminishing the radius of V , that Qx ⊂ V ′ for
every x ∈ V . Now define the normalized function

w(y) = d(x)α(x)u(x̄ + d(x)ν(x̄) + d(x)y),
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for y ∈ Q̃x, where Q̃x = A ∩ {y ∈ RN : x̄ + d(x)ν(x̄) + d(x)y ∈ Ω}.
Then w satisfies

∆w = d(x)α(x){q(x)− q(x̄ + d(x)ν(x̄) + d(x)y)}

× wq(x̄ + d(x)ν(x̄) + d(x)y)

in Q̃x. Thanks to the Hölder condition verified by q it follows as before
that

∆w ≤ Cwq(x̄ + d(x)ν(x̄) + d(x)y) in Q̃x,

for a certain positive constant C.

On the other hand, it can be seen as before that the problem



∆z = Czq(x̄ + d(x)ν(x̄) + d(x)y) in A,
z = 1 on |y| = 1,
z = 0 on |y| = 2 + τ,

has a unique positive solution z. Since w ≥ z on ∂Q̃x, it follows by
comparison that w ≥ z in Q̃x. Setting y = −2ν(x̄), we arrive at

u(x) ≥ z(−2ν(x̄))d(x)−α(x),

and the proof of (3.1) concludes by noticing that since z is bounded
from below in |y| = 2 we obtain z(−2ν(x̄)) ≥ C > 0, where C is
independent of x. ¤
Proof of Theorem 4. Choose an open neighborhood W of x0 such that
∂Ω admits C2,η local coordinates ξ = (ξ1, . . . , ξN), ξ : W → RN , with
x ∈ W ∩ Ω if and only if ξ1(x) > 0. With no loss of generality we
can assume ξ(x0) = 0. Setting u(x) = ū(ξ(x)), q(x) = q̄(ξ(x)), then ū
verifies an equation

N∑
i,j=1

aij(ξ)
∂2ū

∂ξi∂ξj

+
N∑

i=1

bi(ξ)
∂ū

∂ξi

= ū q̄(ξ)

in ξ(W∩Ω) whose coefficients aij, bi are Cη functions and aij(0) = δij.
We can assume further that W ∩Ω ⊂ V , where V is the neighborhood
given by Lemma 8.

Let {xn} be an arbitrary sequence converging to x0, and denote by
tn the projection of ξ(xn) onto ξ(W ∩ ∂Ω) (a subset of the hyperplane
ξ1 = 0). We introduce the functions

vn(y) = dαn
n u(tn + dny)

where dn = d(xn), αn = α(xn). Then vn verifies the equation

N∑
i,j=1

aij(tn + dny)
∂2v

∂yi∂yj

+ dn

N∑
i=1

bi(tn + dny)
∂v

∂yi

= d
{αn(q̄(ξ(xn))− q̄(tn + dny))}
n vq̄(tn + dny).
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We now use the estimates (3.1) provided by Lemma 8. They imply
that for every compact set of the half-space D := {y ∈ RN : y1 > 0}
there exist positive constants C1, C2 such that

(3.2) C1d
{αn − ᾱ(tn + dny)}
n y

−ᾱ(tn + dny)
1

≤ vn(y) ≤ C2d
{αn − ᾱ(tn + dny)}
n y

−ᾱ(tn + dny)
1

where α(x) = ᾱ(ξ(x)). As in the proof of Lemma 8, we use the Hölder
condition on q to obtain that

d
αn − ᾱ(tn + dny)
n → 1

uniformly for y in compacts of D as n →∞. Thus (3.2) gives bounds
for the sequence {vn}, and it is now standard to obtain that for a
subsequence we have vn → v in C2

loc(D), where v verifies

(3.3)

{
∆v = vq(x0)

C1y
−α(x0)
1 ≤ v(y) ≤ C2y

−α(x0)
1

in D.

Theorem 3.4 and Remark 3.6 (b) in [6] imply that problem (3.3) has a
unique solution, which can be checked to be

v(y) =
{

α(x0)(α(x0) + 1)
} 1

q(x0)− 1 y
−α(x0)
1 .

Then (1.4) is proved just by setting y = e1. ¤
Now we prove Theorem 7. The proof is based on that of Lemma 8,

but taking into account that the exponents there may be variable, and
the involved constants have to be precisely estimated.

Proof of Theorem 7. Let ε > 0 and choose a neighborhood W of x0

such that q(y) ≥ 1 + (Q − ε)d(y)γ for y ∈ W . For x close to x0, and
0 < τ < 1, we have d(y) ≥ (1− τ)d(x) if y ∈ B(x, τd(x)) and hence

q(y) ≥ 1 + (Q− ε)(1− τ)γd(x)γ

in B(x, τd(x)), provided B(x, τd(x)) ⊂ W , which is certainly true if x
is close enough to x0. Denote for simplicity

σ = σε,τ,x = (Q− ε)(1− τ)γd(x)γ.

If x is close enough to x0 we may further assume that u > 1 in
B(x, τd(x)). Hence

∆u ≥ u1+σ in B(x, τd(x)).

We now introduce the function

v(y) = (τd(x))
2
σ u(x + τd(x)y) y ∈ B = B(0, 1),

which satisfies

∆v ≥ v1+σ
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in B. On the other hand, we may look for a supersolution to the
equation ∆v = v1+σ of the form

v = Aφ−β

where β = 2/σ, A > 0 and φ is the solution to −∆φ = 1 in B with
φ = 0 on ∂B. Then v is a supersolution provided that

2

σ

(
2

σ
+ 1

)
|∇φ|2 +

2

σ
φ ≤ Aσ.

Since σ = (Q− ε)(1− τ)γd(x)γ, it is enough to take

A =
{

Cd(x)
} −2γ

(Q− ε)(1− τ)γd(x)γ
,

for some positive, large enough constant C. By comparison,

v(y) ≤ v(y)

if y ∈ B. Setting in particular y = 0 we obtain

u(x) ≤
{

Cd(x)
} −2γ

(Q− ε)(1− τ)γd(x)γ

×
{

τd(x)φ(0)
} −2

(Q− ε)(1− τ)γd(x)γ
.

It follows from the last estimate that

lim sup
x→x0

d(x)γ log u(x)

− log d(x)
≤ 2γ + 2

(Q− ε)(1− τ)γ
.

Letting ε → 0 and then τ → 0, we obtain

(3.4) lim sup
x→x0

d(x)γ log u(x)

− log d(x)
≤ 2γ + 2

Q
.

Next we prove the lower estimate. As in the first part of the proof, we
may assume a neighborhood W of x0 has been chosen so that

q(y) ≤ 1 + (Q + ε)d(y)γ

for y ∈ W . For x close to x0, we consider the sets A, Ax, Qx, Q̃x

introduced in the proof of Lemma 8. In Qx we have

q(y) ≤ 1 + (Q + ε)(1 + τ)γd(x)γ

and then if u > 1 we have

∆u ≤ u1+θ in Qx,

where we now set θ = (Q + ε)(1 + τ)γd(x)γ. Introduce the function

w(y) = d(x)
2
θ u(x̄ + d(x)ν(x̄) + d(x)y)
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for y ∈ Q̃x. Then ∆w ≤ w1+θ in Q̃x, and it follows by comparison that
w ≥ U in Q̃x, where U is the unique positive solution to





∆U = U1+θ in A,
U = ∞ on |y| = 1,
U = 0 on |y| = 2 + τ.

Thus our next aim will be to estimate from below the solution U when
θ → 0. Since U is radial, it verifies U = U(r), where r = |y| and





U ′′ +
N − 1

r
U ′ = U1+θ, 1 < r < 2 + τ,

U(1) = ∞,

U(2 + τ) = 0.

We introduce the change of variables

ρ =





1

N

(
1− 1

rN

)
, if N ≥ 3,

log r, if N = 2,

and denote V (ρ) = U(r). Then V verifies




V ′′ = g(ρ)V 1+θ, 0 < ρ < L,

V (0) = ∞,

V (L) = 0,

with g(ρ) = r2(N−1) and L is given by L = 1/N(1 − 1/(2 + τ)N) if
N ≥ 3, L = log(2 + τ) for N = 2.

Notice that V is convex, and hence thanks to the mean value theo-
rem:

(3.5) V (ρ) = −V ′(ξ)(L− ρ) ≥ −V ′(L)(L− ρ)

where ξ ∈ (ρ, L) and 0 < ρ < L. This shows that it is enough to obtain
a lower estimate for −V ′(L).

Since V ′ < 0 and g(ρ) ≤ (2 + τ)2(N−1) =: c, we get

V ′V ′′ ≥ cV 1+θV ′.

An integration in (ρ, L) gives

−V ′(ρ)√
V ′(L)2 +

2c

2 + θ
V (ρ)2+θ

≤ 1.

Integrating with respect to ρ in (0, L) and setting t = V (ρ), we obtain

(3.6)

∫ ∞

0

(
V ′(L)2 +

2c

2 + θ
t2+θ

)−1/2

dt ≤ L.
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We take t = ((2 + θ)V ′(L)2/2c)
1

2+θ σ and denote

I(θ) =

∫ ∞

0

dσ√
1 + σ2+θ

.

Then, it follows from (3.6) that

(3.7) − V ′(L) ≥
(

2 + θ

2c

) 1
θ
(

1

L
I(θ)

) 2+θ
θ

.

On the other hand, if we perform in the integral defining I the change
of variable 1 + σ2+θ = t−1, we obtain

I(θ) =
1

2 + θ

∫ 1

0

(1− t)
1

2+θ
−1t−

1
2
− 1

2+θ dt

=
1

2 + θ
B

(
1

2 + θ
,
1

2
− 1

2 + θ

)
=

1

2 + θ

Γ
(

1
2+θ

)
Γ

(
1
2
− 1

2+θ

)

Γ
(

1
2

) ,

where B and Γ stand for Euler Beta and Gamma functions, respec-
tively. Since Γ(z) ∼ 1/z as z → 0, it follows that I(θ) ∼ 2/θ as θ → 0,
and hence I(θ) ≥ 1/θ for small θ. This implies, thanks to (3.7), that

−V ′(L) ≥
(

2 + θ

2c

) 1
θ
(

1

Lθ

) 2+θ
θ

,

and then (3.5) gives

log V (ρ) ≥ 1

θ
log

(
2 + θ

2c

)
+

2 + θ

θ
log

(
1

Lθ

)
+ log(L− ρ).

Going back to the original variables, we arrive at

log U(y) ≥ 1

θ
log

(
2 + θ

2c

)
+

2 + θ

θ
log

(
1

Lθ

)
+ H(|y|),

where H is a function which does not depend on θ. Taking into account
that w(y) ≥ U(y), and setting y = −2ν(x̄), we get

log(d(x)
2
θ u(x) ≥ 1

θ
log

(
2 + θ

2c

)
+

2 + θ

θ
log

(
1

Lθ

)
+ H(2),

and then, since θ = (Q + ε)(1 + τ)γd(x), it follows that

lim inf
x→x0

d(x)γ log u(x)

− log d(x)
≥ 2γ + 2

(Q + ε)(1 + τ)γ
.

Finally, letting ε → 0 and τ → 0 we have

lim inf
x→x0

d(x)γ log u(x)

− log d(x)
≥ 2γ + 2

Q
.

which together with (3.4) proves (1.7). ¤
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4. Uniqueness

This section will be devoted to obtain the uniqueness results Theo-
rems 3 and 5. We begin with the case in which q ≥ 1 in Ω and q > 1
on ∂Ω.

Proof of Theorem 3. Let u, v be positive solutions to (1.3). Since q > 1
on ∂Ω, we have, thanks to Theorem 4, that

lim
x→x0

u(x)

v(x)
= 1

for every x0 ∈ ∂Ω. By the compactness of Ω, this limit holds uniformly,
and so for small enough ε > 0 there exists δ > 0 such that

(1− ε)v ≤ u ≤ (1 + ε)v

for all x ∈ Ω such that d(x) ≤ δ. Consider the problem

(4.1)

{
∆z = zq(x) in Ωδ,
z = u on ∂Ωδ,

with Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}. Problem (4.1) has a unique
positive solution, which is precisely u. Now it can be checked that
(1 − ε)v and (1 + ε)v are a sub and a supersolution respectively to
(4.1), since q ≥ 1 in Ω. It follows from the uniqueness of u that
(1− ε)v ≤ u ≤ (1 + ε)v in Ωδ. Thus this inequality is valid throughout
Ω, and letting ε → 0 we arrive at u = v, which shows the desired
result. ¤

Now we consider the case where q may be less or equal than one
somewhere in Ω, but it is strictly greater than 3 on ∂Ω and smooth in
a neighborhood of ∂Ω.

Proof of Theorem 5. We first show that (1.5) holds for all β ∈ (0, q0−3
q0−1

).

For this aim we construct sub and supersolutions near the boundary.
We claim that for β ∈ (0, q0−3

q0−1
) and large enough B, the function

ū = A(x)d(x)−α(x) + Bd(x)β

is a supersolution in Uρ := {x ∈ Ω : dist(x, ∂Ω) < δ} if δ > 0 is small
enough, where

A = (α(α + 1))
1

q−1

and
α = 2/(q − 1).

We choose δ small to have d ∈ C2(Uδ) and q > 3 in Uδ. Notice that in
the present situation α,A ∈ C2(Uδ). Thus a direct computation gives:

∆ū = d−α∆A− 2αd−α−1∇A∇d− 2d−α log d∇A∇α

−2Ad−α−1∇α∇d + Aα(α + 1)d−α−2 + 2Aαd−α−1 log d∇α∇d

−Aαd−α−1∆d− Ad−α log d∆α + Ad−α(log d)2|∇α|2
+Bβ(β − 1)dβ−2 + Bβdβ−1∆d,
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where the fact that the distance d(x) verifies |∇d| = 1 in Uδ has been
used. Some further computations show that ū is a supersolution pro-
vided that the following inequality holds,

d2∆A− 2αd∇A∇d− 2d2 log d∇A∇α− 2Ad∇α∇d

+2Aαd log d∇α∇d− Aαd∆d− Ad2 log d∆α + Ad2(log d)2|∇α|2
+Bβ(β − 1)dα+β + Bβdα+β+1∆d

≤ (A + Bdα+β)q(x) − Aq(x),

where we have used that Aq(x)−1 = α(α + 1).

On the other hand, we also have by convexity that (x + y)q ≥
xq + qxq−1y for all real positive numbers x, y and thus ū will be a
supersolution if

(4.2)

d2∆A− 2αd∇A∇d− 2d2 log d∇A∇α− 2Ad∇α∇d

+2Aαd log d∇α∇d− Aαd∆d

−Ad2 log d∆α + Ad2(log d)2|∇α|2
+Bβ(β − 1)dα+β + Bβdα+β+1∆d

≤ qBAq−1dα+β.

Now, since 0 < β < q0−3
q0−1

, we have 0 < β < 1 − α on ∂Ω, so that we

can diminish δ further to have this inequality in Uδ. Thus (4.2) can be
written as

(4.3) −Bβdα+β((1− β)− d∆d) + o(dα+β) ≤ qAq−1Bdα+β

in Uδ, where the o-term does not depend on B. Notice that the first
term in the left-hand side of (4.3) is positive for small δ, and thus if
B > 1 (4.3) is implied by the inequality

−β((1− β)− d∆d) + o(dα+β) ≤ qAq−1

in Uδ, which can be achieved by taking δ smaller if necessary, since
β < 1. The election of δ is thus independent of B as long as B > 1,
and we have shown that u is a supersolution in Uδ if B > 1.

Analogously it can be proved that

w = A(x)d(x)−α(x) −Bd(x)β

is a subsolution in the subset of Uδ where it is positive, and hence
u = max{w, 0} is a subsolution in the whole Ω.

Now let u be any solution to (1.3). We choose B large so that
u ≤ u ≤ ū in d = δ, and then it follows by comparison and Theorem 3
that u ≤ u ≤ ū in Uδ. This proves (1.5).

Finally, we show uniqueness. Let u, v be solutions to (1.3). Then,
according to (1.5):

u(x)− v(x) = O(d(x)β)
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for every β ∈ (0, q0−3
q0−1

). Let Ω0 = {x ∈ Ω : u(x) < v(x)}. If Ω0 6= ∅, we

would have u = v on ∂Ω0 (since u− v = 0 on ∂Ω) and ∆u ≤ ∆v in Ω0.
The maximum principle would imply u > v in Ω0, which is impossible.
Thus Ω0 = ∅, that is, u ≤ v. The symmetric argument gives u = v,
and uniqueness is shown. This concludes the proof. ¤

5. Dead core formation

In this final section we analyze the existence of dead cores for problem
(1.3).

Proof of Theorem 6. The proof rests on the construction of a suitable

weak supersolution to (1.3). For this aim, consider Ω̃ = {x ∈ Ω :
d(x) > δ} for a fixed small δ (we only require on δ that q > 1 in a

neighborhood of ∂Ω̃). Set Ω̃λ = λΩ̃. We will construct a supersolution

u = uλ ∈ C(Ω̃λ) ∩H1
loc(Ω̃λ) exhibiting the following features: uλ = ∞

on ∂Ω̃λ, uλ possesses a dead coreO′
λ which uniformly fills Qλ as λ →∞.

Thus, once uλ has been obtained, we will obtain by comparison that

u ≤ uλ in Ω̃λ for every positive solution u to (1.3), since u < +∞ on

∂Ω̃λ while uλ = +∞ on ∂Ω̃λ, and the assertions of the theorem will
follow.

The supersolution uλ will be constructed separately in the sets Qλ

and Ω̃λ \Qλ. Let us proceed first in Qλ and for a fixed number m0 > 0
let u = ũλ ∈ C2,η(Qλ) ∩ C(Qλ) be the solution to

{
∆u = u qλ(x) in Qλ,
u = m0 on ∂Qλ.

Then, v = vλ(x) ∈ C2,η(Q) ∩ C(Q) defined as

vλ(x) = ũλ(λx),

solves {
∆v = λ2 v q(x) in Q,
v = m0 on ∂Q.

For large λ, vλ develops a dead core Õλ = {x ∈ Q : vλ(x) = 0} such that
Õλ ⊃ {x ∈ Q : dist(x, ∂Q) ≥ d(λ)} with d(λ) → 0 as λ →∞. In fact,
choose d0 > 0 small and set Qd0 = {x ∈ Q : dist(x, ∂Q) > d0}. Then
∂Qd0 can be covered with a finite number of balls B ⊂ B ⊂ Q with
the same radius, d0/2. In each of such balls B consider the auxiliary
problem

(4.1)

{
∆w = λ2f(w) x ∈ B,

w = m0 x ∈ ∂B,
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where for u ≥ 0, f(u) = min{uq0 , uq1}, 0 < q0 ≤ q1 < 1 being, re-
spectively, the minimum and the maximum of q extended to the region
{x ∈ Q : dist(x, ∂Qd0) ≤ d0/2}.

Due to the fact that vλ is subharmonic in Q we can assert that

vλ(x) ≤ wλ(x) x ∈ B,

where wλ stands for the unique positive solution to (4.1). We now claim
the existence of a critical λc, only depending on d0, such that for λ ≥ λc

there exists a positive r(λ) so that wλ = 0 in the ball with the same
center as B and radius r(λ). From this fact and the subharmonicity
of vλ it follows that vλ = 0 in Qd0 for all λ ≥ λc. Therefore, the dead
cores properties stated above hold true (both for vλ and ũλ).

Let us now proceed with the construction of uλ in Ω̃λ \ Qλ and to

this goal set u = ûλ ∈ C2,η((Ω̃λ \Qλ) ∪ ∂Qλ) the unique solution to

(4.2)





∆u = u qλ(x) x ∈ Ω̃λ \Qλ,

u = ∞ x ∈ ∂Ω̃λ,

u = m0 x ∈ ∂Qλ.

Define:

uλ(x) =

{
ũλ(x) x ∈ Qλ,

ûλ(x) x ∈ Ω̃λ \Qλ.

Then uλ is a weak supersolution to (1.3) provided m0 > 0 is large
enough. In fact it is enough to show that

(4.3)
∂ûλ

∂ν
> 0

on ∂Qλ where ν stands for the outer unit normal to Ω̃λ \ Qλ on the
component ∂Qλ of its boundary. To prove that fact, let

W = {x ∈ Ω̃λ \Qλ : dist(x, ∂Qλ) < d1}
for certain small positive d1. Observe that ûλ → û in C2,η(Ω̃λ \Qλ) as
m0 →∞ where û is the minimal solution to (4.2) with m0 = ∞. This
means that ûλ remains finite on ∂W \∂Qλ while it increases with m0 on
∂Qλ. By subharmonicity, ûλ < m0 in W provided m0 is large and (4.3)
follows from the maximum principle. This finishes the construction of
the supersolution uλ with the desired properties.

To complete the proof let us next show the claim concerning problem
(4.1). Consider the normalized case of the ball B = B(0, R). In order
to demonstrate the dead core features of (4.1) it is enough to handle
the slight variation of the problem in the annulus A = {x : ε0 < |x| <
R} ⊂ B, 0 < ε0 < R, consisting in setting w = 0 on |x| = ε0. By radial
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symmetry such problem in A can be written as

(4.4)





w′′ = λ2g(ρ)f(w) 0 < ρ < L,

w(0) = 0,

w(L) = m0,

where for ε0 < r < R the suitable modification of the change of vari-
ables ρ = ρ(r) introduced in the proof of Theorem 7 has been per-
formed. As in that proof, g(ρ) = r2(N−1) while now

L = log(R/ε0), and L =
1

N

(
1

εN
0

− 1

RN

)
,

in the cases N = 2 and N ≥ 3, respectively.

In virtue of the uniqueness in the solvability of (4.4) it follows that
its solution wλ satisfies

wλ(ρ) ≤ ṽλ(ρ)

0 < ρ < L, where v = ṽλ(ρ) is the unique solution to

(4.5)





v′′ = λ2ε
2(N−1)
0 f(v) 0 < ρ < L,

v(0) = 0,

w(L) = m0.

Thus the proof of the claim reduces to perform a dead core analysis in
problem (4.5). In such case, direct integration shows that for λ greater
than some critical λc, ṽλ(ρ) vanishes in the interval (0, ρ(λ)) where ρ(λ)
is expressed as

(4.6) ρ(λ) = L− 1

εN−1
0 λ

∫ m0

0

ds√
F (s)

,

where F (u) =
∫ u

0
f(s) ds. More precisely, λc is given by the unique

value of λ > 0 which makes zero the difference in (4.6). This concludes
the proof of Theorem 6. ¤
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20 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

[23] M. Marcus, L. Véron, Uniqueness and asymptotic behaviour of solutions
with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst.
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J. Garćıa-Melián and J. C. Sabina de Lis
Dpto. de Análisis Matemático,
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