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Abstract. We study the problem{
−∆pu = |u|q−2u, x ∈ Ω,

|∇u|p−2 ∂u
∂ν

= λ|u|p−2u, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, ν is the outward unit nor-
mal at ∂Ω and λ > 0 is regarded as a bifurcation parameter. When p = 2
and in the super linear regime q > 2, global existence of n nontrivial
solutions for all λ > λn is shown, λn being the n–th Steklov eigen-
value. It is proved in addition that bifurcation from the trivial solution
takes place at all λn’s. Similar results are obtained in the sublinear case
1 < q < 2. In this case, bifurcation from infinity takes place in those λn
with odd multiplicity. Partial extensions of these features are encoun-
tered in the nonlinear diffusion case p 6= 2 and related problems under
spatially heterogeneous reactions are also addressed.

1. Introduction

Since the seventies, a great deal of attention has been focused on the
study of nonlinear boundary value problems involving the so–called reaction
diffusion equations. In those problems, it is common the occurrence of a
bifurcation parameter λ which often exerts its influence on the reaction
term (see for instance [22] for pioneering review on the subject). However,
much less studied is the case when the parameter λ appears in the boundary
condition (see, for example, [5], [6], [7], [12], [13], and references therein).

In this paper we continue the analysis of the reaction–diffusion problem

(1.1)


∆u = ϕq(u), x ∈ Ω,

∂u

∂ν
= λu, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, ν is the outward unit normal
on ∂Ω, ϕq(u) = |u|q−2u with q > 1 and λ is a bifurcation parameter. In fact,
(1.1) was studied in the case q > 2 as the prototype of a class of problems
under a superlinear reaction in [12], meanwhile the singular regime 1 < q < 2
for the exponent together with a broader class of problems related to (1.1)
was treated in detail in [13]. In these works only nonnegative solutions were
considered.
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The present work goes a step further and is concerned with the study of
more general kind of solutions to (1.1), in the sense that the sign restriction
is removed. Moreover, it also deals with the nonlinear diffusion extended
version of (1.1)

(1.2)

∆pu = ϕq(u) x ∈ Ω

Bp(u) = λϕp(u) x ∈ ∂Ω,

where ∆pu = div (|∇u|p−2∇u) is the p–Laplacian operator with p > 1 and
Bp stands for the boundary operator associated with the flux, that is,

Bp(u) = |∇u|p−2∂u

∂ν
.

In order to introduce our results we distinguish in some occasions between
the linear (p = 2) and the nonlinear (p 6= 2) diffusion problems (1.1) and
(1.2), respectively. As should be expected, statements for (1.2) will be sub-
stantially weaker than those for (1.1). In addition, we address separately
the superlinear regime q > p > 1 and the sublinear one 1 < q < p (notice
that the homogeneity of the reaction term in the problem in both (1.1) and
(1.2) is q − 1).

Here we deal with weak solutions u to (1.2). As it is customary in the
theory, we say that u ∈W 1,p(Ω) solves (1.2) provided the equality

(1.3)

∫
Ω
|∇u|p−2∇u∇ψ − λ

∫
∂Ω
ϕp(u)ψ +

∫
Ω
ϕq(u)ψ = 0,

holds for all ψ ∈W 1,p(Ω). Thus, such solutions u are given as critical points
of the associated energy functional

(1.4) J(u) =
1

p

∫
Ω
|∇u|p − λ

p

∫
∂Ω
|u|p +

1

q

∫
Ω
|u|q.

However, some caution is needed to deal with the last integral. Indeed, we
want J not only to be merely well defined but also to be of class C1 in
W 1,p(Ω). Since we are facing the regime q > p this creates a difficulty in

the case 1 < p < N if q is in the super critical range q > p∗ := Np
N−p . To

overcome the difficulty and in order to handle the full regime q > p it will be
shown that solutions u to (1.2) are bounded in Ω (see Proposition 2.3 and
Remark 10). This not only implies that weak solutions u become C1,β for
some 0 < β < 1 but it also allows us to construct a suitable C1 truncation

J̃ of the functional J which possesses the same critical points as J . Thus,

variational results on the truncated functional J̃ provide solutions to (1.2).

We begin now with the statement of our results for the case q > p. The
first one essentially reviews basic features on (1.2) (some of them formerly
introduced in [14, 15]).

Theorem 1. Let Ω ⊂ RN be a class C1,α bounded domain for a certain
0 < α < 1 and assume that the exponent q satisfies q > p. Then problem
(1.2) satisfies the following properties.

i) Nontrivial solutions to (1.2) are only possible when λ > 0. Moreover,
for each λ > 0 a unique positive solution u = uλ ∈ C1,β(Ω) exists so that
u = ±uλ become the unique one–signed solutions to (1.2).
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ii) uλ is increasing and continuous with respect λ and bifurcates from zero at
λ = 0. More precisely

uλ = (|∂Ω|/|Ω|)
1
q−pλ

1
q−p (1 + o(1)),

as λ → 0 in C1,β(Ω). Here | · | stands for the Lebesgue measure in the
appropriate dimension.

iii) uλ → U as λ→∞ in C1,β(Ω), where U stands for the unique solution to
the singular problem

(1.5)

{
∆pu = ϕq(u) x ∈ Ω

u =∞ x ∈ ∂Ω.

Remark 1. It should be observed that no restriction on the size of q > p is
imposed in Theorem 1 and remaining statements on the superlinear case.

Our next results concern the linear diffusion problem (1.1) in the su-
perlinear regime q > 2. The Steklov eigenvalues λn are involved in their
statements. A brief description on the Steklov eigenvalue problem (2.1) is
contained in Section 2.2. A first result provides global existence on nontrivial
solutions for all values of λ greater than λn.

Theorem 2. Assume Ω ⊂ RN is a C1,α bounded domain while q > 2. Then,
for every Steklov eigenvalue λn and each λ > λn, problem (1.1) possesses at
least n pairs ±uk,n(λ), 1 ≤ k ≤ n, of nontrivial solutions.

Remark 2. In view of Theorem 1 it can be asserted that n− 1 pairs of the
solutions obtained in the last statement correspond to those which change
sign.

In Theorem 2 nontrivial solutions are obtained by a variational argument
involving index theory ([3] and Section 2.1). This argument is of global
nature since existence of nontrivial solutions is obtained for all λ > λn.
However, nothing is said on the nature and possible onset of such solutions.
The following result strongly suggests that “bifurcation” from (λn, 0) is the
most likely mechanism generating such solutions.

As a matter of terminology, it is said that (λ̄, 0) is a bifurcation point of
solutions to either problems (1.1) or (1.2) if sequences λ̄k → λ̄ and uk ∈
C1,β(Ω) exist such that uk is a nontrivial solution corresponding to λ = λ̄k
and uk → 0 in C1,β(Ω) (the uk’s are referred to as “bifurcated” solutions).

Theorem 3. Under the hypotheses of Theorem 2 on Ω and q the following
properties hold:

i) For every Steklov eigenvalue λn, (λ, u) = (λn, 0) defines a bifurcation point
of solutions to (1.1). Moreover, bifurcated solutions from (λn, 0) occur only
near and to the right of λn.

ii) For each n ∈ N there exists some δ0 = δ0(n) such that for every λ ∈
(λn, λn + δ0) problem (1.1) admits at least n pairs ±uk,n(λ), 1 ≤ k ≤ n, of
nontrivial solutions satisfying uk,n(λ)→ 0 as λ→ λn.

iii) In case that λn is simple, bifurcated solutions in ii) consist exactly in a
single pair ±u1,n(λ). Moreover, u1,n(λ) is a continuous function of λ ∈
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(λn, λn + δ0) such that

(1.6) u1,n(λ) = E
1
q−2
n (λ− λn)

1
q−2 (φ1,n + o(1)),

in C1,β(Ω) as λ→ λn+, where

En =

∫
∂Ω φ

2
1,n∫

Ω |φ1,n|q

with φ1,n the associated eigenfunction, modulus a multiplicative ±1, satisfy-
ing ∫

Ω
|∇φ1,n|2 +

∫
∂Ω
φ2

1,n = 1.

Remark 3. It is expected that for a “generic” domain Ω every Steklov eigen-
value is simple (as is just the case for the other classical eigenvalue problems).
Thus, in this special case one can think of the solutions in Theorem 2 as
arising in pairs every time λ crosses a (simple) eigenvalue λn. However, to
properly put this assertion on firm ground one first needs to show that the
bifurcated branches u±n (λ) can be continued for all λ > λn without collaps-
ing to u = 0. This is a nontrivial issue that is not going to be pursued
here.

We return now to the nonlinear diffusion problem (1.2) in the superlinear
range q > p, and state a weak version of Theorem 2. We deal with the
p−Laplacian version (2.2) of the Steklov eigenvalue problem. In the next
statement λn,p stands for a suitable sequence of Steklov “p−eigenvalues”
which exhibits the feature of generating a corresponding linearly independent
family of eigenfunctions {φn,p} in the space Lp(∂Ω). Existence of such family
λn,p and further remarks on this nonlinear eigenvalue problem are contained
in Section 2.2 below.

Theorem 4. Suppose Ω ⊂ RN is a C1,α bounded domain and assume that
the exponents verify q > p > 1. Then, the following properties hold true.

i) For a fixed λ, the set of all possible solutions to (1.2) constitutes a compact
set in C1,β(Ω) for some 0 < β < 1.

ii) If {λn,p} denotes the set of eigenvalues to (2.2) obtained in Lemma 9 below
then, for every λn,p there exists a constant 0 < Bn ≤ 1 so that problem (1.2)
admits at least n pairs ±uk,n(λ), 1 ≤ k ≤ n, of nontrivial solutions for every

(1.7) λ >
np

Bn
λn,p.

We come now to the sublinear case q < p. We recall that some aspects
of nonnegative solutions (particularly, dead core formation) to the linear
diffusion problem (1.1) with 1 < q < 2 were studied in detail in [13].

Theorem 5. Let Ω ⊂ RN be a bounded and class C1,α domain and

1 < q < p.

Then, problem (1.2) satisfies the following properties.
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i) There exists at least a nonnegative solution uλ ∈ C1,β(Ω) for every λ > 0.
Moreover, the family {uλ} satisfies

(1.8) ‖uλ‖Lq(Ω) = O(λ
− 1
p−q ),

as λ→∞.

ii) If {uλ}, 0 < λ < λ̄, is an arbitrary family of solutions (not necessarily
nonnegative), then

(1.9) uλ = (|∂Ω|/|Ω|)−
1
p−qλ

− 1
p−q (±1 + o(1)),

in C1,β(Ω) as λ→ 0+. In other words, |uλ| bifurcates from infinity at λ = 0.

Remark 4. The estimate (1.8) is considerably improved in the one dimen-
sional case, in the sense that all possible families uλ of nonnegative solutions
satisfy

(1.10) ‖uλ‖∞ = O(λ
− p′
p−q ),

as λ→∞, where p′ = p/(p−1). It is quite likely that the approach employed
in [13] for achieving the validity of (1.10) on general domains Ω when p = 2,
can be extended to cover the nonlinear diffusion case. This would show that
all possible nonnegative solutions develop a “dead core” when λ is large.
Nevertheless, we are not addressing here the analysis of dead cores.

We now state a version for the sublinear case of Theorems 2 and 4.

Theorem 6. Assume the hypotheses of Theorem 5, particularly that q sat-
isfies

1 < q < p.

Then the following properties hold.

i) If p = 2 and {λn} stand for the Steklov eigenvalues, problem (1.1) admits at
least n pairs ±uk,n(λ), 1 ≤ k ≤ n, of nontrivial solutions for every λ > λn.

ii) If p 6= 2 and {λn,p} is the set of Steklov eigenvalues to (2.2) introduced in
Lemma 9, problem (1.2) possesses at least n pairs ±uk,n(λ), 1 ≤ k ≤ n, of
nontrivial solutions if

λ >
np

Bn
λn,p,

where the Bn’s are just those constants that appear in Theorem 4.

Remark 5. It should be observed that, in contrast to Theorem 2, we are
not able to decide if any of the nontrivial solutions obtained in i) and ii) is
two signed. In fact, it was shown in [13] that problem (1.1) in the sublinear
case has a natural tendency to exhibit multiple non negative solutions as λ
is large (even when Ω is a ball).

Remark 6. In the linear diffusion case p = 2, bifurcation from infinity at the
Steklov eigenvalues λ = λn seems to be the natural onset for the solutions
introduced in point i). As stated below, such bifurcation occurs at all those
λn whose multiplicity is odd. Again, if one considers domains Ω whose
Steklov eigenvalues are all simple, then signed pairs of nontrivial solutions
bifurcate from infinity as λ crosses the λn’s. However, it is stressed that
proving the continuation of those “local” branches throughout λ > λn is by
no means an obvious matter.
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Theorem 7. Assume that Ω ⊂ RN is a bounded domain of class C2,α,
0 < α < 1, while 1 < q < 2. Let λ̄ be an arbitrary odd multiplicity eigenvalue
to (2.1). Then, the following features hold.

i) For any λ > λ̄, λ close to λ̄, problem (1.1) admits a pair (λ,±uλ) of closed
connected sets (branches) of nontrivial solutions such that

‖uλ‖∞ →∞ λ→ λ̄+ .

ii) Assume in addition that λ̄ 6= 0 is simple. Then, (1.1) admits a pair
(λ,±uλ) of connected branches, bifurcated from infinity, such that

(1.11) uλ = E
− 1

2−q (λ− λ̄)
− 1

2−q (φ̄+ o(1)) λ→ λ̄+,

in C2(Ω), where E =
∫
∂Ω φ̄

2/
∫

Ω |φ̄|
q and φ̄ is an eigenfunction associated to

λ̄ so that ‖φ̄‖∞ = 1. In particular, bifurcated solutions change sign if λ̄ 6= 0.

Remark 7. In the case of odd eigenvalues λ̄ 6= 0 it can be shown that “most”
of the bifurcated solutions are two signed. Specifically, every sequence of
nontrivial solutions (λk, uk)→ (λ̄,∞) admits a subsequence, still labeled uk,

such that uk = E
− 1

2−q (λk − λ̄)
− 1

2−q (φ̄ + o(1)), with a certain eigenfunction
φ̄ associated to λ̄, ‖φ̄‖∞ = 1 and E as in (1.11).

All of the previous results can be extended to the more general class of
spatially heterogeneous problems

(1.12)

∆pu = a(x)ϕq(u) x ∈ Ω

Bp(u) = λϕp(u) x ∈ ∂Ω,

where a ∈ C(Ω) is a nonnegative function which could even become iden-
tically zero on a whole (smooth) subdomain Ω0 of Ω. In this last case, a
suitable restriction must be imposed in the range of variation of the parame-
ter λ. A detailed account on the extensions to problem (1.12) of Theorems 1
to 7 is included in Section 5.

This paper is organized as follows: Section 2 includes some basic material
on critical point theory (Section 2.1), a description of the Steklov eigenvalue
problem both in its linear and nonlinear diffusion versions (Section 2.2) and
L∞ estimates for the solutions to problems (1.1) and (1.2) (Section 2.3). The
proofs of the statements corresponding to the superlinear case q > p and
the sublinear case are separately collected in Sections 3 and 4, respectively.
Finally, Section 5 is devoted to the analysis of problem (1.12).

2. Some definitions and auxiliary results

2.1. Critical points of functionals. Let us introduce some minimum
background on index theory and critical points of C1 functionals in Banach
spaces required for later proofs (see Chapter II in [27] for an overview). In
the present section X stands for an infinite dimensional (in most occasions)
Banach space. Concerning index theory, the Krasnosel’skii genus γ on X
([3], [23], [27]) is a topological index γ : Σ→ N∪{0,∞} defined on the class
Σ of the symmetric closed parts of X: Σ = {C ⊂ X : C = C, C = −C},
as follows: For C ∈ Σ, γ(C) = k if k is the minimum integer l so that a
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continuous odd function h : C → Rl \ {0} exists. We set γ(∅) = 0 while, for
obvious reasons, γ(C) = ∞ if 0 ∈ C. To catch an insight on the genus it
should be first mentioned that γ remains invariant under homeomorphisms
and exhibits suitable subadditivity and stability properties (see [3], [27]). On
the other hand, dimension and genus are somehow related. If dimX = m
and A = −A is a neighborhood of 0 then γ(∂A) = m meanwhile, for X
arbitrary, γ(A) = m implies that A contains m linearly independent vectors
([27]). In addition, we have that A is an infinite set provided γ(A) ≥ 2,
0 /∈ A.

A result providing the existence of critical points for a class of C1 func-
tionals J : X → R defined in a Banach space X is going to be stated in a
moment. Conditions required to that class of functionals J are

J-i) J satisfies the Palais–Smale condition (PS for short), that is, from
every sequence xn with J(xn) bounded andDJ(xn)→ 0 it is possible
to extract a subsequence which converges in X,

J-ii) there exist α, ρ positive and e ∈ X \ {0} such that J > 0 for 0 <
|x| < ρ and J(x) ≥ α if |x| = ρ, while J(e) = 0,

J-iii) J(−x) = J(x) for all x ∈ X (J is even),
J-iv) there exists an increasing sequence of subspaces Xm ⊂ X, dim X =

m, and a compact set Km ⊂ Xm in each Xm so that 0 lies in a
bounded component of Xm \Km while J(x) < 0 for all x ∈ Km.

Observe that i), ii) are conditions that provide the validity of the so–called
mountain pass lemma ([3], [24]).

We next set Homodd the class of all odd homeomorphisms h ∈ C(X,X),
h(−x) = −h(x) for all x ∈ X, together with

Γ = {h ∈ Homodd : J ≥ 0 in h(B)},

with B the unit ball of X. Under hypothesis J-iv) it is shown in [3] (p. 361)
that the class

Γm = {K ⊂ X : K = −K,K compact, γ(K ∩ h(∂B)) ≥ m for all h ∈ Γ}

is nonempty for all the integers m involved in J-iv).

Now we can introduce the desired result on existence of critical points of
J (for the proof we refer to [3], Theorem 2.23).

Theorem 8. Assume that J satisfies J-i) to J-iv). Then

cm := inf
K∈Γm

max
x∈K

J(x)

defines a critical value for every m (and α ≤ cm < ∞ for every m).
Moreover, if cm = · · · = cm+l−1 for some l ∈ N, then γ(Kcm) ≥ l where
Kcm := {x : J(x) = cm and DJ(x) = 0}.

Remark 8. The last assertion in the theorem implies the existence of in-
finitely many critical points corresponding to those critical values cm with
multiplicity l higher than 2 (l ≥ 2).
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2.2. Eigenvalue problems. The Steklov eigenvalue problem

(2.1)


∆u = 0, x ∈ Ω,

∂u

∂ν
= λu, x ∈ ∂Ω,

consists in finding real values λ, and corresponding non trivial functions
u ∈ H1(Ω) such that ∫

Ω
∇u∇ψ = λ

∫
∂Ω
uψ,

for all ψ ∈ H1(Ω). As it is readily seen, Steklov eigenvalues are precisely
the eigenvalues to the Dirichlet to Neumann operator in Ω. It is well–known
that the totality of such eigenvalues consists of an increasing sequence

λ1 = 0 < λ2 ≤ . . . ≤ λn ≤ . . . ,

λn → ∞, each λk repeated according its (finite) multiplicity, such that an
associated sequence of eigenfunctions φ1, φ2, . . . can be formed so that it
provides a complete orthonormal system in H1(Ω) (see, for instance, [8],
[18]). For subsequent use here, eigenfunctions φk are normalized so as∫

∂Ω
φiφj = δi,j i, j ∈ N,

while we are using (u, v) =
∫

Ω∇u∇v +
∫
∂Ω uv as scalar product in H1(Ω).

The “nonlinear diffusion” counterpart of the Steklov problem will be also
involved in the present work. Namely, the problem

(2.2)

∆pu = 0, x ∈ Ω,

Bp(u) = λϕp(u), x ∈ ∂Ω,

where Bp stands for the boundary operator Bp(u) = |∇u|p−2 ∂u
∂ν while ϕp(u) =

|u|p−2u (p > 1). In a similar way as in the linear case, λ is called an eigen-
value to (2.2) provided a non trivial u ∈W 1,p(Ω) exists such that∫

Ω
|∇u|p−2∇u∇ψ = λ

∫
∂Ω
ϕp(u)ψ,

for each ψ ∈ W 1,p(Ω). However, and in strong difference with (2.1) only
partial features on the spectrum of (2.2) are currently available. It is known

that λ̂1 = 0 is the minimum eigenvalue which is simple, isolated and the only
one with a positive associated eigenfunction (which is indeed constant). On

the other hand, further eigenvalues λ = λ̂n can be found by employing the
general procedure in [2] (see [11], [4] for the case of Dirichlet eigenvalues,
and [9] for a perturbation by a potential term of (2.2)). More precisely, for
n ∈ N set

(2.3)
α

λ̂n + 1
:= βn,

where the value βn is variationally obtained as

βn = inf
C∈Cn

sup
u∈C

b(u)
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with b(u) =
∫
∂Ω |u|

p, M = {u ∈ W 1,p(Ω) : ‖u‖p1,p = α}, α > 0 is a certain

constant, ‖u‖p1,p :=
∫

Ω |∇u|
p +

∫
∂Ω |u|

p, and

Cn = {C ⊂M : C = −C, C compact, γ(C) ≥ n},

where γ(C) stands for Krasnosel’skii genus of C (Section 2.1). In fact, it
is shown in [2] that every βn defines a critical value for the functional b(u)
on the manifold M. Therefore, the corresponding critical point un ∈ M
defines an associated eigenfunction corresponding to λ = λ̂n given through
(2.3). Moreover, it is also proved there that in case βn = · · · = βn+(l−1)

with l ≥ 2, then the critical level {b(u) = βn}∩M indeed contains infinitely
many critical points.

On the other hand, proceeding as in [9] (see also [11]), it can be shown

that βn → 0. This implies that (2.2) admits an infinite sequence λ̂n → ∞
of eigenvalues. However, at the present moment it is a (hard) open problem

to ascertain whether these λ̂n fill up the whole set of eigenvalues to (2.2).
It is even unknown if such spectrum is discrete or not. The only shown
spectral gap lies between λ̂1 and λ̂2 (see [10]), i. e. λ̂2 is the first eigenvalue

after λ̂1 = 0. The distribution of the remaining eigenvalues remains “terra
incognita” (needless to say that the very same features were first encountered
in the Dirichlet spectrum [21]).

For future reference we term {λ̂n} the LS–spectrum of (2.2). At the best
of our knowledge it is not even clear if the whole set {φn} of associated
eigenfunctions is linearly independent in some sense. A much weaker result
in this direction –still useful for our purposes– is next stated.

Lemma 9. The LS set {λ̂n} of eigenvalues to (2.2) possesses an infinite
maximal subsequence {λn,p} such that the corresponding (normalized) asso-
ciated eigenfunctions {φn,p} are independent in Lp(∂Ω).

Proof. It is enough to prove the existence of an infinite set of independent
eigenfunctions. The assertion then follows from routine arguments in alge-
bra. Thus, suppose on the contrary that the whole set {un} of eigenfunctions
lie in a finite dimensional subspace Z of Lp(∂Ω). Functions un can be nor-

malized so that (1 + λ̂n)1/(p−1)un satisfy ‖(1 + λ̂n)1/(p−1)un‖Lp(∂Ω) = 1. We
now observe that weak and strong topologies coincide in Z. Thus, after
passing to a subsequence, (1 + λ̂n)1/(p−1)un → v in Lp(∂Ω).

Set now Bp : W
1− 1

p
,p

(∂Ω)∗ → W 1,p(Ω) (“∗” meaning “dual space”) the

operator associating to g ∈W 1− 1
p
,p

(∂Ω)∗ the unique solution u to the prob-
lem {

∆pu = 0, x ∈ Ω,

Bp(u) + ϕp(u) = g, x ∈ ∂Ω.

It can be shown by using the monotonicity properties of the operator −∆p

(see [28]) that Bp is continuous. On the other hand

un = Bp(ϕp((1 + λ̂n)1/(p−1)un)).
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Since ϕp((1 + λ̂n)1/(p−1)un) → ϕp(v) in Lp
′
(∂Ω) then un → u in W 1,p(Ω)

where u solves the previous problem with g = ϕp(v) and so∫
Ω
|∇u|p−2∇u∇ψ +

∫
∂Ω
ϕp(u)ψ =

∫
∂Ω
ϕp(v)ψ, ψ ∈W 1,p(Ω).

Observe in addition that un = (1 + λ̂n)−1/(p−1)(1 + λ̂n)1/(p−1)un → 0 in
Lp(∂Ω) and so u = 0 on ∂Ω. Thus, by setting ψ = u we get

∫
Ω |∇u|

p = 0,
i. e. u = 0 in the whole of Ω. But putting instead ψ = v in the previous
relation we then get ‖v‖pLp(∂Ω) = 0 which is not possible. This means that

span {un} can not be finite dimensional in Lp(∂Ω). �

Remark 9. The set {φn,p} introduced in Lemma 9 –and accordingly the
associated eigenvalue set– can be chosen so that it contains a prefixed linearly
independent set of eigenfunctions. It is well known that every eigenfunction
φ2 associated to λ̂2 exhibits at least two nodal domains. Therefore, λ̂1, λ̂2

can be included in {λn,p}.

2.3. Some estimates. Next, we show that weak solutions to (1.2) are in-
deed essentially bounded in Ω. This allows us to introduce a truncation of
(1.2) which is instrumental in the analysis of the superlinear case q > p.

A proof of the following result is included for its use in what follows.

Proposition 10. Let u ∈ W 1,p(Ω) be a weak solution of (1.2). Then u ∈
L∞(Ω). Moreover, there exists a positive M = M(p,Ω, λ, ‖u‖L1(Ω)) which
does not depend on q so that

‖u‖L∞(Ω) ≤M.

Proof. We can assume that p ≤ N . To show that u+ is bounded (the same
reasoning applies to u−) we first obtain an estimate of the form

(2.4)

∫
Ak

(u− k) ≤ Ck|Ak|1+ 1
N ,

for k ≥ k0 = k0(λ, ‖u‖L1(Ω)), where Ak = {u(x) > k} and C = C(λ). Then
the key tool is Lemma 5.1 of Chapter II in [19] which states that (2.4) implies
u+ ∈ L∞(Ω). We briefly describe the reasoning in [19]. One first observes
that

F (t) =

∫
At

(u− t) =

∫ ∞
t
|As| ds,

and so F ′(t) = −|At| a. e. in t > k0. Thus, (2.4) can be rewritten as

C
d

dt

(
F

η
η+1

)
≤ − d

dt

(
t
η
η+1

)
a.e. in t ≥ k0 with η = 1

N . By integrating this relation between k0 and t
one concludes F = 0 for t ≥ t1 ≥ k0 for a certain t1 only depending on k0,
i. e. on ‖u‖L1(Ω). This implies that u+ ≤ t1 a. e. in Ω.

To show (2.4) we use ψ = (u− k)+ as test function in (1.3), with k > 0,
to obtain that

(2.5)

∫
Ak

|∇u|p ≤ C
∫
∂Ω

((u− k)+)p + Ckp−1

∫
∂Ω

(u− k)+,
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where C = C(λ). This inequality explains why the term ϕq(u) in (1.2) does
not play any rôle in the final estimate.

We now refresh a well known inequality: for all ε > 0 there exists Cε > 0
so that

(2.6)

∫
∂Ω
|v|p ≤ ε

∫
Ω
|∇v|p + Cε

∫
Ω
|v|p,

for all v ∈W 1,p(Ω). By using (2.6) with v = (u−k)+ and a suitable ε = ε(λ),
(2.5) leads to

(2.7) ‖(u− k)+‖p1,p ≤ C
∫

Ω
(u− k)+p + Ckp−1

∫
∂Ω

(u− k)+,

with C = C(λ), where the alternative norm ‖v‖p1,p =
∫

Ω |∇v|
p +

∫
∂Ω |v|

p is
going to be used. We now observe that

(2.8)

∫
Ω

((u− k)+)
p ≤ C|Ak|1−

1
p∗ ‖(u− k)+‖p1,p,

where we assume that p < N (a similar idea works when p = N). Since

|Ak| ≤
1

k
‖u‖L1(Ω),

there exists k0 = k0(C, ‖u‖L1(Ω)) such that C|Ak|1−
1
p∗ becomes less than

one in (2.8). This fact and (2.7) yield

‖(u− k)+‖p1,p ≤ Ck
p−1

∫
∂Ω

(u− k)+ ≤ Ckp−1‖(u− k)+‖W 1,1(Ω)

≤ Ckp−1|Ak|1−
1
p ‖(u− k)+‖1,p,

which implies that ‖(u− k)+‖1,p ≤ Ck|Ak|
1
p , for k ≥ k0. Thus,∫

Ak

(u− k) ≤ C|Ak|1−
1
p∗ ‖(u− k)+‖1,p ≤ Ck|Ak|1+ 1

p
− 1
p∗ ,

as desired. �

Now we prove that in the super linear regime q > p, problem (1.2) admits
a suitable truncation which possesses the same solutions as (1.2). For m > 0
we define hm(u) as the odd function such that

hm(u) =

{
uq−1, 0 ≤ u ≤ m,
mq−pup−1, u > m.

We also set Hm(u) =
∫ u

0 hm. Let us introduce the truncated problem

(2.9)

∆pu = hm(u), x ∈ Ω,

Bp(u) = λϕp(u), x ∈ ∂Ω,

Proposition 11. Assume Ω satisfies the conditions of Theorem 1, q > p
while λ is fixed. Then there exists m0 = m0(λ) > 0 such that problems (1.2)
and (2.9) have exactly the same solutions for m ≥ m0.
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Proof. Let us introduce

J̃(u) =
1

p

∫
Ω
|∇u|p − λ

p

∫
∂Ω
|u|p +

∫
Ω
Hm(u),

u ∈ W 1,p(Ω), the energy functional associated to (2.9). We first show that

all possible solutions to (2.9) lie in the level set {J̃(u) ≤ 0}. In fact,

J̃(u) =
1

p
〈DJ̃(u), u〉+

∫
Ω

(Hm(u)− 1

p
hm(u)u) =

∫
Ω

(Hm(u)− 1

p
hm(u)u) ≤ 0

since pHm(u)− hm(u)u ≤ 0 for all u.

Let us analyze now the coercivity properties of J̃ . A proper use of (2.6)
allows us to write

J̃(u) ≥ 1

2p

∫
Ω
|∇u|p +

∫
Ω
Hm(u)− C1

∫
Ω
|u|p,

for a certain constant C1. On the other hand, there exists a constant C2 > 0
such that

uq

q
> 2C1u

p − C2,

for all u > 0. Then, the existence of a value m0 = m0(p, q) (as large as
desired) can be shown so that

Hm(u) > 2C1u
p − C2,

for all u > 0 provided m ≥ m0. Thus,

(2.10) J̃(u) ≥ C‖u‖p1,p − C3, u ∈W 1,p(Ω).

Hence, recalling that solutions u satisfy J̃(u) ≤ 0, there exists a constant
K1 which does not depend on m such that all possible solutions to (2.9)
with m ≥ m0 verify the uniform estimate ‖u‖1,p ≤ K1. We notice now that
Proposition 10 and its proof can be applied step by step with no changes
(h(u) has no influence in the computations) to conclude the existence of
a constant K2 not depending on m so that all solutions to (2.9) satisfy
‖u‖∞ ≤ K2. Therefore and by enlarging m0 if necessary, solutions u to
(2.9) also solve (1.2) for all m ≥ m0.

Conversely, the same argument as the previous one proves that all possible
solutions to (1.2) lie on the level set J(u) ≤ 0. This fact combined with the
coercivity of J (the functional J also satisfies (2.10)) implies that solutions of
(1.2) are uniformly bounded in Ω and so give solutions to (2.9) for large m.

�

Remark 10. For later use, we observe that thanks to the last part of the
proof of Proposition 11 and estimates in [20], solutions u to (1.2) lie in
C1,β(Ω) for some 0 < β < 1 and are uniformly bounded in that space, i.e.,
there exists M = M(λ) > 0 so that every weak solution u to (1.2) satisfies

(2.11) ‖u‖C1,β(Ω) ≤M.
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3. The superlinear case q > p

Proof of Theorem 1. Since weak solutions to (1.2) must satisfy (just take
ψ = u in (1.3)) ∫

Ω
|∇u|p + |u|q = λ

∫
∂Ω
|u|p,

non trivial solutions only occur when λ > 0. In addition, existence of
a nonnegative solution to (1.2) follows by the argument in the proof of
Theorem 2 in [12]. In fact, we deal directly with the truncated problem (2.9)

with m ≥ m0 (Proposition 11) and observe that J̃ has a non trivial absolute

minimizer u in W 1,p(Ω) (J̃ is coercive, weakly semicontinuous, bounded

below and, moreover, J̃(c) < 0 for a small constant c). Since Hm(|u|) =
Hm(u), u can be chosen nonnegative. Moreover, u ∈ C1,β(Ω) (Remark 10)
and the strong maximum principle then gives that u > 0 in Ω.

Regarding the uniqueness of nonnegative solutions we delay its proof until
Section 5 (proof of Theorem 12) where we deal with a more general case.
We remark that we proceed in the proof of Theorem 12 by an alternative
approach to the one in Lemma 8 in [12] for the case p = 2.

Set uλ the positive solution to (1.2). Now one observes that if u ≥ 0 solves
(1.2) then Mu becomes either a subsolution or a supersolution provided
M ≤ 1 or M ≥ 1, respectively (see [15] for a version of the method of sub
and supersolutions adapted to problems with nonlinear boundary conditions
as (1.2)). Since uλ1 becomes a supersolution to (1.2) if λ1 > λ then it follows
that uλ ≤ uλ1 and the monotonicity in λ is proved. Continuous dependence
on λ (with values in C1,β(Ω)) is now a consequence of the uniqueness and
the estimates in [20] (see Section 2.3, specially Remark 10).

To complete ii) we take λn ∈ (0, λ̄), λn → 0 and set un = uλn . Since
0 < un < uλ̄, un is uniformly bounded, so by the estimates in [20] and
modulus a subsequence we get un → u in C1,β(Ω). The limit u solves (1.2)
with λ = 0. Thus, u = 0 and furthermore uλ → 0 as λ → 0. To refine this
behavior we now take (as usual) tn = ‖un‖∞, un = tnvn and by substituting
in (1.2) and taking limits we get vn → 1 in C1,β(Ω). In other words,

un = tn(1 + o(1))

in C1,β(Ω). In addition, by inserting ψ = 1 in (1.3) one finds

λnt
p−q
n

∫
∂Ω
vn =

∫
Ω
ϕq(vn).

This implies that

tn = E
1
q−pλ

1
q−p
n (1 + o(1)),

with E = |∂Ω|/|Ω|. This combined with the previous expression for un gives
the desired expression for uλ.

A proof of point iii) on the behavior of uλ as λ → ∞ together with
the corresponding result of existence of a minimal solution to the singular
problem (1.5) is contained in [14]. �

Proof of Theorem 2. We begin with the analysis of the nonlinear diffusion
case. In view of Proposition 11 we work directly with the truncated version
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(2.9) of problem (1.2) and show that J̃ satisfies the PS condition. Accord-

ingly if un ∈ W 1,p(Ω) satisfies J̃(un) ≤ c, then, coercivity, see (2.10), of J̃
implies that un is bounded in W 1,p(Ω) and, modulus a subsequence, un → u
weakly in W 1,p(Ω). Setting vn = un − u we observe (as usual) that

〈−∆pun, vn〉 = 〈DJ̃(un), vn〉+ λ

∫
∂Ω
ϕp(un)vn −

∫
Ω
h(un)vn = o(1),

provided that un satisfies in addition DJ̃(un)→ 0, which is the complemen-
tary condition in order that un is a PS sequence. Thus,

〈−∆pun − (−∆pu), un − u〉 → 0,

and the monotonicity of the p-Laplacian implies that un → u in W 1,p(Ω).

Let us come back to the linear case p = 2 and study the geometry of J̃
near zero. To this end set Xn = span{φ1, . . . , φn}, where φ1, . . . , φn are the
first n–Steklov eigenfunctions, normalized as in Section 2.2. We now observe
that, for all u =

∑m
i=1 tiφi ∈ Xm,

1

2

∫
Ω
|∇u|2 − λ

2

∫
∂Ω
|u|2 =

1

2

m∑
i=1

(λi − λ)t2i .

Hence, if λ > λn and assuming that |t̄|22 :=
∑m

i=1 t
2
i is small, we find that for

u =
∑m

i=1 tiφi ∈ Xm

(3.12) J̃(u) =
1

2

m∑
i=1

(λi − λ)t2i +
1

q
|t̄|q2
∫

Ω
|
m∑
i=1

ti
|t̄|2

φi|q

≤ 1

2
(λn − λ)|t̄|22 + C|t̄|q2 < 0,

for a certain positive C, all t̄ ∈ Rn with |t̄|2 = R and R sufficiently small.

For X = W 1,p(Ω) we introduce the class

Cm = {K ⊂ X : K = −K, K compact, γ(K) ≥ m},
where γ(K) is the Krasnosel’skii genus of K (see Section 2.1). The sphere
Kn,R := {u ∈ Xn : |t̄|2 = R} is compact and Kn,R ∈ Cn since γ(Kn,R) = n
(we refer again to Section 2.1). In view of the previous analysis we have
maxKn,R J < 0 for R small enough. Thus

−∞ < c̃1 := inf
X
J̃ ≤ c̃n := inf

K∈Cn
max
u∈K

J̃(u) < 0,

where the finiteness of c̃1 is furnished by the coercive character of J̃ . There-

fore, Theorem II.5.7 in [27] states that c̃n is a critical value of J̃ . Moreover,
in case of multiplicity l higher than 2, that is, if c̃n = · · · = c̃n+l−1 for a

certain l ∈ N, l ≥ 2, then γ(Kc̃n) ≥ l where Kc̃n = {u ∈ X : J̃(u) =

c̃n and DJ̃(u) = 0} ([27], Lemma II.5.6). In all cases, we conclude the exis-
tence of at least n distinct pairs ±un,λ of nontrivial solutions to (2.9) for all
λ > λn. �

Proof of Theorem 4. That the whole set of solutions to (1.2) for λ > 0 fixed
constitutes a compact set in C1,β(Ω) for some 0 < β < 1 follows from
Proposition 11 (see Remark 10).
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On the other hand, the proof of ii) is similar to the previous one. We set
instead, Xn,p = span{φ1,p, . . . , φn,p}, the family of the n first LS eigenfunc-
tions associated to the eigenvalues λ1,p, . . . , λn,p introduced in Lemma 9. If
u =

∑n
i=1 tiφi,p is arbitrary in Xn,p, t̄ = (ti) ∈ Rn, then

(3.13)

∫
Ω
|∇u|p − λ

∫
∂Ω
|u|p =

∫
Ω
|
n∑
i=1

ti∇φi,p|p − λ
∫
∂Ω
|
n∑
i=1

tiφi,p|p ≤

np−1
n∑
i=1

λi|ti|p − λBn|t̄|p2 ≤
( np
Bn

λn,p − λ
)
|t̄|p2,

where Bn = inf |t̄|2=1

∫
∂Ω |

∑n
i=1 tiφi,p|p ≤ 1. Notice that independence of the

φi,p’s is involved here in order to assert that Bn > 0. Thus, for all u ∈ Xn,p

J̃(u) ≤ 1

p

(
np

Bn
λn,p − λ

)
|t̄|p2 + C|t̄|q2 < 0,

if t̄ belongs to the the sphere |t̄|2 = R in Xn,p, R > 0 is small enough and,
of course, λ satisfies (1.7); that is,

λ >
np

Bn
λn,p.

The remaining part of the proof coincides with that of Theorem 2 (observe

that it was shown there that J̃ fulfills PS). In particular we also have (in
view of Theorem 1) that n−1 of the obtained nontrivial pairs ±uk,n(λ), say
2 ≤ k ≤ n, correspond to two-signed solutions. �

Proof of Theorem 3. Let λ̄ be an arbitrary Steklov eigenvalue with an asso-
ciated system {φ̄1, . . . , φ̄n} of eigenfunctions, normalized such that

(λ̄+ 1)

∫
∂Ω
φ̄iφ̄j = δij , i, j ∈ {1, . . . , n},

and so they are orthonormal with respect the scalar product

(u, v) =

∫
Ω
∇u∇v +

∫
∂Ω
uv.

We use ideas from [25] (see also Chapter XI in [24]) to show that finding
solutions (λ, u) to (1.1) with (λ, u) close to (λ̄, 0) amounts to searching for
small amplitude critical points v ∈ Y , Y := span{φ̄1, . . . , φ̄n}, of a finite
dimensional real function g(λ, v) defined in a neighborhood of (λ̄, 0) in R×Y .
This implies a reduction in the problem dimension and, of course, involves
a Lyapunov-Schmidt reduction.

To this purpose we set R : H1(Ω)∗ → H1(Ω) the Riesz mapping associ-
ating to every f ∈ H1(Ω)∗ a unique Rf ∈ H1(Ω) so that

〈f, u〉 = (Rf, u) u ∈ H1(Ω)

(here (·, ·) stands for the scalar product in H1(Ω) and 〈·, ·〉 for the duality
pairing between H1(Ω)∗ and H1(Ω)). In addition, for f ∈ H1(Ω)∗, g ∈
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H1/2(∂Ω)∗ we consider the boundary value problems−∆u = f, x ∈ Ω,

∂u

∂ν
+ u = 0, x ∈ ∂Ω,

∆v = 0, x ∈ Ω,

∂v

∂ν
+ v = g, x ∈ ∂Ω,

whose respective solutions u := A(f), v := B(g) define continuous linear

operators A : H1(Ω)∗ → H1(Ω) and B : H1/2(∂Ω)∗ → H1(Ω), respectively.
Thus, the “action” of DJ can be written as

〈DJ(u), ζ〉 = (u− (λ+ 1)B(u) +A(ϕq(u)), ζ) ζ ∈ H1(Ω).

Observe that since we look for small amplitude solutions, expression (1.4) for

J can be employed instead of the truncated version J̃ (Section 2.3). Hence,

RDJ(u) = u− (λ+ 1)B(u) +A(ϕq(u)),

and solving (1.1) is equivalent to solve

(3.14) u− (λ+ 1)B(u) +A(ϕq(u)) = 0,

in H1(Ω). Notice that in this equation B(u) stands for the composition of
B with the trace mapping.

We set π : H1(Ω)→ Y the orthogonal projection and for every u ∈ H1(Ω)
we set u = πu+ (I − π)u := v + w. Then (3.14) is equivalent to

(3.15)

{
πRDJ(v + w) = 0

(I − π)RDJ(v + w) = 0.

The first equation in (3.15) can be written as

(3.16)
λ̄− λ
λ̄+ 1

v + πA(ϕq(v + w)) = 0.

To get this expression, it has been used that for u = v+w, B(v) = (λ̄+1)−1v
while B(w) ∈ Y ⊥.

The second equation in (3.15) reads as

(3.17) F(λ, v, w) := w − (λ+ 1)B(w) + (I − π)A(ϕq(v + w)) = 0,

where F : R× Y × Y ⊥ → Y ⊥ is a C1 mapping with F(λ̄, 0, 0) = 0. In addi-
tion, the Fréchet derivative of F with respect to w at (λ̄, 0, 0) can be written
as DwF(λ̄, 0, 0) = IY ⊥ − (λ̄+ 1)B, where IY ⊥ is the restriction of the iden-
tity to Y ⊥. Due to the compactness of the trace mapping, the operator B is
compact in Y ⊥, so that DwF(λ̄, 0, 0) is a one-to-one compact perturbation
of the identity and hence, an isomorphism. The implicit function theorem
then implies that the solutions (λ, v, w) to (3.17) which are close to (λ̄, 0, 0)
have the form w = ψ(λ, v) where ψ : (λ̄ − ε0, λ̄ + ε0) × U ⊂ R × Y → Y ⊥,
(λ̄− ε0, λ̄+ ε0)× U can be taken to be a symmetric open neighborhood of
(λ, v) = (λ̄, 0) in R× Y , and ψ is a class C1 mapping such that

ψ(λ, 0) = 0, Dvψ(λ, 0) = 0, ψ(λ,−v) = −ψ(λ, v)

for every λ ∈ (λ̄ − ε0, λ̄ + ε0), v ∈ U . Therefore, solutions (λ, u) to (3.14)
close to (λ̄, 0) are u = v + ψ(λ, v) with v solving

(3.18)
λ̄− λ
λ̄+ 1

v + πA(ϕq(v + ψ(λ, v))) = 0.
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We now define g : (λ̄− ε0, λ̄+ ε0)× U → R as g(λ, v) = J(v + ψ(λ, v)) and
prove that (3.18) furnishes its critical points. In fact, for every ξ ∈ Y :

〈Dvg(λ, v), ξ〉 = 〈DJ(v + ψ), ξ +Dvψξ〉 = (RDJ(v + ψ), ξ +Dvψξ) =

(πRDJ(v + ψ), ξ) =

(
λ̄− λ
λ̄+ 1

v + πA(ϕq(v + ψ(λ, v))), ξ

)
,

where it has been used that (I − π)RDJ(v + ψ) = 0. Thus,

Dvg(λ, v) =
λ̄− λ
λ̄+ 1

v + πA(ϕq(v + ψ(λ, v))),

and (3.18) gives the critical points of g.

We now claim that v = 0 is a strict local minimum and also an isolated
critical point of g(λ̄, ·). If the claim is assumed then Theorem 2.2 in [25]
implies the existence of δ0 > 0 such that for every λ̄ < λ < λ̄ + δ0, g(λ, ·)
admits n pairs ±vk(λ), 1 ≤ k ≤ n, of nontrivial critical points (observe that
g is even in v), such that vk(λ)→ 0 as λ→ λ̄+. Hence, ii) follows from the
claim.

Let us prove the claim. First observe that

g(λ, v) =
1

2

λ̄− λ
λ̄+ 1

‖v‖2 +
1

2
‖ψ‖2 − λ+ 1

2

∫
∂Ω
ψ2 +

1

q

∫
Ω
|v + ψ|q,

with ‖u‖2 = (u, u). In fact, (v, ψ) = 0 which together with the fact that
v ∈ Y entails that ∫

∂Ω
vψ = 0.

Notice in addition that g(λ, 0) = 0. By setting λ = λ̄, we get

g(λ̄, v) =
1

2

∫
Ω
|∇ψ|2 − λ̄

2

∫
∂Ω
ψ2 +

1

q

∫
Ω
|v + ψ|q ≥

λ̄′ − λ̄
2

∫
∂Ω
ψ2 +

1

q

∫
Ω
|v + ψ|q > 0,

where λ̄′ stands for the first eigenvalue greater than λ̄. Thus, v = 0 is a
strict local minimum of g(λ̄, ·). Regarding the isolation of v = 0 as a critical
point of g(λ̄, ·) assume, on the contrary, that there exists a sequence vm ∈ Y
of critical points with vm → 0. By writing

vm =
n∑
i=1

t
(m)
i φ̄i, t̄m = (t

(m)
i )1≤i≤n, τ̄m =

t̄m
|t̄m|2

=
t̄m
‖vm‖

,

we get that, modulus a subsequence, τ̄m → τ̄ = (τi)1≤i≤n ∈ Sn−1, Sn−1

the Euclidean sphere in Rn. On the other hand, since vm solves (3.18) with
λ = λ̄ then

(3.19) (vm, πA(ϕq(vm + ψ(λ̄, vm)))) = 0.

Taking um = A(ϕq(vm + ψ(λ̄, vm))) we obtain

(vm, πum) = (vm, um) = (vm, A(ϕq(vm+ψ(λ̄, vm)))) =

∫
Ω
ϕq(vm+ψ(λ̄, vm))vm.
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From (3.19) it follows that∫
Ω
ϕq

(
vm
‖vm‖

+ o(1)

)
vm
‖vm‖

= 0,

for all m and taking limits we conclude that
∫

Ω |v|
q = 0 with

v =
n∑
i=1

τiφ̄i 6= 0

which is impossible. Thus, v = 0 is an isolated critical point of g(λ̄, ·) and
the proof of the claim is finished.

To complete the proof of i) we notice that it follows from (3.18) that

λ− λ̄ = (λ̄+ 1)‖v‖q−2

∫
Ω
ϕq

(
v

‖v‖
+ o(1)

)
v

‖v‖

for all possible solutions (λ, v) near (λ̄, 0). By arguing as in the last part
one concludes that the integral must be positive for all ‖v‖ small enough.
This shows that bifurcated solutions only occur on the right of λ̄.

For the proof of iii) we assume that λ̄ is simple. In this special case
Y = span {φ̄} and bifurcated solutions are u = sφ̄ + ψ(λ, s), with ψ a C1

mapping which is orthogonal to φ̄, ψ(λ,−s) = −ψ(λ, s), ψ(λ, 0) = 0 and
Dsψ(λ, 0) = 0. Thus, we can write ψ(λ, s) = sψ1(λ, s) with an also C1

mapping ψ1. Performing similar computations as before, equation (3.18)
becomes

(3.20)
λ− λ̄
λ̄+ 1

− |s|q−2

∫
Ω
ϕq(φ̄+ ψ1)φ̄ = 0.

The implicit function theorem can be used again to solve the equation in
the form λ = λ(s) where λ is an even function λ ∈ C(λ̄ − δ0, λ̄ − δ0) while
λ ∈ C1(λ̄− δ0, λ̄− δ0) \ {0}, δ0 > 0 small, and so that λ(s) is increasing for
s > 0. In addition, it follows from (3.20) that

(3.21) λ(s) = λ̄+ (λ̄+ 1)|s|q−2

(∫
Ω
|φ̄|q dx+ o(1)

)
,

as s→ 0. On the other hand, since (φ̄, φ̄) = 1 we have

λ̄+ 1 =
1∫

∂Ω φ̄
2

Setting E =
∫
∂Ω φ̄

2/
∫

Ω |φ̄|
q one obtains from (3.21)

s = ±E
1
q−2 (λ− λ̄)

1
q−2 (1 + o(1)),

as λ→ λ̄. By employing this expression in the representation u = s(φ̄+ψ1)
of the small amplitude solutions we get the expression announced in iii).
This finishes the proof. �
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4. The sublinear case 1 < q < p

Proof of Theorem 5. We first show that the functional J also satisfies PS in
the sublinear case 1 < q < p. To this purpose it is enough to show that
un becomes bounded when both J(un) is bounded and DJ(un) → 0, for
an arbitrary sequence un ∈ W 1,p(Ω), since the remaining part of the proof
coincides with the one in Theorem 2. Thus, under the previous assumptions
on un, we have

1

p

(∫
Ω
|∇un|p − λ

∫
∂Ω
|un|p

)
+

1

q

∫
Ω
|un|q = O(1).

If un is not bounded then, necessarily, tpn :=
∫
∂Ω |un|

p →∞ and vn := t−1
n un

satisfies
1

p

(∫
Ω
|∇vn|p − λ

)
+

1

qtp−qn

∫
Ω
|vn|q = O(t−pn ),

what implies that vn is bounded. From DJ(un)→ 0 it also follows that(∫
Ω
|∇vn|p − λ

)
+

1

tp−qn

∫
Ω
|vn|q = o(t−(p−1)

n ),

and so ∫
Ω
|vn|q = o(t−(q−1)

n ),

so that vn → 0 in Lq(Ω). However, since {vn} is bounded in H1(Ω), modulus
a subsequence we have vn → v in Lp(Ω) and in Lp(∂Ω) with

∫
∂Ω |v|

p = 1.
This is not possible and so J fulfills the PS condition.

We now study the geometry of J near zero. By a suitable choice of ε > 0
in inequality (2.6) we obtain

(4.22) J(u) ≥ C1

(∫
Ω
|∇u|p +

∫
∂Ω
|u|p
)
− C2

∫
Ω
|u|p +

1

q

∫
Ω
|u|q

≥ C1‖u‖1,p − C2‖u‖pLp(Ω) + C3‖u‖qLp(Ω) ≥ C1‖u‖p1,p + C‖u‖qLp(Ω),

for ‖u‖1,p ≤ ε0 and certain positive constants C,C1, ε0, with ε0 = ε0(λ)
small and C1 independent of λ. Thus, J has a strict local minimum at
u = 0 and J(u) > C1ε

p
0 for ‖u‖1,p = ε0. In addition, J(eλ) = 0 for eλ = t

where t = t(λ) is a suitable positive constant. Therefore, J satisfies J-i),
J-ii) in Section 2.1. Then the mountain pass lemma ([3]) gives the existence
of a nontrivial solution ũλ to (1.2) for all λ > 0 which satisfies J(ũλ) ≥ C1ε

p
0.

However, it can not be shown that the solution ũλ so obtained is non-
negative, which is our main concern now. If instead J one considers the
functional

(4.23) J+(u) =
1

p

∫
Ω
|∇u|p − λ

p

∫
∂Ω

(u+)p +
1

q

∫
Ω
|u|q,

it is shown by the previous argument that J+ fulfills PS and, since J+(u) ≥
J(u), that J+ has also the mountain pass lemma geometry near zero. Then
J+ admits a non trivial critical point uλ satisfying J+(ũλ) ≥ C1ε

p
0. More-

over, by setting ψ = u−λ in the weak equation 〈DJ+(uλ), ψ〉 = 0, it holds
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that u−λ = 0 and thus uλ is a nonnegative solution to (1.2). To show now
that uλ satisfies (1.8) notice that mountain pass lemma entails

J+(uλ) ≤ cλ := max
[0,eλ]

J,

where cλ = O(λ−q/(p−q)) as λ→∞. Thus, (1.10) is a consequence of

J+(u) =
1

p
〈DJ+(u), u〉+

(
1

q
− 1

p

)∫
Ω
|u|q ≤ cλ,

which holds for u = uλ.

To show ii) consider an arbitrary sequence un of solutions to (1.2), each
un corresponding to λn and λn → 0. It holds that ‖un‖∞ → ∞. In fact,
if otherwise ‖un‖∞ = O(1) then it follows by arguing as in the proof of
Theorem 1 that un → 0 in C1,β(Ω). If tn = ‖un‖1,p and un = tnvn we get

(4.24) 1 +
1

tp−qn

∫
Ω
|vn|q = o(1) +

∫
∂Ω
|vn|p.

Extracting a subsequence we observe that vn → v weakly in W 1,p(Ω). Since

the right hand side of (4.24) is O(1) and tp−qn → 0 then vn → 0 in Lp(Ω) ∩
Lp(∂Ω). In particular, ∫

∂Ω
|vn|p = o(1),

and (4.24) implies that

1 ≤ 1 +
1

tp−qn

∫
Ω
|vn|q = o(1).

This is not possible. Therefore, ‖un‖∞ →∞.

We set un = tnwn where now tn = ‖un‖∞ to conclude (as in the proof
of Theorem 1) that wn → ±1 in C1,β(Ω). Relation (1.9) easily follows from
the equality ∫

Ω
ϕq(wn) = λnt

p−q
n

∫
∂Ω
ϕp(wn).

This ends the proof. �

Remark 11. Existence of a nonnegative solution in Theorem 5 can be alter-
natively achieved by the approach used in [13] for the case p = 2. Namely,
by obtaining an absolute minimizer of funcional J in the manifold {u ∈
W 1,p(Ω) :

∫
Ω |u|

q = 1}.

Proof of Theorem 6. We use Theorem 8 and observe that it has been already
shown in the proof of Theorem 5 that the functional J fulfills conditions J-i)
and ii) while J-iii) is obvious. To check J-iv) we choose, as in Theorem 2,
Xn = span {φ1, . . . , φn}, the φi’s being the sequence of normalized eigen-
functions associated to the Stekolv eigenvalues λi. Then, inequality (3.12)
implies that

J(u) ≤ 1

2
(λn − λ)|t̄|22 + C|t̄|q2 u =

n∑
i=1

tiφi ∈ Xn.
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By choosing Kn = {u ∈ Xn : |t̄|2 = R} and R > 0 large, condition J-iv)
holds for λ > λn. Then Theorem 8 implies that

(4.25) 0 < C1ε
p
0 ≤ cn = inf

K∈Cn
max
K

J,

defines a critical value for J with at least two nontrivial associated critical
points. This shows i).

The corresponding proof for ii) fits the same pattern. In fact, observe that
J-i) and ii) were shown for p > 1 arbitrary meanwhile, as in Theorem 4,

J(u) ≤ 1

p

(
np

Bn
λn,p − λ

)
|t̄|p2 + C|t̄|q2 < 0, u =

n∑
i=1

tiφi,p ∈ Xn,p,

with Xn,p = span {φ1,p, . . . , φn,p}. Hence, J-iv) holds by taking Kn = {u ∈
Xn,p : |t̄|2 = R}, R > 0 large and

λ >
np

Bn
λn,p.

Analogously as before, the value cn > 0 defined in the previous expression
(4.25) also furnishes a pair of nontrivial solutions to (1.2). �

Proof of Theorem 7. Using the same notation as in the proof of Theorem 3,
problem (1.1) can be written as equation (3.14),

u− (λ+ 1)B(u) +A(ϕq(u)) = 0,

where we look for solutions u ∈ H1(Ω). However, for our present purposes u
must be searched in a more regular space. In fact, according to Schauder the-
ory ([19]) the operators A : Cα(Ω)→ C2,α(Ω), B : C1,α(∂Ω)→ C2,α(Ω) are
continuous (recall that Ω is now assumed to be C2,α). Hence B : C2,α(Ω)→
C2,α(Ω) is compact (here B is composed with the trace operator). Since H1

solutions u to (3.14) lie in C1(Ω) then such solutions belong to C2,β(Ω) with
β = min{α, q− 1}. In particular, equation (3.17) can be regarded in C2(Ω).

In view of Schauder estimates,

‖A(ϕq(u))‖C2(Ω) ≤ ‖A(ϕq(u))‖C2,β(Ω) ≤ C‖ϕq(u)‖Cβ(Ω) ≤ C‖u‖
q−1

C1(Ω)
,

and so the nonlinear term in (3.17) is o(‖u‖C1(Ω)) as ‖u‖C2(Ω) → ∞. In

addition, the nonlinear operator K(u) = ‖u‖2(2−q)
C2(Ω)

A(ϕq(u)), defined as 0 at

u = 0, is continuous and compact in C2(Ω). Therefore, the existence of
solutions bifurcating from infinity follows from Theorem 1.6 in [26].

Let now (λk, uk) be a sequence of solutions such that λk → λ̄, sk =
‖uk‖∞ → ∞. Extracting a subsequence if necessary one obtains that ũk =
s−1
k uk → φ̄ in C1(Ω), with φ̄ an eigenfunction associated to λ̄. Setting Y

the eigenspace of λ̄ and π its associated orthogonal projection, vk = π(ũk),
wk = (I − π)(ũk) (see the proof of Theorem 3) it follows that

(4.26)
λk − λ̄
λ̄+ 1

(vk, φ̄) = sq−2
k

∫
Ω
ϕq(vk + wk)φ̄.

Since both the right hand side and (vk, φ̄) become positive for large k one
concludes that no sequences of bifurcated solutions exist so that λk ≤ λ̄ for
all k. This proves i).
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In case that λ̄ is simple, Corollary 1.8 in [26] provides us the existence of
a closed connected set (λ, u) of bifurcated solutions such that u = s(φ̄+w1),
s ≥ s0 > 0, with λ = λ̄+ o(1) and w1 = o(1) in C2(Ω) as s→∞ and where
φ̄ is an associated eigenfunction so that ‖φ̄‖∞ = 1. Relation (4.26) can now
be written as

(λk − λ̄)

(∫
∂Ω
|φ̄|2 + o(1)

)
= sq−2

k

(∫
Ω
|φ̄|q + o(1)

)
,

which proves (1.11). �

5. Spatial dependent reactions

We are next dealing with the variable coefficient version (1.12) of problem
(1.2). Namely, ∆pu = a(x)ϕq(u), x ∈ Ω,

Bp(u) = λϕp(u), x ∈ ∂Ω,

where we are assuming that a ∈ C(Ω) is nonnegative while Ω+ := {x ∈ Ω :
a(x) > 0} is a nonempty C1,α domain (in particular a 6≡ 0), being Ω+ = Ω
possible. However, in the relevant case, Ω+  Ω and Γ0 := ∂Ω+ ∩ Ω is a
nonempty open part of ∂Ω+. In that case, it will be always assumed that
Γ0 is in addition closed i. e. Γ0 = Γ0. It will be said for brevity that the
function a satisfies hypothesis (H) when it fulfills all these conditions.

Observe that Γ0 consists of the union of a finite number of components
which define closed C1,α manifolds. Therefore, if Ω0 := Ω \ Ω+ 6= ∅ then
Ω0 is a C1,α domain whose boundary is described as ∂Ω0 = Γ0 ∪ Γ1 with
Γ1 = ∂Ω0 ∩ ∂Ω. Notice that Γ0 ∩ Γ1 = ∅ while Γ1 = ∅ if ∂Ω ⊂ ∂Ω+.
To simplify the exposition, we are also assuming that both Ω0 and Γ1 are
connected and such features will be added to hypothesis (H) (see [12, 13]
for further insights and several possible configurations of Ω and Ω+ allowed
by condition (H)).

Theorem 12. Assume that a ∈ C(Ω) is nonnegative and satisfies (H) while

q > p > 1.

Then, problem (1.12) satisfies the following properties.

A) If Ω0 ⊂ Ω and so Γ1 = ∅ then problem (1.12) exhibits essentially the
same features as (1.2) in the super linear regime. Namely, for all λ > 0 it
possesses a unique pair ±uλ ∈ C1,β(Ω) of one–signed solutions, uλ > 0 in
Ω. The solution uλ bifurcates from zero at λ = 0 with

(5.27) uλ = ā
− 1
q−p

(
|∂Ω|
|Ω|

) 1
q−p

λ
1
q−p (1 + o(1)),

as λ → 0 in C1,β(Ω), with ā = 1
|Ω|
∫

Ω a. Furthermore, uλ → U in C1,β(Ω)

as λ→∞ where U is the minimal solution to the singular problem

(5.28)

{
∆pu = a(x)ϕq(u), x ∈ Ω,

u =∞, x ∈ ∂Ω.
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B) If, on the contrary, Γ1 = ∂Ω0∩∂Ω 6= ∅ then solutions to (1.12) exhibiting
one sign in Ω are only possible when

(5.29) 0 < λ < σ1,p,

where σ = σ1,p is the principal eigenvalue to the problem

(5.30)


∆pu = 0 x ∈ Ω0

u = 0 x ∈ Γ0

Bp(u) = λϕp(u) x ∈ Γ1.

Moreover, for every λ satisfying (5.29), (1.12) admits a unique pair ±uλ ∈
C1,β(Ω) of one–signed solutions, meanwhile uλ is positive in Ω and bifurcates
from the trivial solution at λ = 0 with the profile (5.27).

Remark 12.

a) Existence, uniqueness and simplicity of a principal eigenvalue σ1,p to (5.30)
can be achieved by similar methods as those employed in [12] (see Theorem

6 there). For future reference we set W 1,p
Γ0

(Ω0) the subspace of W 1,p(Ω0)
that contains those functions u which vanish on Γ0.

b) The precise asymptotic profile of solution uλ as λ → σ1,p in case B) of
Theorem 12 can be described. Specifically, it can be proved that uλ → ∞
uniformly in Ω0 ∪ Γ0 as λ → σ1,p− while uλ → U in C1,β(Ω+ ∪ Γ+) as
λ→ σ1,p−, where U satisfies a suitable boundary value problem in Ω+ (see
[12] for the linear diffusion case p = 2). Details are omitted in order to keep
this work within a reasonable size.

A key result for the proof of Theorem 12 and further purposes is the
following.

Lemma 13. Assume a ∈ C(Ω) satisfies condition (H) and ω = σ1,p if
Γ1 6= ∅, ω =∞ otherwise. Then for every ε > 1

ω there exists C = C(ε) such
that

(5.31)

∫
∂Ω
|u|p ≤ ε

∫
Ω
|∇u|p + C

∫
Ω
a(x)|u|p,

for every u ∈W 1,p(Ω).

Proof. If the assertion does not hold then there exist ε0 >
1
ω , and a sequence

un ∈W 1,p(Ω) such that∫
∂Ω
|un|p > ε0

∫
Ω
|∇un|p + n

∫
Ω
a(x)|u|p,

for all n. Setting as usual un = tnvn, tpn =
∫
∂Ω |un|

p then, modulus a

subsequence, vn → v weakly in W 1,p(Ω) where v = 0 in Ω+ and
∫
∂Ω |v|

p = 1.
If Γ1 = ∅ then ∂Ω ⊂ ∂Ω+ and v = 0 on ∂Ω what is not possible. On the
contrary, if Γ1 6= ∅ then

∫
Γ1
|v|p = 1 since v = 0 on Γ+ (if Γ+ is non void).

Thus

σ1,p ≤
∫

Ω0
|∇v|p∫

Γ1
|v|p

≤ 1

ε0
,

contradicting the assumption on ε0. �



24 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

Let

Ja(u) =
1

p

∫
Ω
|∇u|p − λ

p

∫
∂Ω
|u|p +

1

q

∫
Ω
a(x)|u|q

be the energy functional associated to (1.12) where u ∈W 1,p(Ω).

Lemma 14. The functional Ja is coercive provided 0 < λ < ω and q > p.
Furthermore, Ja satisfies PS under that range for λ and both when q > p
and 1 < q < p.

Proof. Observe that

Ja(u) ≥ 1

p
(1− λε)

∫
Ω
|∇u|p +

1

q

∫
Ω
a|u|q − C

∫
Ω
a|u|p,

ε > 0 being chosen so that λ < 1
ε < ω. Thus,

Ja(u) ≥ 1

p
(1− λε)

∫
Ω
|∇u|p + C

∫
Ω
a|u|p −K,

for a certain constant K, provided that q > p. Thus, coercivity follows from
the fact that the first two terms in the right hand side are comparable to
‖ · ‖p1,p.

To show that Ja verifies PS it is enough to prove that un is bounded
in W 1,p(Ω) whenever J(un) = O(1). Once this is obtained, it suffices to
proceed as in the case a = 1 (proof of Theorem 2). On the other hand, the
former assertion follows from coercivity when q > p.

As for the case 1 < q < p we choose a sequence un ∈ W 1,p(Ω) satisfying
Ja(un) = O(1), DJa(un) = o(1) in (W 1,p(Ω))∗ and, for the moment, suppose
that un is unbounded in W 1,p(Ω). Keeping the notation for vn introduced
in the first part of the proof of Theorem 5 we also conclude that∫

Ω
a(x)|vn|q = o(t−(q−1)

n ),

where tn → ∞. Since vn is bounded in W 1,p(Ω) then, passing through a
subsequence, vn → v in Lp(Ω) ∩ Lp(∂Ω) with

∫
∂Ω |v|

p = 1 and v = 0 in Ω+.

This is impossible if Γ1 = ∅ so assume that ω < ∞. Then, v ∈ W 1,p
Γ0

(Ω0)
with ∫

Ω0

|∇v|p − λ
∫

Γ1

|v|p ≤ 0,

and
∫

Γ1
|v|p = 1, which is incompatible with λ < σ1,p. Thus, the sequence

un must be bounded in W 1,p(Ω). �

Arguing as in Proposition 10 one finds that weak solutions u ∈W 1,p(Ω) to
(1.12) lie also in L∞(Ω), with a uniform bound that only depends on p,Ω, λ
and ‖u‖L1(Ω) but not on q, nor on a(x). Therefore, using the truncation
hm(u) introduced in Section 2.3 with the same proof we obtain our next
auxiliary result. It allows a complete freedom in the choice of exponent
q > p in (1.12).
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Lemma 15. Under the preceding assumptions on a ∈ C(Ω), there exists m0

such that problem

(5.32)

{
∆pu = a(x)hm(u), x ∈ Ω,

u =∞, x ∈ ∂Ω,

exhibits the same solutions as (1.12) for all m ≥ m0 provided that 0 < λ < ω.

We can now proceed to show Theorem 12.

Proof of Theorem 12. In both cases A) and B) we find that Ja admits, due
to coercivity, a positive global minimizer u ∈ C1,β(Ω) for every 0 < λ < ω.
Regarding uniqueness, if v ∈W 1,p(Ω)\{0} is a further nonnegative solution
then the strong maximum principle yields v > 0 in Ω. We then introduce
the integral

I1 :=

∫
Ω
|∇v|p − |∇u|p−2∇u

(
vp

up−1

)
,

and its symmetric counterpart

I2 :=

∫
Ω
|∇u|p − |∇v|p−2∇v

(
up

vp−1

)
.

The generalized Picone’s inequality introduced in [1] states that both inte-
grals are nonnegative. Moreover, v must be an scalar multiple of u in the
case that one of them vanishes. By the weak form of (1.12) and a suitable
choice of test functions we find that

I1 + I2 =

∫
Ω
a(x)(vp − up)(uq−p − vq−p) ≤ 0.

Accordingly, I1 = I2 = 0 and so, say v = cu. However, since

(cq−p − 1)(cp − 1)

∫
Ω
a(x)uq = 0,

then c = 1, as desired.

That uλ bifurcates from zero at λ = 0 with the asymptotic behavior (5.27)
is shown exactly as in Theorem 1.

On the other hand, that uλ converges in case A) to the minimal solution U
of the singular problem (5.28) is obtained by adapting the proof of Theorem
4 in [12] to the p−Laplacian framework. It should be stressed that the sole
existence of such solution U is by no means straightforward when Ω0 ⊂ Ω
is non empty.

To conclude the proof let us show that no positive solutions to (1.12)
are possible when Γ1 6= ∅ and λ ≥ σ1,p. In fact, if such solution u exists

it becomes positive in Ω. Setting φ1 ∈ W 1,p
Γ0

(Ω0) a positive eigenfunction

associated to σ1,p in (5.30) and by choosing a convenient test function in
(1.12) (φ1 is regarded as zero in Ω+) we obtain∫

Ω0

|∇φ1|p − |∇u|p−2∇u
(

φp1
up−1

)
= (σ1,p − λ)

∫
Γ1

φp1.

Being the first integral nonnegative, the only possibility is λ = σ1,p. This in
turn means that u vanishes on Γ0 what is not possible. �
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Concerning global existence of solutions when λ > λn, λn the n–th Steklov
eigenvalue, and the corresponding result for p 6= 2, we have the following
theorem. Recall that we define ω = ω(Ω0) as σ1,p if Γ1 6= ∅, ω = ∞
otherwise.

Theorem 16. Assume Ω ⊂ RN is a C1,α bounded domain and that a ∈
C(Ω) satisfies (H) and q > p. Then,

i) In the case p = 2, the conclusion of Theorem 2 holds provided

λn < λ < ω.

ii) If p 6= 2, the assertions of Theorem 4 remain true when

np

Bn
λ1,p < λ < ω,

where the constant Bn is just the constant introduced in that statement.

Theorem 16, whose proof is entirely analogous to the corresponding ones
contained in Section 3, posses the question on how large could the gap
between λn and ω be in terms of the size of Ω0. Our next result says that
the smaller the measure of Ω0, the larger the gap.

Lemma 17. Let Γ1 ⊂ ∂Ω be a fixed component of the boundary ∂Ω and
define, for δ0 > 0 small, U = {x ∈ RN : dist (x,Γ1) < δ0}. If Ω0 ⊂
U− := U ∩Ω is a smooth domain so that Γ1 ⊂ ∂Ω0 and σ1,p(Ω0) is the first
eigenvalue to (5.30) then σ1,p(Ω0)→∞ as |Ω0| → 0+.

Proof. As a first remark, there exists a constant C1, only depending on Γ1,
such that

(5.33)

∫
Γ1

|u|p ≤ C1

∫
U−
|u|p−1|∇u| ≤ C1ε

p

p

∫
U−
|∇u|p +

C1ε
−p′

p′

∫
U−
|u|p,

for every u ∈ W 1,p(Ω) and every prefixed ε > 0. On the other hand, a
Lipschitz mapping T : U → U− can be found so that E : W 1,p(U−) →
W 1,p(U), defined on smooth functions u ∈ C1(U) as E(u)(x) = u(T (x)) for
x ∈ U+ := U ∩(RN \Ω), gives rise to a linear continuous extension operator.

Assume now that Ω0 ⊂ U− is as in the statement and u ∈ W 1,p
Γ0

(Ω0)

with Γ0 = ∂Ω0 ∩ U−. Then, u = E(u) ∈ W 1,p
0 (U) and has its support in

Ω0 ∪ Γ1 ∪ Ω∗0 where Ω∗0 = T−1(Ω0) is the “reflection” of Ω0 with respect to
Γ1. Thus,
(5.34)∫

Ω0

|u|p ≤
∫

Ω0∪Ω∗0

|u|p ≤
(
|Ω0|+ |Ω∗0|

ωN

) p
N

(∫
Ω0

|∇u|p +

∫
Ω∗0

|∇u|p
)
,

where ωN = |B1(0)| and Poincare’s inequality has been used (see the version
of such inequality given by equation (7.44) in [17]). Since |Ω∗0| ≤ C1|Ω0| for
a constant C1 only depending on Γ1 then we get from (5.34) that∫

Ω0

|u|p ≤ C1|Ω0|
p
N

∫
Ω0

|∇u|p,
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for all u ∈ W 1,p
Γ0

(Ω0). By combining such estimate with (5.33) under the

choice ε = |Ω0|θ, θ > 0, we obtain∫
Γ1

|u|p ≤ C1

p
Φ(|Ω0|)

∫
Ω0

|∇u|p u ∈W 1,p
Γ0

(Ω0),

where Φ(|Ω0|) = |Ω0|θp + (p− 1)|Ω0|
p
N
−θp′ → 0 as |Ω0| → 0 provided that θ

has been chosen so that 0 < θ < p−1
N . The desired conclusion then follows

from the estimate
p

C1Φ(|Ω0|)
≤ σ1,p(Ω0),

in which, constant C1 only depends on Γ1. �

Theorem 16 only provides nontrivial solutions to (1.12) for values of
λ < ω. However, and as should be expected, bifurcation from the Steklov
eigenvalues still remains true regardless the structure of a.

Theorem 18. Let Ω ⊂ RN be a C1,α bounded domain while a = a(x),
a 6≡ 0, is merely nonnegative and continuous in Ω. Assume q > p and
p = 2. Then, all Steklov eigenvalues λ = λn provide bifurcation values for
λ from which n pairs ±uk,n(λ), 1 ≤ k ≤ n, of nontrivial solutions arise.
Bifurcation occurs from the right of λn and the remaining conclusions of
Theorem 3 hold. In particular, the profile estimate (1.6) is true but with the
coefficient En =

∫
∂Ω φ

2/
∫

Ω a|φ|
q.

Proof. We begin with the remark that we deal with small amplitude so-
lutions to (1.12). Thus, it can be assumed that all such solutions satisfy
‖u‖H1(Ω) ≤ ε for some small ε > 0 and λ near certain eigenvalue λn. Accord-
ing to Proposition 10 those solutions satisfy a uniform bound ‖u‖L∞(Ω) ≤ m0

for certain m0 > 0. This means that when searching small amplitude solu-
tions, (1.12) can be replaced by its truncated version (5.32) with m ≥ m0

without requiring further conditions either on a nor on the size of λ. Recall
that such step is required in order to work with a properly defined C1 energy
functional.

Now the general lines of the proof of Theorem 3 can be repeated. A final
caution must be taken when showing that bifurcation at λ = λ̄ occurs from
the right, that is, λ > λ̄. If the contrary were true we would find, from the
argument of the last part of that proof, a sequence of eigenfunctions

vm =
n∑
i=1

t
(m)
i φ̄i ∈ Y,

which converges to some eigenfunction v 6= 0 that now satisfies∫
Ω
a|v|q = 0.

This means that v vanishes identically at least in some ball B ⊂ Ω. This is
not possible since v is non trivial and harmonic in Ω. �

Remark 13. If a ∈ C(Ω), a 6≡ 0, is two signed and 2 < q ≤ 2N
N−2 (suppose

for instance that N ≥ 3) then the Steklov eigenvalues still are bifurcation
values. However, bifurcated solutions near an eigenvalue λ̄ with multiplicity
n are parameterized by their H1(Ω) norm, rather than by parameter λ.
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More precisely, to every small ε > 0 there correspond n pairs of solutions
±uk,n,λε , 1 ≤ k ≤ n, each of them solving (1.12) for λ = λε, such that
‖uk,n,λε‖H1(Ω) = ε and λε → λ̄ as ε→ 0+ (see [24]).

Let us state now the results for problem (1.12) corresponding to the sub-
linear regimen 1 < q < p. They are all gathered together in a single state-
ment.

Theorem 19. Let Ω ⊂ RN be a bounded C1,α domain, a ∈ C(Ω) a nonneg-
ative function satisfying (H) while

1 < q < p.

Then the following properties hold.

i) For every λ satisfying
0 < λ < ω,

there corresponds a pair ±uλ ∈ C1,β(Ω) of one–signed solutions such that

uλ = ā
1
p−q (|∂Ω|/|Ω|)−

1
p−qλ

− 1
p−q (±1 + o(1)),

as λ→ 0+ where ā = 1
|Ω|
∫

Ω a.

ii) In case Γ1 6= ∅ and so ω = σ1,p then all possible one–signed solutions u to
(1.12) for λ ≥ σ1,p vanish on Ω0. In particular, no nontrivial and one–signed

solutions exist for λ ≥ σ1,p provided Ω+ ⊂ Ω.

iii) For p = 2, problem (1.12) possesses n pairs ±uk,n(λ), 1 ≤ k ≤ n, of
nontrivial solutions for every

λn < λ < ω.

iv) If p 6= 2 the same conclusion as in iii) holds provided

np

Bn
λn,p < λ < ω,

where Bn is the constant introduced in Theorem 4.

v) Assume that p = 2, Ω is class C2,α while a ∈ Cα(Ω) is a nonnegative
function without further requirements. Then problem (1.12) satisfies the
conclusions of Theorem 7. In particular, bifurcation from infinity occurs at
all Steklov eigenvalues λ̄ with odd multiplicity. Such bifurcation occurs at
λ > λ̄.

Remarks 14.

a) As shown in the case p = 2 (cf. [13]) nontrivial and nonnegative solutions
to (1.12) when λ > σ1,p are still possible if Γ+ = ∂Ω+∩∂Ω is nonempty and
λ is large. Observe that ii) in Theorem 19 requires ∂Ω+ ⊂ Ω.

b) The nonnegativity condition on a in v) is needed for the bifurcation to take
place at the right of λ̄. Nevertheless, bifurcation still occurs if a ∈ Cα(Ω)
changes sign.

Sketch of the proof of Theorem 19. Since it has already been proved in Lem-
ma 14 that the functional Ja satisfies PS, we show that Ja has a strict local
minimum at u = 0. Due to the presence of a, the argument in the proof
of Theorem 5 must be modified. Thus, suppose on the contrary that there
exists a sequence un ∈W 1,p(Ω) \ {0} so that un → 0 with Ja(un) ≤ 0. Then
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we both obtain that tpn :=
∫
∂Ω |un|

p 6= 0 and that tn → 0. Setting un = tnvn
we observe that ∫

Ω
|∇vn|p − λ+

p

q
tq−pn

∫
Ω
a|vn|q ≤ 0

for every n. This implies that vn → v weakly in W 1,p(Ω) with
∫
∂Ω |v|

p = 1
and ∫

Ω
a|v|q = 0.

Thus v = 0 in Ω+. This is not possible if Γ1 = ∅ since then we would have
∂Ω ⊂ ∂Ω+ and so v = 0 on ∂Ω. On the other hand, v ∈W 1,p

Γ0
(Ω0) if Γ1 6= ∅.

From the previous integral inequality we find∫
Ω
|∇v|p − λ

∫
∂Ω
|v|p ≤ 0,

which in turns says that λ ≥ σ1,p contradicting the assumptions. Therefore,
u = 0 is a strict local minimum.

To complete the description of the local geometry of Ja near zero, let us
observe that there also exist positive constants α, ρ such that condition J-ii)
in Section 2.1 holds. This follows from [16] (see Corollary 1.6). After these
preliminaries, the remaining part of the proof of i) follows the corresponding
one for the case a = 1.

Let us prove ii). Suppose u is a nonnegative solution corresponding to
λ ≥ σ1,p. If u 6= 0 in Ω0 then, in view of the p–harmonic character of u

in Ω0 and the strong maximum principle, it follows that u > 0 in Ω0. We
now argue as in the uniqueness part in Theorem 12 and choose φ a positive
eigenfunction associated to σ1,p in Ω0. Then we get

0 ≤
∫

Ω0

|∇φ|p − |∇u|p−2∇u∇
(

φp

up−1

)
= (σ1,p − λ)

∫
Γ1

φp.

This can only happen when λ = σ1,p, but even in this case u would be an
eigenfunction which is also impossible since u never vanishes on Γ0. There-
fore, u = 0 in Ω0. On the other hand, −∆pu ≤ 0 in Ω+. If, in addition,

Ω+ ⊂ Ω then u ≤ 0 on ∂Ω+ and so u also vanishes in Ω+. Thus ii) is proved.

There are no further novelties in the proofs of iii), iv), v) and therefore
they will be omitted. �
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