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Abstract. In this paper we study the nonlocal p−Laplacian type diffusion equation,

ut(t, x) =
∫

Ω

J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy.

If p > 1, this is the nonlocal analogous problem to the well known local p−Laplacian evo-
lution equation ut = div(|∇u|p−2∇u) with homogeneous Neumann boundary conditions.
We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in
an appropriate way, we show that the solutions to the corresponding nonlocal problems
converge strongly in L∞(0, T ;Lp(Ω)) to the solution of the p−laplacian with homogeneous
Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous
to the total variation flow, is also analyzed. Finally, we study the asymptotic behaviour
of the solutions as t goes to infinity, showing the convergence to the mean value of the
initial condition.

1. Introduction

Our main goal in this paper is to study the following nonlocal nonlinear diffusion problem,
which we call the nonlocal p-Laplacian problem (with homogeneous Neumann boundary
conditions),

P J
p (u0)

 ut(t, x) =

∫
Ω

J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x).

Here J : RN → R is a nonnegative continuous radial function with compact support,
J(0) > 0 and

∫
RN J(x)dx = 1 (this last condition is not necessary to prove our results, it

is imposed to simplify the exposition), 1 ≤ p < +∞ and Ω ⊂ RN is a bounded domain.

Nonlocal evolution equations of the form

(1.1) ut(t, x) = J ∗ u− u(t, x) =

∫
RN

J(x− y) (u(t, y)− u(t, x)) dy,
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and variations of it, have been recently widely used to model diffusion processes, see [7],
[8], [10], [17], [18], [19], [21], [25], [26], [29], [31] and [34]. Moreover, nonlocal problems of
type P J

p (u0) have been used recently in the study of deblurring and denoising of images
(see [27]).

As stated in [25], if u(t, x) is thought of as the density of a single population at the point
x at time t, and J(x − y) is thought of as the probability distribution of jumping from
location y to location x, then the convolution (J ∗ u)(t, x) =

∫
RN J(y − x)u(t, y) dy is the

rate at which individuals are arriving to position x from all other places and −u(t, x) =
−
∫

RN J(y−x)u(t, x) dy is the rate at which they are leaving location x to travel to all other
sites. This consideration, in the absence of external or internal sources, leads immediately
to the fact that the density u satisfies equation (1.1).

Equation (1.1) is called a nonlocal diffusion equation since the diffusion of the density
u at a point x and time t does not only depend on u(t, x), but on all the values of u
in a neighborhood of x through the convolution term J ∗ u. This equation shares many
properties with the classical heat equation, ut = ∆u, such as bounded stationary solutions
are constant, a maximum principle holds for both of them and perturbations propagate
with infinite speed, [25]. However, there is no regularizing effect in general (see [18]).

When dealing with local evolution equations, two models of nonlinear diffusion has been
extensively studied in the literature, the porous medium equation, ut = ∆um, and the
p−Laplacian evolution, ut = div(|∇u|p−2∇u). In the first case (for the porous medium
equation) a nonlocal analogous equation was studied in [7] (see also [20]). Our main
objective in this paper is to study the nonlocal equation P J

p , that is, the nonlocal analogous
to the p−Laplacian evolution.

Concerning boundary conditions for nonlocal problems, if, instead of (1.1), we look at

ut(t, x) =

∫
Ω

J(x− y) (u(t, y)− u(t, x)) dy,

the right hand side takes into account the diffusion inside the domain Ω. In fact, as we have
explained, the integral

∫
J(x − y)(u(t, y) − u(t, x)) dy takes into account the individuals

arriving or leaving position x from or to other places. Since we are integrating in Ω, we
are imposing that diffusion takes place only in Ω. There is no flux of individuals across
the boundary. This is the analogous of what is called homogeneous Neumann boundary
conditions in the literature. In this sense, problem P J

p (u0) has to be seen as a problem with
homogeneous Neumann boundary condition. For p = 2, in [22] (see also [21]) it is proved
that solutions to the linear problem P J

2 (u0) converge to the solution of the classical heat
equation with Neumann boundary conditions when the convolution kernel J is rescaled in
a suitable way. We will see in Section 3 that solutions to problem P J

p (u0) converge to the
solution of the classical p−Laplacian if p > 1 and to the total variation flow when p = 1
with Neumann boundary conditions when the convolution kernel J is also rescaled in a
suitable way.
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First, let us state the precise definition of solution. Solutions to P J
p (u0) will be under-

stood in the following sense.

Definition 1.1. Let 1 < p < +∞. A solution of P J
p (u0) in [0, T ] is a function u ∈

C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω)) which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy a.e in ]0, T [×Ω.

Let us note that, with this definition of solution, the evolution problem P J
p (u0) is the

gradient flow associated to the functional

Jp(u) =
1

2p

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|p dy dx,

which is the nonlocal analogous to the energy functional associated to the p−Laplacian

Fp(u) =
1

p

∫
Ω

|∇u(y)|p dy.

Our first result shows existence and uniqueness of a global solution for this problem.
Moreover, a contraction principle holds.

Theorem 1.2. Assume p > 1 and let u0 ∈ Lp(Ω). Then, there exists a unique solution to
P J

p (u0) in the sense of Definition 1.1.

Moreover, if ui0 ∈ L1(Ω), i = 1, 2, and ui is a solution in [0, T ] of P J
p (ui0). Then∫

Ω

(u1(t)− u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for every t ∈]0, T [.

If ui0 ∈ Lp(Ω), i = 1, 2, then

‖u1(t)− u2(t)‖Lp(Ω) ≤ ‖u10 − u20‖Lp(Ω) for every t ∈]0, T [.

Let us now deal with existence and uniqueness for the extreme case p = 1. We have that
the formal evolution problem

ut(t, x) =

∫
Ω

J(x− y)
u(t, y)− u(t, x)

|u(t, y)− u(t, x)|
dy,

is the gradient flow associated to the functional

J1(u) =
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)| dy dx,

which is the nonlocal analogous to the energy functional associated to the total variation

F1(u) =

∫
Ω

|∇u(y)| dy.

For p = 1 we give the following definition of what we understand as a solution.
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Definition 1.3. A solution of P J
1 (z0) in [0, T ] is a function

u ∈ C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω))

which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω

J(x− y)g(t, x, y) dy a.e in ]0, T [×Ω,

for some g ∈ L∞(0, T ;L∞(Ω× Ω)) with ‖g‖∞ ≤ 1 such that g(t, x, y) = −g(t, y, x) and

J(x− y)g(t, x, y) ∈ J(x− y)sign(u(t, y)− u(t, x)).

To get existence and uniqueness of these kind of solutions, the idea is to take the limit
as p↘ 1 of solutions to P J

p with p > 1.

Theorem 1.4. Assume p = 1 and let u0 ∈ L1(Ω). Then, there exists a unique solution to
P J

1 (u0) in the sense of Definition 1.3.

Moreover, for i = 1, 2, let ui0 ∈ L1(Ω) and ui be a solution in [0, T ] of P J
1 (ui0). Then∫

Ω

(u1(t)− u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for almost every t ∈]0, T [.

Our next step is to rescale the kernel J appropriately and take the limit as the scal-
ing parameter goes to zero. To be more precise, for every p ≥ 1, we consider the local
p−Laplace evolution equation with homogeneous Neumann boundary conditions

Np(u0)


ut = ∆pu in ]0, T [×Ω,

|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-laplacian of
u. We obtain that the solutions of this local problem, Np(u0), can be approximated by
solutions of a sequence of nonlocal p-Laplacian problems of the form P J

p .

ProblemN1(u0), that is, the Neumann problem for the total variation flow, was studied in
[2] (see also [3]), motivated by problems in image processing. This PDE appears when one
uses the steepest descent method to minimize the total variation, a method introduced by
L. Rudin, S. Osher and E. Fatemi [28] in the context of image denoising and reconstruction.
Then, solving N1(u0) amounts to regularize or, in other words, to filter the initial datum
u0. This filtering process has less destructive effect on the edges than filtering with a
Gaussian, i.e., than solving the heat equation with initial condition u0. In this context
the given image u0 is a function defined on a bounded, smooth or piecewise smooth open
subset Ω of RN , typically, Ω will be a rectangle in R2.

S. Kindermann, S. Osher and P. W. Jones in [27] have studied deblurring and denoising
of images by nonlocal functionals, motivated by the use of neighborhood filters [16]. Such
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filters have originally been proposed by Yaroslavsky, [32], [33], and further generalized by
C. Tomasi and R. Manduchi, [30], as bilateral filter. The main aim of [27] is to relate the
neighborhood filter to an energy minimization. Now in this case the Euler-Lagrange equa-
tions are not partial differential equations but include integrals. The functional considered
in [27] takes the general form

(1.2) Jg(u) =

∫
Ω×Ω

g

(
|u(x)− u(y)|2

h2

)
w(|x− y|) dxdy,

with w ∈ L∞(Ω), g ∈ C1(R+) and h > 0 is a parameter. The Fréchet derivative of Jg as a
functional from L2(Ω) into R is given by

J ′g(u)(x) =
4

h2

∫
Ω

g′
(
|u(x)− u(y)|2

h2

)
(u(x)− u(y))w(|x− y|) dy.

Note that the nonlocal functional Jp is of the form (1.2) with g(t) = 1
2p
|t| p2 , w = J and

h = 1. Then, problem P J
p (u0) appears when one uses the steepest descent method to

minimize this particular nonlocal functional.

For given p ≥ 1 and J we consider the rescaled kernels

Jp,ε(x) :=
CJ,p

εp+N
J
(x
ε

)
,

where

C−1
J,p :=

1

2

∫
RN

J(z)|zN |p dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead a multiple
of it.

Associated with these rescaled kernels we have solutions uε to the equation in P J
p with

J replaced by Jp,ε and the same initial condition u0 (we shall call this problem P
Jp,ε
p ). The

next result states that these functions uε converge strongly in Lp(Ω) to the solution of the
local p−Laplacian problem Np(u0).

Theorem 1.5. Let Ω be a smooth bounded domain in RN and p ≥ 1. Assume J(x) ≥ J(y)

if |x| ≤ |y|. Let T > 0, u0 ∈ Lp(Ω) and uε the unique solution of P
Jp,ε
p (u0). Then, if u is

the unique solution of Np(u0),

lim
ε→0

sup
t∈[0,T ]

‖uε(t, .)− u(t, .)‖Lp(Ω) = 0.

Observe that the above result states that P J
p is a nonlocal analogous to the p−Laplacian.

In the linear case, p = 2, under additional regularity hypothesis on the involved data, the
convergence of the solutions of rescaled nonlocal problems of the form P J

2 to the solution
of the heat equation is proved in [22].
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In order to study the asymptotic behaviour as t → ∞ of the solutions of the nonlocal
problems, we first prove a Poincaré’s type inequality (Proposition 4.1). This inequality
permits to show the solutions of the nonlocal problems converge to the mean value of the
initial condition.

Theorem 1.6. Let p ≥ 1 and u0 ∈ L∞(Ω). Let u be the solution to P J
p (u0), then

‖u(t)− u0‖Lp(Ω) ≤

(
||u0||2L2(Ω)

t

)1/p

→ 0, as t→∞,

where u0 is the mean value of the initial condition,

u0 =
1

|Ω|

∫
Ω

u0(x) dx.

Let us finish the introduction by collecting some preliminaries and notations that will
be used in the sequel.

We denote by J0 and P0 the following sets of functions,

J0 = {j : R → [0,+∞], convex and lower semi-continuos with j(0) = 0},
P0 = {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact, and 0 /∈ supp(q)} .

In [12] the following relation for u, v ∈ L1(Ω) is defined,

u� v if and only if

∫
Ω

j(u) dx ≤
∫

Ω

j(v) dx for all j ∈ J0,

and the following facts are proved.

Proposition 1.7. Let Ω be a bounded domain in RN .

(i) For any u, v ∈ L1(Ω), if
∫

Ω
uq(u) ≤

∫
Ω
vq(u) for all q ∈ P0, then u� v.

(ii) If u, v ∈ L1(Ω) and u� v, then ‖u‖r ≤ ‖v‖r for any r ∈ [1,+∞].

(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u� v} is a weakly compact subset of L1(Ω).

Organization of the paper. The rest of the paper is organized as follows. In Section 2
we prove the existence and uniqueness of strong solutions for the nonlocal problems for
p > 1 and p = 1. In Section 3 we show that our model approaches the p−Laplacian for
p > 1 and the total variation for p = 1. Finally, in Section 4 we study the asymptotic
behaviour of the solutions.

2. Existence of solutions for the nonlocal problems

2.1. The case p > 1.

We first study the problem P J
p (u0) from the point of view of Nonlinear Semigroup Theory.

For this we introduce in L1(Ω) the following operator associated with our problem.



A NONLOCAL p−LAPLACIAN EVOLUTION EQUATION 7

Definition 2.1. For 1 < p < +∞ we define in L1(Ω) the operator BJ
p by

BJ
p u(x) = −

∫
Ω

J(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ Ω.

Remark 2.2. It is easy to see that,

1. BJ
p is positively homogeneous of degree p− 1,

2. Lp−1(Ω) ⊂ Dom(BJ
p ), if p > 2,

3. for 1 < p ≤ 2, Dom(BJ
p ) = L1(Ω) and BJ

p is closed in L1(Ω)× L1(Ω).

We have the following monotonicity lemma, whose proof is straightforward.

Lemma 2.3. Let 1 < p < +∞, and T : R → R a nondecreasing function. Then,

(i) for every u, v ∈ Lp(Ω) such that T (u− v) ∈ Lp(Ω), it holds

(2.1)

∫
Ω

(BJ
p u(x)−BJ

p v(x))T (u(x)− v(x))dx =

1

2

∫
Ω

∫
Ω

J(x− y) (T (u(y)− v(y))− T (u(x)− v(x)))×

×
(
|u(y)− u(x)|p−2(u(y)− u(x))− |v(y)− v(x)|p−2(v(y)− v(x))

)
dy dx.

(ii) Moreover, if T is bounded, (2.1) holds for u, v ∈ Dom(BJ
p ).

In the next result we prove that BJ
p is completely accretive and verifies a range condition.

In short, this means that for any φ ∈ Lp(Ω) there is a unique solution of the problem
u+BJ

p u = φ and the resolvent (I +BJ
p )−1 is a contraction in Lq(Ω) for all 1 ≤ q ≤ +∞.

Theorem 2.4. For 1 < p < +∞, the operator BJ
p is completely accretive and verifies the

range condition

(2.2) Lp(Ω) ⊂ Ran(I +BJ
p ).

Proof. Given ui ∈ Dom(BJ
p ), i = 1, 2 and q ∈ P0, by the monotonicity Lemma 2.3, we have∫

Ω

(BJ
p u1(x)−BJ

p u2(x))q(u1(x)− u2(x)) dx ≥ 0,

from where it follows that BJ
p is a completely accretive operator (see [12]).

To show that BJ
p satisfies the range condition we have to prove that for any φ ∈ Lp(Ω)

there exists u ∈ Dom(BJ
p ) such that u = (I + BJ

p )−1φ. Let us first take φ ∈ L∞(Ω). Let

An,m : Lp(Ω) → Lp′(Ω) the continuous monotone operator defined by

An,m(u) := Tc(u) +BJ
p u+

1

n
|u|p−2u+ − 1

m
|u|p−2u−.
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We have that An,m is coercive in Lp(Ω). In fact,

lim
‖u‖Lp(Ω)→+∞

∫
Ω

An,m(u)u

‖u‖Lp(Ω)

= +∞.

Then, by Corollary 30 in [15], there exists un,m ∈ Lp(Ω), such that

Tc(un,m) +BJ
p un,m +

1

n
|un,m|p−2u+

n,m −
1

m
|un,m|p−2u−n,m = φ.

Using the monotonicity of BJ
p un,m+ 1

n
|un,m|p−2u+

n,m− 1
m
|un,m|p−2u−n,m, from Proposition 1.7,

we obtain that Tc(un,m) � φ and therefore, taking c > ‖φ‖L∞(Ω), un,m � φ. Consequently,

un,m +BJ
p un,m +

1

n
|un,m|p−2u+

n,m −
1

m
|un,m|p−2u−n,m = φ.

Moreover, since un,m is increasing in n and decreasing in m. As un,m � φ, we can pass to
the limit as n→∞ (using the monotone convergence to handle the term BJ

p un,m) obtaining
um is a solution to

um +BJ
p um −

1

m
|um|p−2u−m = φ.

Using um is decreasing in m we can pass again to the limit and to obtain

u+BJ
p u = φ.

Let now φ ∈ Lp(Ω). Take φn ∈ L∞(Ω), φn → φ in Lp(Ω). Then, by our previous step,
there exists un = (I + BJ

p )−1φn, un � φn. Since BJ
p is completely accretive, un → u in

Lp(Ω), also BJ
p un → BJ

p u in Lp′(Ω) and we conclude that u+BJ
p u = φ. �

If BJ
p denotes the closure of BJ

p in L1(Ω), by Theorem 2.4, we obtain BJ
p is m-completely

accretive in L1(Ω).

Next we get the following theorem, from which Theorem 1.2 can be derived.

Theorem 2.5. Assume p > 1. Let T > 0 and u0 ∈ L1(Ω). Then, there exists a unique
mild solution u of

(2.3)

{
u′(t) +BJ

p u(t) = 0, t ∈ (0, T ),

u(0) = u0.

Moreover,

(1) if u0 ∈ Lp(Ω), the unique mild solution u of (2.3) is a solution of P J
p (u0) in the

sense of Definition 1.1. If 1 < p ≤ 2, this is true for any u0 ∈ L1(Ω).
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(2) Let ui0 ∈ L1(Ω), i = 1, 2, and ui a solution in [0, T ] of P J
p (ui0), i = 1, 2. Then∫

Ω

(u1(t)− u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for every t ∈]0, T [.

Moreover, for q ∈ [1,+∞], if ui0 ∈ Lq(Ω), i = 1, 2, then

‖u1(t)− u2(t)‖Lq(Ω) ≤ ‖u10 − u20‖Lq(Ω) for every t ∈]0, T [.

Proof. As a consequence of Theorem 2.4 we get the existence of mild solution of (2.3) (see
[13] and [12]). On the other hand, u(t) is a solution of P J

p (u0) if and only if u(t) is a strong

solution of the abstract Cauchy problem (2.3). Now, due to the complete accretivity of BJ
p

and the range condition (2.2), u(t) is a strong solution (see [12]). Moreover, in the case
1 < p ≤ 2, since Dom(BJ

p ) = L1(Ω) and BJ
p is closed in L1(Ω) × L1(Ω), the result holds

for L1-data. Finally, the contraction principle is a consequence of the general Nonlinear
Semigroup Theory. �

Remark 2.6. Observe that our results can be extended (with minor modifications) to obtain
existence and uniqueness for ut(t, x) =

∫
Ω

J(x, y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x),

with J symmetric, that is, J(x, y) = J(y, x), bounded and nonnegative.

2.2. The case p = 1.

This section deals with the existence and uniqueness of solutions for the nonlocal 1-Lapla-
cian problem with homogeneous Neumann boundary conditions,

P J
1 (u0)

 ut(t, x) =

∫
Ω

J(x− y)
u(t, y)− u(t, x)

|u(t, y)− u(t, x)|
dy.

u(x, 0) = u0(x).

As in the case p > 1, to prove the existence and uniqueness of solutions of P J
1 (u0) we use

the Nonlinear Semigroup Theory, so we start introducing the following operator in L1(Ω).

Definition 2.7. We define the operator BJ
1 in L1(Ω) × L1(Ω) by û ∈ BJ

1 u if and only if
u, û ∈ L1(Ω), there exists g ∈ L∞(Ω×Ω), g(x, y) = −g(y, x) for almost all (x, y) ∈ Ω×Ω,
‖g‖∞ ≤ 1,

û(x) = −
∫

Ω

J(x− y)g(x, y) dy, a.e. x ∈ Ω

and

(2.4) J(x− y)g(x, y) ∈ J(x− y) sign(u(y)− u(x)) a.e. (x, y) ∈ Ω× Ω.
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Remark 2.8.

1. It is not difficult to see that (2.4) is equivalent to

−
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx =
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)| dy dx,

2. L1(Ω) = Dom(BJ
1 ) and BJ

1 is closed in L1(Ω)× L1(Ω).

3. BJ
1 is positively homogeneous of degree zero, that is, if û ∈ BJ

1 u and λ > 0 then
û ∈ BJ

1 (λu).

Theorem 2.9. The operator BJ
1 is completely accretive and satisfies the range condition

L∞(Ω) ⊂ Ran(I +BJ
1 ).

Proof. Let ûi ∈ BJ
1 ui, i = 1, 2. Then there exists gi ∈ L∞(Ω × Ω), ‖gi‖∞ ≤ 1, gi(x, y) =

−gi(y, x), J(x− y)gi(x, y) ∈ J(x− y)sign(ui(y)− ui(x)) for almost all (x, y) ∈ Ω×Ω, such
that

ûi(x) = −
∫

Ω

J(x− y)gi(x, y) dy, a.e. x ∈ Ω,

for i = 1, 2. Given q ∈ P0, we have∫
Ω

(û1(x)− û2(x))q(u1(x)− u2(x)) dx

=
1

2

∫
Ω

∫
Ω

J(x− y)(g1(x, y)− g2(x, y)) (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dxdy.

Now, by the mean value Theorem

J(x− y)(g1(x, y)− g2(x, y)) [q(u1(y)− u2(y))− q(u1(x)− u2(x))]

= J(x− y)(g1(x, y)− g2(x, y))q
′(ξ) [(u1(y)− u2(y))− (u1(x)− u2(x))]

= J(x− y)q′(ξ) [g1(x, y)(u1(y)− u1(x))− g1(x, y)(u2(y)− u2(x))]

−J(x− y)q′(ξ) [g2(x, y)(u1(y)− u1(x))− g1(x, y)(u2(y)− u2(x))] ≥ 0,

since
J(x− y)gi(x, y)(ui(y)− ui(x)) = J(x− y)|ui(y)− ui(x)|, i = 1, 2,

and
−J(x− y)gi(x, y)(uj(y)− uj(x)) ≥ −J(x− y)|uj(y)− uj(x)|, i 6= j.

Hence ∫
Ω

(û1(x)− û2(x))q(u1(x)− u2(x)) dx ≥ 0,

from where it follows that BJ
1 is a completely accretive operator.

To show that BJ
1 satisfies the range condition, let us see that for any φ ∈ L∞(Ω),

lim
p→1+

(I +BJ
p )−1φ = (I +BJ

1 )−1φ weakly in L1(Ω).
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Let φ ∈ L∞(Ω). For 1 < p < +∞, by Theorem 2.4, there is up such that up =(
I +BJ

p

)−1
φ, that is,

up(x)−
∫

Ω

J (x− y) |up(y)− up(x)|p−2(up(y)− up(x)) dy = φ(x) a.e. x ∈ Ω.

Thus, for every v ∈ L∞(Ω), we can write

(2.5)

∫
Ω

upv −
∫

Ω

∫
Ω

J (x− y) |up(y)− up(x)|p−2(up(y)− up(x)) dy v(x) dx =

∫
Ω

φv.

Since up � φ, by Proposition 1.7, we have that there exists a sequence pn → 1 such that

upn ⇀ u weakly in L1(Ω), u� φ.

Observe that ‖upn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω).

Now, since

−
∫

Ω

∫
Ω

J (x− y) |upn(y)− upn(x)|pn−2(upn(y)− upn(x)) dy v(x) dx

=
1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn−2 (upn(y)− upn(x)) (v(y)− v(x)) dy dx,

taking v = upn in the above expression, by (2.5), we get that

1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn dy dx ≤
∫

Ω

φupn ≤M1, ∀n ∈ N.

Therefore, for any measurable subset E ⊂ Ω× Ω, we have∣∣∣∣∫ ∫
E

J(x− y)|upn(y)− upn(x)|pn−2 (upn(y)− upn(x))

∣∣∣∣
≤
∫ ∫

E

J(x− y)|upn(y)− upn(x)|pn−1 ≤M2|E|
1

pn .

Hence, by the Dunford-Pettis Theorem we may assume that there exists g(x, y) such that

J(x− y)|upn(y)− upn(x)|pn−2 (upn(y)− upn(x)) ⇀ J(x− y)g(x, y),

weakly in L1(Ω× Ω), g(x, y) = −g(y, x) for almost all (x, y) ∈ Ω× Ω, and ‖g‖∞ ≤ 1.

Therefore, passing to the limit in (2.5) for p = pn, we get

(2.6)

∫
Ω

uv −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy v(x) dx =

∫
Ω

φv

for every v ∈ L∞(Ω), and consequently we get

u(x)−
∫

Ω

J(x− y)g(x, y) dy = φ(x) a.e. x ∈ Ω.
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Then, to finish the proof we have to show that

(2.7) −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx =
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)| dy dx.

In fact, by (2.6) with v = u,

1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn dy dx

=

∫
Ω

φupn −
∫

Ω

upnupn =

∫
Ω

φu−
∫

Ω

uu−
∫

Ω

φ(u− upn)

+

∫
Ω

2u(u− upn)−
∫

Ω

(u− upn)(u− upn)

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx−
∫

Ω

φ(u− upn) +

∫
Ω

2u(u− upn),

so,

lim sup
n→+∞

1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn dy dx ≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx.

Now, by the monotonicity Lemma 2.3, for all ρ ∈ L∞(Ω),

−
∫

Ω

∫
Ω

J(x− y)|ρ(y)− ρ(x)|pn−2(ρ(y)− ρ(x)) dy (upn(x)− ρ(x)) dx

≤ −
∫

Ω

∫
Ω

J(x− y)|upn(y)− upn(x)|pn−2(upn(y)− upn(x)) dy (upn(x)− ρ(x)) dx.

Therefore, taking limits,

−
∫

Ω

∫
Ω

J(x− y) sign0(ρ(y)− ρ(x)) dy (u(x)− ρ(x)) dx

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy (u(x)− ρ(x)) dx.

Taking now, ρ = u ± λu, λ > 0, and letting λ → 0, we get (2.7), and the proof is
finished. �

Proof of Theorem 1.4. As a consequence of the above results, we have that the abstract
Cauchy problem

(2.8)

{
u′(t) +BJ

1 u(t) 3 0, t ∈ (0, T ),

u(0) = u0

has a unique mild solution u for every initial datum u0 ∈ L1(Ω) and T > 0 (see [13]).
Moreover, due to the complete accretivity of the operator BJ

1 , the mild solution of (2.8) is
a strong solution. Consequently, the result is obtained.
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3. Convergence to the p-laplacian

3.1. Convergence to the p-laplacian for p > 1.

Our main goal in this section is to show that the Neumann problem for the p-Laplacian
equation Np(u0) can be approximated by suitable nonlocal Neumann problems P J

p (u0).

Let us start recalling some results about the p-Laplacian equation

Np(u0)


ut = ∆pu in ]0, T [×Ω,

|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,

obtained in [5], [6] and [4]. We have the two following concepts of solutions.

A weak solution of Np(u0) in the time interval [0, T ] is a function

u ∈ C([0, T ] : L1(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) ∩W 1,1(0, T ;L1(Ω))

with u(0) = u0, satisfying∫
Ω

u′(t)ξ +

∫
Ω

|∇u(t)|p−2∇u(t) · ∇ξ = 0 for almost all t ∈]0, T [

for any ξ ∈ W 1,p(Ω) ∩ L∞(Ω).

An entropy solution of Np(u0) in the time interval [0, T ] is a function

u ∈ C([0, T ] : L1(Ω)) ∩W 1,1(0, T ;L1(Ω)),

such that Tk(u) ∈ Lp(0, T ;W 1,p(Ω)) for all k > 0, u(0) = u0 and∫
Ω

u′(t)Tk(u(t)− ξ) +

∫
Ω

|∇u(t)|p−2∇u(t) · ∇Tk(u(t)− ξ) = 0 for almost all t ∈]0, T [

for any ξ ∈ W 1,p(Ω) ∩ L∞(Ω).

Here the truncature functions Tk are defined by Tk(r) = k ∧ (r ∨ (−k)), k ≥ 0, r ∈ R.

Theorem 3.1 ([6], [4]). Let T > 0. For any u0 ∈ L1(Ω) there exists a unique entropy
solution u(t) of Np(u0). Moreover, if u0 ∈ Lp′(Ω) ∩ L2(Ω) the entropy solution u(t) is a
weak solution.

Let us perform a formal calculation just to convince the reader that the convergence
result, Theorem 1.5, is correct. Let N = 1. Let u(x) be a smooth function and consider

Aε(u) =
1

εp+1

∫
R
J

(
x− y

ε

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy.
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Changing variables, y = x− εz, we get

(3.1) Aε(u) =
1

εp

∫
R
J(z)|u(x− εz)− u(x)|p−2(u(x− εz)− u(x)) dz.

Now, we expand in powers of ε to obtain

|u(x− εz)− u(x)|p−2 = εp−2
∣∣∣u′(x)z + u′′(x)

2
εz2 +O(ε2)

∣∣∣
= εp−2|u′(x)|p−2|z|p−2 + εp−1(p− 2)|u′(x)z|p−4u′(x)z

u′′(x)

2
z2 +O(εp),

and

u(x− εz)− u(x) = εu′(x)z +
u′′(x)

2
ε2z2 +O(ε3).

Hence, (3.1) becomes

Aε(u) =
1

ε

∫
R
J(z)|z|p−2z dz|u′(x)|p−2u′(x)

+
1

2

∫
R
J(z)|z|p dz

(
(p− 2)|u′(x)|p−2u′′(x) + |u′(x)|p−2u′′(x)

)
+O(ε).

Using that J is radially symmetric, the first integral vanishes and therefore,

lim
ε→0

Aε(u) = C(|u′(x)|p−2u′(x))′,

where

C =
1

2

∫
R
J(z)|z|p dz.

To do this formal calculation rigorous we need to obtain the following result which is a
variant of [14, Theorem 4].

Proposition 3.2. Let 1 ≤ q < +∞. Let ρ : RN → R be a nonnegative continuous radial
function with compact support, non-identically zero, and ρn(x) := nNρ(nx). Let {fn} be a
sequence of functions in Lq(Ω) such that

(3.2)

∫
Ω

∫
Ω

|fn(y)− fn(x)|qρn(y − x) dx dy ≤M
1

nq
.

1. If {fn} is weakly convergent in Lq(Ω) to f then

(i) if q > 1, f ∈ W 1,q(Ω), and moreover

(ρ(z))1/q χΩ

(
x+

1

n
z

)
fn

(
x+ 1

n
z
)
− fn(x)

1/n
⇀ (ρ(z))1/q z · ∇f

weakly in Lq(Ω)× Lq(RN).
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(ii) If q = 1, f ∈ BV (Ω), and moreover

ρ(z)χΩ

(
x+

1

n
z

)
fn

(
x+ 1

n
z
)
− fn(x)

1/n
⇀ ρ(z)z ·Df

weakly as measures.

2. Assume Ω is a smooth bounded domain in RN and ρ(x) ≥ ρ(y) if |x| ≤ |y|. Then {fn}
is relatively compact in Lq(Ω), and consequently, there exists a subsequence {fnk

} such that

(i) if q > 1, fnk
→ f in Lq(Ω) with f ∈ W 1,q(Ω),

(ii) if q = 1, fnk
→ f in L1(Ω) with f ∈ BV (Ω).

Proof. We suppose fn → f weakly in Lq(Ω) and write (3.2) as

(3.3)

∫
Ω

∫
Ω

nNρ(n(x− y))

∣∣∣∣fn(y)− fn(x)

1/n

∣∣∣∣q dx dy
=

∫
RN

∫
Ω

ρ(z)χΩ

(
x+

1

n
z

) ∣∣∣∣∣fn

(
x+ 1

n
z
)
− fn (x)

1/n

∣∣∣∣∣
q

dx dz ≤M.

On the other hand, if ϕ ∈ C∞
c (Ω) and ψ ∈ C∞

c (RN), taking n large enough,

(3.4)

∫
RN

(ρ(z))1/q

∫
Ω

χΩ

(
x+

1

n
z

)
fn (x+ 1/nz)− fn(x)

1/n
ϕ(x)dxψ(z)dz

=

∫
RN

(ρ(z))1/q

∫
Ω

fn

(
x+ 1

n
z
)
− fn(x)

1/n
ϕ(x)dxψ(z)dz

= −
∫

RN

(ρ(z))1/q

∫
Ω

fn(x)
ϕ(x)− ϕ

(
x− 1

n
z
)

1/n
dxψ(z)dz.

Let start with the case 1.(i). By (3.3), up to a subsequence,

(ρ(z))1/q χΩ

(
x+

1

n
z

)
fn

(
x+ 1

n
z
)
− fn(x)

1/n
⇀ (ρ(z))1/q g(x, z)

weakly in Lq(Ω)× Lq(RN). Therefore, passing to the limit in (3.4), we get∫
RN

(ρ(z))1/q

∫
Ω

g(x, z)ϕ(x) dxψ(z) dz = −
∫

RN

(ρ(z))1/q

∫
Ω

f(x) z · ∇ϕ(x)dxψ(z)dz.

Consequently,∫
Ω

g(x, z)ϕ(x)dx = −
∫

Ω

f(x) z · ∇ϕ(x)dx ∀z ∈ int(supp(J)).

From here, for s small,∫
Ω

g(x, sei)ϕ(x)dx = −
∫

Ω

f(x) s
∂

∂xi

ϕ(x)dx,
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which implies f ∈ W 1,q(Ω) and (ρ(z))1/q g(x, z) = (ρ(z))1/q z · ∇f(x).

Let now prove 1.(ii). By (3.3), there exists a bounded Radon measure µ ∈M(Ω×RN)
such that, up to a subsequence,

ρ(z)χΩ

(
x+

1

n
z

)
fn

(
x+ 1

n
z
)
− fn(x)

1/n
⇀ µ(x, z)

weakly in M(Ω× RN). Hence, passing to the limit in (3.4), we get

(3.5)

∫
Ω×RN

ϕ(x)ψ(z)dµ(x, z) = −
∫

Ω×RN

ρ(z)ψ(z) z · ∇ϕ(x)f(x) dxdz.

Now, applying the disintegration theorem (Theorem 2.28 in [1]) to the measure µ, we
get that if π : Ω×RN → RN is the projection on the first factor and ν = π#|µ|, then there
exists a Radon measures µx in RN such that x 7→ µx is ν-measurable,

|µx|(RN) ≤ 1 ν − a.e. in Ω

and, for any h ∈ L1(Ω× RN , |µ|),

h(x, ·) ∈ L1(RN , |µx|) ν − a.e. in x ∈ Ω,

x 7→
∫

Ω

h(x, z)dµx(z) ∈ L1(Ω, ν)

and

(3.6)

∫
Ω×RN

h(x, z)dµ(x, z) =

∫
Ω

(∫
RN

h(x, z)dµx(z)

)
dν(x).

From (3.5) and (3.6), we get, for ϕ ∈ C∞
c (Ω) and ψ ∈ C∞

c (RN),∫
Ω

(∫
RN

ψ(z)dµx(z)

)
ϕ(x)dν(x) =

〈 N∑
i=1

∫
RN

ρ(z)ziψ(z)dz
∂f

∂xi

, ϕ
〉
.

Hence, as measures,

N∑
i=1

∫
RN

ρ(z)ziψ(z)dz
∂f

∂xi

=

∫
RN

ψ(z)dµx(z) ν.

Let now ψ̃ ∈ C∞
c (RN) a radial function such that ψ̃ = 1 in supp(ρ). Taking ψ(z) = ψ̃(z)zj

in the above expression and having in mind that∫
RN

ρ(z)zizjψ̃(z)dz = 0 if i 6= j,

we get ∫
RN

ρ(z)zj
2ψ̃(z)dz

∂f

∂xj

=

∫
RN

ψ̃(z)zjdµx(z) ν.
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Since ν ∈Mb(Ω) and x 7→
∫

RN ψ̃(z)zjdµx(z) ∈ L1(Ω, ν), we obtain that f ∈ BV (Ω). Going
back to (3.6), we get

µ(x, z) =
N∑

i=1

∂f

∂xi

(x) · ρ(z)ziLN(z).

As in the proof of [14, Theorem 4], to prove 2 it is enough to show that for any δ > 0
there exists nδ ∈ N such that

(3.7) δ−N

∫ δ

0

tN−1Fn(t) dt ≤ Cδq for n ≥ nδ

for some constant C independent of n and δ, being Fn the function defined for t > 0 as

Fn(t) =

∫
w∈SN−1

∫
RN

|fn((x+ tw)− fn(x)|q dx dσ

=
1

tN−1

∫
|h|=t

∫
RN

|fn((x+ h)− fn(x)|q dx dσ.

In terms of Fn, assumption (3.2) can be expressed as

(3.8)

∫ 1

0

tN+q−1Fn(t)

tq
ρn(t) dt ≤M

1

nq
.

On the other hand, applying [14, Lemma 2] with g(t) = Fn(t)/tq and h(t) = ρn(t), there
exists a constant K = K(N + q) > 0 such that

(3.9) δ−N−q

∫ δ

0

tN+q−1Fn(t)

tq
dt ≤ K

∫ δ

0

tN+q−1Fn(t)

tq
ρn(t)∫

[|x|<δ]

|x|qρn(x)dx
.

Now, since ρ is a function with compact support, given δ > 0, we can find nδ ∈ N such
that ∫

[|x|<δ]

|x|qρn(x) dx =

∫
[|x|<δ]

|x|qnNρ(nx) dx

=

∫
[|y|<nδ]

n−q|y|qρ(y) dy =
1

nq

∫
RN

|y|qρ(y) dy, for n ≥ nδ.

Hence, by (3.8) and (3.9), (3.7) follows. �

For given p > 1 and J , we consider the rescaled kernels

Jp,ε(x) :=
CJ,p

εp+N
J
(x
ε

)
,

where

C−1
J,p :=

1

2

∫
RN

J(z)|zN |p dz
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is a normalizing constant in order to obtain the p-Laplacian in the limit instead a multiple
of it. Observe, that, using spherical coordinates,

C−1
J,p = ωN−1

∫ +∞

0

∫ π

0

1

2
J(ρ)|ρ cos θ|pρN−1 sinN−2 θ dθ dρ.

In [5], associated to the p-Laplacian with homogeneous boundary condition, we define
the operator Bp ⊂ L1(Ω)×L1(Ω) as (u, û) ∈ Bp if and only if û ∈ L1(Ω), u ∈ W 1,p(Ω) and∫

Ω

|∇u|p−2∇u · ∇v =

∫
Ω

ûv for every v ∈ W 1,p(Ω) ∩ L∞(Ω).

Moreover, since Bp is a completely accretive operator in L1(Ω) with dense domain satisfying
the range condition (see [5]), its closure Bp in L1(Ω) is an m-completely accretive operator
in L1(Ω) with dense domain. In [6], it is proved that for any u0 ∈ L1(Ω), the unique entropy
solution u(t) of problem Np(u0) (see Theorem 3.1) coincides with the unique mild-solution
etBpu0 given by the Crandall-Liggett’s exponential formula.

Proposition 3.3. For any φ ∈ L∞(Ω), we have that(
I +BJp,ε

p

)−1
φ ⇀ (I +Bp)

−1 φ weakly in Lp(Ω) as ε→ 0.

Proof. For ε > 0, let uε =
(
I +BJp,ε

p

)−1
φ. Then,

(3.10)

∫
Ω

uεv −
CJ,p

εp+N

∫
Ω

∫
Ω

J

(
x− y

ε

)
|uε(y)− uε(x)|p−2×

×(uε(y)− uε(x)) dy v(x) dx =

∫
Ω

φv

for every v ∈ L∞(Ω).

Changing variables, we get

(3.11)

− CJ,p

εp+N

∫
Ω

∫
Ω

J

(
x− y

ε

)
|uε(y)− uε(x)|p−2(uε(y)− uε(x)) dy v(x) dx

=

∫
RN

∫
Ω

CJ,p

2
J(z)χΩ(x+ εz)

∣∣∣∣uε(x+ εz)− uε(x)

ε

∣∣∣∣p−2
uε(x+ εz)− uε(x)

ε
×

×v(x+ εz)− v(x)

ε
dx dz.

So we can rewrite (3.10) as

(3.12)

∫
Ω

φ(x)v(x) dx−
∫

Ω

uε(x)v(x) dx

=

∫
RN

∫
Ω

CJ,p

2
J(z)χΩ(x+ εz)

∣∣∣∣uε(x+ εz)− uε(x)

ε

∣∣∣∣p−2
uε(x+ εz)− uε(x)

ε
×

×v(x+ εz)− v(x)

ε
dx dz.
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We shall see there exists a sequence εn → 0 such that uεn → u weakly in Lp(Ω),
u ∈ W 1,p(Ω) and u = (I +Bp)

−1 φ, that is,∫
Ω

uv +

∫
Ω

|∇u|p−2∇u · ∇v =

∫
Ω

φv for every v ∈ W 1,p(Ω) ∩ L∞(Ω).

Since uε � φ, there exists a sequence εn → 0 such that

uεn ⇀ u, weakly in Lp(Ω), u� φ.

Observe that ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Taking ε = εn and v = uεn in (3.12), we
get

(3.13)

∫
Ω

∫
Ω

1

2

CJ,p

εn
N
J

(
x− y

εn

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣p dx dy
=

∫
RN

∫
Ω

CJ,p

2
J(z)χΩ(x+ εnz)

∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣p dx dz ≤M.

Therefore, by Proposition 3.2, u ∈ W 1,p(Ω) and

(3.14)

(
CJ,p

2
J(z)

)1/p

χΩ(x+ εnz)
uεn(x+ εnz)− uεn(x)

εn

⇀

(
CJ,p

2
J(z)

)1/p

z · ∇u(x)

weakly in Lp(Ω)× Lp(RN). Moreover, we can also assume that∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣p−2

χΩ(x+ εnz)
uεn(x+ εnz)− uεn(x)

εn

⇀ χ(x, z)

weakly in Lp′(Ω)× Lp′(RN). Therefore, passing to the limit in (3.12) for ε = εn, we get

(3.15)

∫
Ω

uv +

∫
RN

∫
Ω

CJ,p

2
J(z)χ(x, z) z · ∇v(x) dx dz =

∫
Ω

φv

for every v smooth and by approximation for every v ∈ W 1,p(Ω).

Let us see now that

(3.16)

∫
RN

∫
Ω

CJ,p

2
J(z)χ(x, z)z · ∇v(x) dx dz =

∫
Ω

|∇u|p−2∇u · ∇v.

In fact, taking v = u in (3.15), we have∫
RN

∫
Ω

CJ,p

2
J(z)χΩ(x+ εnz)

∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣p dx dz
=

∫
Ω

φuεn −
∫

Ω

uεnuεn

=

∫
Ω

φu−
∫

Ω

uu−
∫

Ω

φ(u− uεn) +

∫
Ω

2u(u− uεn)−
∫

Ω

(u− uεn)(u− uεn)

≤
∫

RN

∫
Ω

CJ,p

2
J(z)χ(x, z) z · ∇u(x) dx dz −

∫
Ω

φ(u− uεn) +

∫
Ω

2u(u− uεn).
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Consequently,

(3.17)
lim sup

n

∫
RN

∫
Ω

CJ,p

2
J(z)χΩ(x+ εnz)

∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣p dx dz
≤
∫

RN

∫
Ω

CJ,p

2
J(z)χ(x, z) z · ∇u(x) dx dz.

Now, by the monotonicity Lemma 2.3, for every ρ smooth,

− CJ,p

εn
p+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
|ρ(y)− ρ(x)|p−2(ρ(y)− ρ(x)) dy (uεn(x)− ρ(x)) dx

≤ − CJ,p

εn
p+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
|uεn(y)− uεn(x)|p−2(uεn(y)− uεn(x)) dy (uεn(x)− ρ(x)) dx.

Using the change of variable (3.11) and taking limits, on account of (3.14) and (3.17), we
obtain for every ρ smooth,∫

RN

∫
Ω

CJ,p

2
J(z)|z · ∇ρ|p−2z · ∇ρ z · (∇u−∇ρ)

≤
∫

RN

∫
Ω

CJ,p

2
J(z)χ(x, z) z · (∇u(x)−∇ρ(x)) dx dz,

and then, by approximation, for every ρ ∈ W 1,p(Ω). Taking now, ρ = u ± λv, λ > 0 and
v ∈ W 1,p(Ω), and letting λ→ 0, we get∫

RN

∫
Ω

CJ,p

2
J(z)χ(x, z)z · ∇v(x) dx dz

=

∫
RN

CJ,p

2
J(z)

∫
Ω

|z · ∇u(x)|p−2 (z · ∇u(x)) (z · ∇v(x)) dx dz.

Consequently,∫
RN

∫
Ω

CJ,p

2
J(z)χ(x, z)z · ∇v(x) dx dz = CJ,p

∫
Ω

a(∇u) · ∇v for every v ∈ W 1,p(Ω),

where

aj(ξ) = CJ,p

∫
RN

1

2
J(z) |z · ξ|p−2 z · ξ zj dz.

Then, if we prove that

(3.18) a(ξ) = |ξ|p−2ξ,

then (3.16) is true and u = (I +Bp)
−1 φ. So, to finish the proof we only need to show that

(3.18) holds. Obviously, a is positively homogeneous of degree p− 1, that is,

a(tξ) = tp−1a(ξ) for all ξ ∈ RN and all t > 0.

Therefore, in order to prove (3.18) it is enough to see that

ai(ξ) = ξi for all ξ ∈ RN , |ξ| = 1, i = 1, . . . , N.
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Now, let Rξ,i be the rotation such that Rt
ξ,i(ξ) = ei, where ei is the vector with components

(ei)i = 1, (ei)j = 0 for j 6= i, being Rt
ξ,i is the transpose of Rξ,i. Observe that

ξi = ξ · ei = Rt
ξ,i(ξ) ·Rt

ξ,i(ei) = ei ·Rt
ξ,i(ei).

On the other hand, since J is radial, C−1
J,p = 1

2

∫
RN J(z)|zi|p dz and

a(ei) = ei for every i.

Making the change of variables z = Rξ,i(y), since J is a radial function, we obtain

ai(ξ) = CJ,p

∫
RN

1

2
J(z)|z · ξ|p−2z · ξ z · ei dz

= CJ,p

∫
RN

1

2
J(y)|y · ei|p−2y · ei y ·Rt

ξ,i(ei) dy

= a(ei) ·Rt
ξ,i(ei) = ei ·Rt

ξ,i(ei) = ξi,

and the proof finishes. �

Theorem 3.4. Let Ω a smooth bounded domain in RN . Assume J(x) ≥ J(y) if |x| ≤ |y|.
For any φ ∈ L∞(Ω),

(3.19)
(
I +BJp,ε

p

)−1
φ→ (I +Bp)

−1 φ in Lp(Ω) as ε→ 0.

Proof. The proof is a consequence of Proposition 3.3, (3.13), and Proposition 3.2. �

From the above theorem, by standard results of the Nonlinear Semigroup Theory (see
[24], [12] and [13]), we obtain the following result, which gives Theorem 1.5 in the case
p > 1.

Theorem 3.5. Let Ω be a smooth bounded domain in RN . Assume J(x) ≥ J(y) if |x| ≤ |y|.
Let T > 0 and u0 ∈ Lq(Ω), p ≤ q < +∞. Let uε the unique solution of P

Jp,ε
p (u0) and u the

unique solution of Np(u0). Then

(3.20) lim
ε→0

sup
t∈[0,T ]

‖uε(t, .)− u(t, .)‖Lq(Ω) = 0.

Moreover, if 1 < p ≤ 2, (3.20) holds for any u0 ∈ Lq(Ω), 1 ≤ q < +∞.

Proof. Since BJ
p is completely accretive and satisfies the range condition (2.2), to get (3.20)

it is enough to see(
I +BJp,ε

p

)−1
φ→ (I +Bp)

−1 φ in Lq(Ω) as ε→ 0

for any φ ∈ L∞(Ω). Taking into account that
(
I +B

Jp,ε
p

)−1

φ� φ, the above convergence

follows by (3.19). �
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3.2. Convergence to the total variation flow for p = 1.

As it was mentioned in the introduction, motivated by problems in image processing,
the problem N1(u0), that is, the Neumann problem for the total variation flow, was studied
in [2] (see also [3]).

Definition 3.6. A measurable function u : (0, T ) × Ω → R is a weak solution of N1(u0)
in (0, T ) × Ω if u ∈ C([0, T ], L1(Ω)) ∩W 1,1

loc (0, T ;L1(Ω)), Tk(u) ∈ L1
w(0, T ;BV (Ω)) for all

k > 0 and there exists z ∈ L∞((0, T ) × Ω) with ‖z‖∞ ≤ 1, ut = div(z) in D′((0, T ) × Ω)
such that ∫

Ω

(Tk(u(t))− w)ut(t) dx ≤
∫

Ω

z(t) · ∇w dx− |DTk(u(t))|(Ω)

for every w ∈ W 1,1(Ω) ∩ L∞(Ω) and a.e. on [0, T ].

The main result of [2] is the following.

Theorem 3.7. Let u0 ∈ L1(Ω). Then there exists a unique weak solution of N1(u0) in
(0, T )× Ω for every T > 0 such that u(0) = u0. Moreover, if u(t), û(t) are weak solutions
corresponding to initial data u0, û0, respectively, then

‖(u(t)− û(t))+‖1 ≤ ‖(u0 − û0)
+‖1 and ‖u(t)− û(t)‖1 ≤ ‖u0 − û0‖1,

for all t ≥ 0.

Theorem 3.7 is proved using the techniques of completely accretive operators ([12]) and
the Crandall-Liggett’s semigroup generation Theorem. To this end, the following operator
B1 in L1(Ω) was defined in [2] by the following rule

(u, v) ∈ B1 if and only if u, v ∈ L1(Ω), Tk(u) ∈ BV (Ω) for all k > 0 and

there exists z ∈ L∞(Ω,RN) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such that∫
Ω

(w − Tk(u))v dx ≤
∫

Ω

z · ∇wdx− |DTk(u)|(Ω),

∀w ∈ W 1,1(Ω) ∩ L∞(Ω), ∀k > 0.

Theorem 3.7 follows from the following result given in [2].

Theorem 3.8. The operator B1 is m-completely accretive in L1(Ω) with dense domain.

For any u0 ∈ L1(Ω) the semigroup solution u(t) = e−tB1u0 is a strong solution of
du

dt
+B1u 3 0,

u(0) = u0.

Set

J1,ε(x) :=
CJ,1

ε1+N
J
(x
ε

)
, with

1

CJ,1

:=
1

2

∫
RN

J(z)|zN | dz.



A NONLOCAL p−LAPLACIAN EVOLUTION EQUATION 23

Theorem 3.9. Assume Ω is a smooth bounded domain in RN and J(x) ≥ J(y) if |x| ≤ |y|.
For any φ ∈ L∞(Ω), we have(

I +B
J1,ε

1

)−1

φ→ (I +B1)
−1 φ in L1(Ω) as ε→ 0.

Proof. Given ε > 0, we set uε =
(
I +B

J1,ε

1

)−1

φ. Then, there exists gε ∈ L∞(Ω × Ω),

gε(x, y) = −gε(y, x) for almost all x, y ∈ Ω, ‖gε‖∞ ≤ 1,

J

(
x− y

ε

)
gε(x, y) ∈ J

(
x− y

ε

)
sign(uε(y)− uε(x)) a.e. x, y ∈ Ω

and

(3.21) − CJ,1

ε1+N

∫
Ω

J

(
x− y

ε

)
gε(x, y)dy = φ(x)− uε(x) a.e. x ∈ Ω.

Observe that

(3.22)

− CJ,1

ε1+N

∫
Ω

∫
Ω

J

(
x− y

ε

)
gε(x, y)dy uε(x) dx

=
CJ,1

ε1+N

1

2

∫
Ω

∫
Ω

J

(
x− y

ε

)
|uε(y)− uε(x)| dy dx.

By (3.21), we can write

(3.23)

CJ,1

2ε1+N

∫
Ω

∫
Ω

J

(
x− y

ε

)
gε(x, y)(v(y)− v(x)) dxdy

= − CJ,1

ε1+N

∫
Ω

∫
Ω

J

(
x− y

ε

)
gε(x, y)dyv(x) dx

=

∫
Ω

(φ(x)− uε(x))v(x) dx, ∀v ∈ L∞(Ω).

Since uε � φ, there exists a sequence εn → 0 such that

uεn ⇀ u weakly in L1(Ω), u� φ.

Observe that ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Hence taking ε = εn and v = uεn in (3.23),
changing variables and having in mind (3.22), we get∫

RN

∫
Ω

CJ,1

2
J(z)χΩ(x+ εnz)

∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣ dx dz
=

∫
Ω

∫
Ω

1

2

CJ,1

εn
N
J

(
x− y

εn

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣ dx dy
=

∫
Ω

(φ(x)− uεn(x))uεn(x) dx ≤M, ∀n ∈ N.
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Therefore, by Proposition 3.2, u ∈ BV (Ω),

(3.24)
CJ,1

2
J(z)χΩ(x+ εnz)

uεn(x+ εnz)− uεn(x)

εn

⇀
CJ,1

2
J(z)z ·Du

weakly as measures and
uεn → u, strongly in L1(Ω).

Moreover, we also can assume that

(3.25) J(z)χΩ(x+ εnz)gεn(x, x+ εnz) ⇀ Λ(x, z)

weakly∗ in L∞(Ω)×L∞(RN), and Λ(x, z) ≤ J(z) almost every where in Ω×RN . Changing
variables and having in mind (3.23), we can write

(3.26)

CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x+ εnz)gεn(x, x+ εnz) dz
v(x+ εnz)− v(x)

εn

dx

= −CJ,1

εn

∫
RN

∫
Ω

J(z)χΩ(x+ εnz)gεn(x, x+ εnz) dz v(x) dx

=

∫
Ω

(φ(x)− uεn(x))v(x) dx ∀v ∈ L∞(Ω).

By (3.25), passing to the limit in (3.26), we get

(3.27)

CJ,1

2

∫
RN

∫
Ω

Λ(x, z)z · ∇v(x) dx dz

=

∫
Ω

(φ(x)− u(x))v(x) dx ∀v ∈ L∞(Ω) ∩W 1,1(Ω).

We set ζ = (ζ1, . . . , ζN), the vector field defined by

ζi(x) :=
CJ,1

2

∫
RN

Λ(x, z)zi dz, i = 1, . . . , N.

Then, ζ ∈ L∞(Ω,RN), and from (3.27),

−div(ζ) = φ− u in D′(Ω).

Let us see that ‖ζ‖∞ ≤ 1. Given ξ ∈ RN \ {0}, let Rξ be the rotation such that Rt
ξ(ξ) =

e1|ξ|. If we make the change of variables z = Rξ(y), we obtain

ζ(x) · ξ =
CJ,1

2

∫
RN

Λ(x, z)z · ξ dz =
CJ,1

2

∫
RN

Λ(x,Rξ(y))Rξ(y) · ξ dy

=
CJ,1

2

∫
RN

Λ(x,Rξ(y))y1|ξ| dy.

On the other hand, since J is a radial function and Λ(x, z) ≤ J(z) almost every where,

CJ,1
−1 =

1

2

∫
RN

J(z)|z1| dz
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and

|ζ(x) · ξ| ≤ CJ,1

2

∫
RN

J(y)|y1| dy|ξ| = |ξ| a.e. x ∈ Ω.

Therefore, ‖ζ‖∞ ≤ 1.

Since u ∈ L∞(Ω), to finish the proof we only need to show that

(3.28)

∫
Ω

(w − u)(φ− u) dx ≤
∫

Ω

ζ · ∇wdx− |Du|(Ω), ∀w ∈ W 1,1(Ω) ∩ L∞(Ω).

Given w ∈ W 1,1(Ω) ∩ L∞(Ω), taking v = w − uεn in (3.26), we get

(3.29)

∫
Ω

(φ(x)− uεn(x))(w(x)− uεn(x)) dx

=
CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x+ εnz)gεn(x, x+ εnz) dz×

×
(
w(x+ εnz)− w(x)

εn

− uεn(x+ εnz)− uεn(x)

εn

)
dx

=
CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x+ εnz)gεn(x, x+ εnz) dz
w(x+ εnz)− w(x)

εn

dx

−CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x+ εnz)

∣∣∣∣uεn(x+ εnz)− uεn(x)

εn

∣∣∣∣ dx.
Having in mind (3.24) and (3.25) and taking limit in (3.29) as n→∞, we obtain that∫

Ω

(w − u)(φ− u) dx ≤ CJ,1

2

∫
Ω

∫
RN

Λ(x, z)z · ∇w(x) dx dz − CJ,1

2

∫
Ω

∫
RN

|J(z)z ·Du|

=

∫
Ω

ζ · ∇w dx− CJ,1

2

∫
Ω

∫
RN

|J(z)z ·Du|.

Now, for every x ∈ Ω such that the Radon-Nikodym derivative Du
|Du|(x) 6= 0, let Rx be

the rotation such that Rt
x[

Du
|Du|(x)] = e1| Du

|Du|(x)|. Then, since J is a radial function and

| Du
|Du|(x)| = 1 |Du|-a.e. in Ω, if we make the change of variables y = Rx(z), we have

CJ,1

2

∫
Ω

∫
RN

|J(z)z ·Du| = CJ,1

2

∫
Ω

∫
RN

J(z)

∣∣∣∣z · Du|Du|
(x)

∣∣∣∣ dz d|Du|(x)
=
CJ,1

2

∫
Ω

∫
RN

J(y) |y1| dy d|Du|(x) =

∫
Ω

|Du|.

Consequently, (3.28) holds and the proof concludes. �

From the above theorem, arguing as in Theorem 3.5, by standard results of the Nonlinear
Semigroup Theory ([24], [13]), we obtain the following result, from which Theorem 1.5 holds
in the case p = 1.
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Theorem 3.10. Let Ω a smooth bounded domain in RN . Assume J(x) ≥ J(y) if |x| ≤ |y|.
Let T > 0 and u0 ∈ L1(Ω). Let uε the unique solution in [0, T ] of P J

1 (u0) and u the unique
weak solution of N1(u0). Then

lim
ε→0

sup
t∈[0,T ]

‖uε(., t)− u(., t)‖L1(Ω) = 0.

4. Asymptotic behaviour

In this section we prove Theorem 1.6. We start by showing the following Poincaré’s type
inequality. In the linear case, that is, for p = 2, Poincaré’s type inequality has been proved
using spectral theory in [18].

Proposition 4.1. Given p ≥ 1, J and Ω, the quantity

βp−1 := βp−1(J,Ω, p) = inf
u∈Lp(Ω),

∫
Ω u=0

1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|p dy dx∫
Ω

|u(x)|p dx

is strictly positive. Consequently

(4.1) βp−1

∫
Ω

∣∣∣∣u− 1

|Ω|

∫
Ω

u

∣∣∣∣p ≤ 1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|p dy dx ∀u ∈ Lp(Ω).

Proof. It is enough to prove that there exists a constant c such that

(4.2) ‖u‖p ≤ c

((∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|pdydx
)1/p

+

∣∣∣∣∫
Ω

u

∣∣∣∣
)

∀u ∈ Lp(Ω).

Let r > 0 such that J(z) ≥ α > 0 in B(0, r). Since Ω ⊂ ∪x∈ΩB(x, r/2), there exists
{xi}m

i=1 ⊂ Ω such that Ω ⊂ ∪m
i=1B(xi, r/2). Let 0 < δ < r/2 such that B(xi, δ) ⊂ Ω for all

i = 1, ...m. Then, for any x̂i ∈ B(xi, δ), i = 1, ...,m,

(4.3) Ω =
m⋃

i=1

(B(x̂i, r) ∩ Ω).

Let us argue by contradiction. Suppose that (4.2) is false. Then, there exists un ∈ Lp(Ω),
‖un‖p = 1, satisfying

1 ≥ n

((∫
Ω

∫
Ω

J(x− y)|un(y)− un(x)|pdydx
)1/p

+

∣∣∣∣∫
Ω

un

∣∣∣∣
)

∀n ∈ N.

Consequently,

(4.4) lim
n

∫
Ω

∫
Ω

J(x− y)|un(y)− un(x)|pdydx = 0
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and

(4.5) lim
n

∫
Ω

un = 0.

Let
Fn(x, y) = J(x− y)1/p|un(y)− un(x)|

and

fn(x) =

∫
Ω

J(x− y)|un(y)− un(x)|pdy.

From (4.4), it follows that
fn → 0 in L1(Ω).

Passing to a subsequence, if necessary, we can assume that

(4.6) fn(x) → 0 ∀x ∈ Ω \B1, B1 null.

On the other hand, by (4.4), we also have that

Fn → 0 en Lp(Ω× Ω).

So we can suppose, passing to a subsequence if necessary,

(4.7) Fn(x, y) → 0 ∀(x, y) ∈ Ω× Ω \ C, C null.

Let B2 ⊂ Ω a null set satisfying that,

(4.8) for all x ∈ Ω \B2, the section Cx of C is null.

Let x̂1 ∈ B(x1, δ) \ (B1 ∪B2), then there exists a subsequence, denoted equal, such that

un(x̂1) → λ1 ∈ [−∞,+∞].

Consider now x̂2 ∈ B(x2, δ) \ (B1 ∪B2), then up to a subsequence, we can assume

un(x̂2) → λ2 ∈ [−∞,+∞].

So, successively (up to m), for x̂m ∈ B(xm, δ)\ (B1∪B2), there exists a subsequence, again
denoted equal, such that

un(x̂m) → λm ∈ [−∞,+∞].

By (4.7) and (4.8),

un(y) → λi ∀y ∈ (B(x̂i, r) ∩ Ω) \ Cx̂i
.

Now, by (4.3),
Ω = (B(x̂1, r) ∩ Ω) ∪ (∪m

i=2(B(x̂i, r) ∩ Ω)).

Hence, since Ω is a domain, there exists i2 ∈ {2, ..,m} such that

(B(x̂1, r) ∩ Ω) ∩ (B(x̂i2 , r) ∩ Ω) 6= ∅.
Therefore, λ1 = λi2 . Let us call i1 := 1. Again, since

Ω = ((B(x̂i1 , r) ∩ Ω) ∪ ((B(x̂i1 , r) ∩ Ω)) ∪ (∪i∈{1,...,m}\{i1,i2}(B(x̂i, r) ∩ Ω)),



28 F. ANDREU, J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

there exists i3 ∈ {1, ...,m} \ {i1, i2} such that

((B(x̂i1 , r) ∩ Ω) ∪ ((B(x̂i1 , r) ∩ Ω)) ∩ (B(x̂i3 , r) ∩ Ω) 6= ∅.
Consequently

λi1 = λi2 = λi3 .

Using the same argument we arrive at

λ1 = λ2 = ... = λm = λ.

If |λ| = +∞, we have shown that

|un(y)|p → +∞ for almost every y ∈ Ω,

which contradicts ‖un‖p = 1 for all n ∈ N. Hence λ is finite.

On the other hand, by (4.6), fn(x̂i) → 0, i = 1, ...,m, hence,

Fn(x̂1, .) → 0 in Lp(Ω).

Since un(x̂1) → λ, from the above we conclude that

un → λ in Lp(B(x̂i, r) ∩ Ω).

Using again the compactness argument we get

un → λ in Lp(Ω).

Now, by (4.5), λ = 0, and
un → 0 in Lp(Ω),

which contradicts ‖un‖p = 1. �

Remark 4.2. The above Poincaré’s type inequality fails to be true in general if 0 /∈ supp(J),
as the following example shows. Let Ω = (0, 3) and J be such that

supp(J) ⊂ (−3,−2) ∪ (2, 3).

Then, if

u(x) =

{
1 if 0 < x < 1 or 2 < x < 3,

2 1 ≤ x ≤ 2,

we have that ∫ 3

0

∫ 3

0

J(x− y)|u(y)− u(x)|p dx dy = 0,

but clearly

u(x)− 1

3

∫ 3

0

u(y) dy 6= 0.

Therefore there is no Poincaré’s type inequality available for this J .

This example can be easily extended for any domain in any dimension just by considering
functions u that are constant on an annuli intersected with Ω.
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Next we prove Theorem 1.6.

Proof of Theorem 1.6. First we observe that a simple integration in space of the equation
gives that the total mass is preserved, that is,

1

|Ω|

∫
Ω

u(t, x) dx =
1

|Ω|

∫
Ω

u0(x) dx.

Let

w(t, x) = u(t, x)− 1

|Ω|

∫
Ω

u0(x) dx.

Then,

d

dt

∫
Ω

|w(t, x)|p dx = p

∫
Ω

|w|p−2w(t, x)

∫
Ω

J(x−y)|w(t, y)−w(t, x)|p−2(w(t, y)−w(t, x)) dydx

= −p
2

∫
Ω

∫
Ω

J(x−y)|w(t, y)−w(t, x)|p−2(w(t, y)−w(t, x))(|w|p−2w(t, y)−|w|p−2w(t, x)) dydx.

Therefore the Lp(Ω)-norm of w is decreasing with t.

Moreover, as the solution preserves the total mass, using Poincaré’s type inequality (4.1),
we have, ∫

Ω

|w(t, x)|p dx ≤ C

∫
Ω

∫
Ω

J(x− y)|u(t, y)− u(t, x)|p dy dx.

Consequently,

t

∫
Ω

|w(t, x)|p dx ≤
∫ t

0

∫
Ω

|w(s, x)|p dx ds ≤ C

∫ t

0

∫
Ω

∫
Ω

J(x− y)|u(s, y)−u(s, x)|p dy dx ds.

On the other hand, multiplying the equation by u(x, t) and integrating in space and time,
we get∫

Ω

|u(t, x)|2 −
∫

Ω

|u0(x)|2 dx = −
∫ t

0

∫
Ω

∫
Ω

J(x− y)|u(s, y)− u(s, x)|p dy dx ds,

which implies ∫ t

0

∫
Ω

∫
Ω

J(x− y)|u(s, y)− u(s, x)|p dy dx ds ≤ ||u0||2L2(Ω),

and therefore ∫
Ω

|w(t, x)|p dx ≤
||u0||2L2(Ω)

t
.

�
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Remark 4.3. Observe that using Poincaré’s type inequality (4.1), we can obtain

(4.9) u+BJ
p u = φ,

for p ≥ 2 in the following manner: let

K :=

{
u ∈ Lp(Ω) :

∫
Ω

u = 0

}
and A : K → Lp′(Ω) the continuous monotone operator defined by A(u) := u + BJ

p u. By
(4.1), we have

lim
‖u‖p → +∞

u ∈ K

∫
Ω

A(u)u

‖u‖p

= +∞.

Then, by Corollary 30 in [15], for φ ∈ L∞(Ω),
∫

Ω
φ = 0, there exists u ∈ K, such that∫

Ω

uv +

∫
Ω

BJ
p uv =

∫
Ω

φv ∀v ∈ K.

Since
∫

Ω
u = 0,

∫
Ω
φ = 0 and

∫
Ω
BJ

p u = 0, we have that∫
Ω

uv +

∫
Ω

BJ
p uv =

∫
Ω

u

(
v − 1

|Ω|

∫
Ω

v

)
+

∫
Ω

BJ
p u

(
v − 1

|Ω|

∫
Ω

v

)
=

∫
Ω

φ

(
v − 1

|Ω|

∫
Ω

v

)
=

∫
Ω

φv,

for any v ∈ Lp(Ω), and consequently (4.9) holds.
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32 F. ANDREU, J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

[26] P. Fife and X. Wang. A convolution model for interfacial motion: the generation and propagation
of internal layers in higher space dimensions. Adv. Differential Equations, 3(1), (1998), 85–110.

[27] S. Kindermann, S. Osher and P. W. Jones. Deblurring and denoising of images by nonlocal func-
tionals. Multiscale Model. Simul., 4, (2005), 1091–1115.

[28] L. Rudin, S. Osher and E. Fatemi, Nonlinear Total Variation based Noise Removal Algorithms,
Physica D., 60, (1992), 259–268.
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Departamento de Matemática, FCEyN UBA (1428)
Buenos Aires, Argentina.

E-mail address: jrossi@dm.uba.ar
Web page: http://mate.dm.uba.ar/∼jrossi


