
Blow-up for a non-local diffusion problem

with Neumann boundary conditions and a

reaction term.
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Abstract

In this paper we study the blow-up problem for a non-local diffusion equation with
a reaction term,

ut(x, t) =
∫

Ω

J(x− y)(u(y, t)− u(x, t)) dy + up(x, t).

We prove that nonnegative and nontrivial solutions blow up in finite time if and
only if p > 1. Moreover, we find that the blow-up rate is the same that the one that
holds for the ODE ut = up, that is, limt↗T (T − t)

1
p−1 ‖u(·, t)‖∞ = ( 1

p−1)
1

p−1 . Next,
we deal with the blow-up set. We prove single point blow-up for radially symmetric
solutions with a single maximum at the origin, as well as the localization of the
blow-up set near any prescribed point, for certain initial conditions in a general
domain with p > 2. Finally, we show some numerical experiments which illustrate
our results.
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1 Introduction and main results

Our purpose in this work is to analyze some features of the blow-up phenom-
enon arising from the following non-local diffusion problem in Ω× (0, T ),





ut(x, t) =
∫

Ω

J(x− y)(u(y, t)− u(x, t)) dy + up(x, t),

u(x, 0) = u0(x).

(1.1)

Here Ω is a bounded connected and smooth domain and the kernel J : RN → R
is assumed to be a nonnegative, bounded (let us denote by K = ‖J‖∞) and
symmetric function (J(z) = J(−z)), such that

∫
RN J(z)dz = 1. We take the

initial datum, u0(x), nonnegative and nontrivial.

Recently non-local diffusion processes have taken some attention in the litera-
ture. Nonlocal evolution equations of the form ut(x, t) =

∫
RN J(x−y)u(y, t) dy−

u(x, t), and variations of it, have been widely used to model diffusion processes,
see [AMTR], [AMRT2], [BCh], [BFRW], [CF], [ChChR], [C], [CER], [CERW],
[CERW2], [F], [FW] and [IR].

As stated in [F], u(x, t) can be interpreted as the density of a single population
at the point x at time t, and J(x−y) as the probability distribution of jumping
from location y to location x. Then, the convolution (J ∗ u)(x, t) =

∫
RN J(y−

x)u(y, t) dy is the rate at which individuals are arriving to position x from
all other places and −u(x, t) = − ∫

RN J(y − x)u(x, t) dy is the rate at which
they are leaving location x to travel to any other site. This consideration, in
the absence of external or internal sources, leads immediately to the fact that
the density u satisfies the nonlocal equation ut = J ∗ u − u. This equation is
called a nonlocal diffusion equation, since the diffusion of the density u at a
point x and time t does not only depend on u(x, t), but on all the values of
u in a neighborhood of x through the convolution term J ∗ u. This equation
shares many properties with the classical heat equation, ut = ∆u, such as
the fact that bounded stationary solutions are constant, a maximum principle
holds for both of them and perturbations propagate with infinite speed, [F].
However, there is no regularizing effect in general (see [ChChR]).

Note that in our problem (1.1) we are integrating in Ω. As we have explained
the integral

∫
J(x− y)(u(y, t)− u(x, t)) dy takes into account the individuals

arriving or leaving position x from other places. Therefore, we are imposing
that the diffusion takes place only in Ω. No individual may enter or leave the
domain. This is what is called Neumann boundary conditions, see [CERW].
Moreover, in this work we add a reaction term +up(x, t) in the equation and
look for possible blow-up singularities for the resulting problem.
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As we will see through these pages, problem (1.1) shares many important
properties with the corresponding local diffusion problem





ut(x, t) = ∆u(x, t) + up(x, t), (x, t) ∈ Ω× (0, T ),
∂u

∂η
(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

such as blowing-up conditions, blow-up rates or blow-up sets (see [BB], [CM],
[FM]). For general references on blow-up problems we refer to the surveys
[BB], [GV], the book [SGKM] and references therein.

We begin our study of (1.1) with a result of existence and uniqueness of
continuous solutions and a comparison principle.

Theorem 1.1 For every u0 ∈ C(Ω) there exists a time T > 0 and a unique
solution u ∈ C([0, T ); C(Ω)) to (1.1). If the maximal existence time of the
solution, T , is finite then the solution blows up in L∞(Ω)-norm, that is

lim sup
t↗T

‖u(·, t)‖L∞(Ω) = +∞.

The total mass in Ω verifies the following identity

∫

Ω

u(y, t) dy =
∫

Ω

u0(y) dy +

t∫

0

∫

Ω

up(y, s) dy ds.

In addition, the following comparison property holds: if u0 ≤ v0 in Ω, then
u(x, t) ≤ v(x, t) for every (x, t) ∈ Ω× [0, T ).

Once we have ensured existence and uniqueness of the solutions the next step
is to determine the values of the parameters for which blow up occurs.

Theorem 1.2 Let u0 ∈ C(Ω) be nonnegative and nontrivial. If p > 1 the
corresponding solution to (1.1) blows up. Conversely, if p ≤ 1 every solution
to (1.1) is global. Moreover, if p > 1 we have the following estimate for the
blow-up time,

T ≤ 1

(p− 1)

( |Ω|∫
Ω u0(x) dx

)p−1

. (1.3)

Concerning the blow up rate, that is the speed at which solutions are blowing
up, we find the following result,
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Theorem 1.3 (Blow-up rates) Let p > 1 and u be a solution to (1.1) blowing
up at time T . Then

lim
t↗T−

(T − t)
1

p−1 max
x∈Ω

u(x, t) =

(
1

p− 1

) 1
p−1

. (1.4)

Note that, as it happens for the local problem (1.2), the blow-up rate is the
same as the one that holds for the ODE ut = up, hence the diffusion term
(local or nonlocal) plays no role when determining the blow-up rate.

Next we deal with the spacial location of the set where the solution blows up,
the blow-up set, defined as follows:

B(u) = {x ∈ Ω ; there exist xn → x, tn ↗ T, with u(xn, tn) →∞}.

There are several situations where the blow-up set is a single point (single
point blow-up), for instance for the local model (1.2) with p > 1 and radially
symmetric initial conditions with only one maximum at the origin, [CM],
[FM]. Our next result reproduces this phenomenon of single point blow-up for
symmetric data with p > 2, we use ideas from [GR]. It is not clear for us how
to adapt the arguments given in [FM] to the nonlocal problem.

Theorem 1.4 (Blow-up sets: symmetric case.) Let us consider problem (1.1)
with p > 2 in Ω = BR = {|x| < R}. Let u0 ∈ C1(BR) be a radial nonnegative
function, with a unique maximum at the origin, that is

u0 = u0(r) ≥ 0, u′0(r) < 0 if 0 < r ≤ R, u′′0(0) < 0. (1.5)

Then, the blow-up set of the solution consists only of the point x = 0.

Note that the flat solution (a solution that does not depend on x) blows up
in the whole Ω. Hence, for any domain Ω we have initial conditions (positive
constants) producing global blow-up, B(u) = Ω. However, for p > 2 we can
also localize the blow-up set near any point in Ω just by taking an initial
condition being very large near that point and not so large in the rest of the
domain. This is the content of our last result.

Theorem 1.5 (Blow-up sets: general case.) Let us consider problem (1.1) in
a general domain Ω with p > 2. Given x0 ∈ Ω and ε > 0 there exists an initial
condition, u0, such that B(u) ⊂ Bε(x0) = {x ∈ Ω ; ‖x− x0‖ < ε}.

The rest of the paper is organized as follows: in Section 2 we prove existence
and uniqueness of a continuous solution as well as a comparison lemma; in
Section 3 we deal with blow-up versus global existence and we find the blow-up
rates; Section 4 we show our results concerning the blow-up sets and finally
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in Section 5 we discretize the spacial variable and include some numerical
experiments which illustrate our results.

2 Local existence of solutions. Main properties

We devote this section to the proof of Theorem 1.1, concerning existence,
uniqueness and the validity of the comparison principle of solutions. Existence
and uniqueness will be obtained via Banach’s fixed point theorem. First, let
us give some necessary preliminaries. Let t0 > 0 be fixed and consider Xt0 =
C([0, t0]; C(Ω)), a Banach space with the norm

‖ω‖Xt0
= max

0≤t≤t0
‖ω(·, t)‖L∞(Ω) = max

0≤t≤t0
max

Ω
|u(x, t)|.

We define the following operator D : Xt0 −→ Xt0 ,

Dω0(ω)(x, t) = ω0(x) +

t∫

0

∫

Ω

J(x− y)(ω(y, s)− ω(x, s)) dy ds

+

t∫

0

|ω|p−1ω(x, s) ds.

The solution to problem (1.1) will be obtained as a fixed point of the pre-
vious operator in a convenient ball of Xt0 . In the next lemma we show that
this operator is well defined and give conditions assuring that it is strictly
contractive.

Lemma 2.1 The operator Dω0 is well defined, mapping Xt0 into Xt0. More-
over, let ω0, z0 ∈ C(Ω) and w, z ∈ Xt0. Then there exists a positive constant
C = C(p, ‖ω‖Xt0

, ‖z‖Xt0
, ‖J‖∞, Ω) such that

‖Dω0(ω)−Dz0(z)‖Xt0
≤ ‖ω0 − z0‖L∞(Ω) + Ct‖ω − z‖Xt0

. (2.6)

Thus, Du0 is a strict contraction in the ball B(u0, 2‖u0‖L∞(Ω)) ⊂ Xt0, if t0 is
small enough.

5



Proof. We begin by checking that Dω0 maps Xt0 into Xt0 . For any (x, t) ∈
Ω× [0, t0] we have,

∣∣∣Dω0(ω(x, t))− ω0

∣∣∣ ≤
∣∣∣∣∣∣

t∫

0

∫

Ω

J(x− y)
(
ω(y, s)− ω(x, s)

)
dy ds

∣∣∣∣∣∣

+

∣∣∣∣∣∣

t∫

0

|ω|p−1ω(x, s) ds

∣∣∣∣∣∣

≤ max{1, K|Ω|}t
(
‖ω‖Xt0

+ ‖ω‖p
Xt0

)
,

which assures that Dω0(ω) is continuous at t = 0. Now, for any (x, t1), (x, t2) ∈
Ω× [0, t0] it holds that

∣∣∣Dω0(ω(x, t1))−Dω0(ω(x, t2))
∣∣∣

=

∣∣∣∣∣∣

t2∫

t1




∫

Ω

J(x− y)
(
ω(y, s)− ω(x, s)

)
dy + |ω|p−1ω(x, s)


 ds

∣∣∣∣∣∣

≤ 2

∣∣∣∣∣∣
max{1, K|Ω|}

t2∫

t1

(
‖ω(·, s)‖L∞(Ω) + |ω|p−1ω(x, s)

)
ds

∣∣∣∣∣∣

≤ 2C(t2 − t1)
(
‖ω‖Xt0

+ ‖ω‖p
Xt0

)
,

which completes the proof of the continuity in time for any t ∈ (0, t0].

Note that Dω0(ω) is continuous as a function of x, since the convolution in
space with the function J is also uniformly continuous. Then, for any ω0 ∈
C(Ω) and ω ∈ Xt0 we conclude that Dω0(ω) ∈ C([0, t0]; C(Ω)). Thus Dω0 maps
Xt0 into Xt0 .
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To prove the estimate (2.6) we argue as follows: for any (x, t) ∈ Ω× [0, t0], it
holds

∣∣∣
(
Dω0(ω)−Dz0(z)

)
(x, t)

∣∣∣ ≤ ‖ω0 − z0‖L∞(Ω)

+

∣∣∣∣∣∣

t∫

0

(|ω|p−1ω(x, s)− |z|p−1z(x, s))ds

∣∣∣∣∣∣

+

∣∣∣∣∣∣

t∫

0

∫

Ω

J(x− y)
(
ω(y, s)− z(y, s)− (ω(x, s)− z(x, s))

)
dy ds

∣∣∣∣∣∣

≤ ‖ω0 − z0‖L∞(Ω) + pηp−1

t∫

0

|ω(x, s)− z(x, s)| ds

+

∣∣∣∣∣∣
2

t∫

0

‖ω(·, s)− z(·, s)‖L∞(Ω)

∫

Ω

J(x− y)dy ds

∣∣∣∣∣∣

≤ ‖ω0 − z0‖L∞(Ω) + (pηp−1 + 2K|Ω|)t‖ω − z‖Xt0
,

where η ≤ max{‖ω‖Xt0
, ‖z‖Xt0

}. The arbitrariness of (x, t) ∈ Ω× [0, t0] gives
the desired estimate (2.6).

Finally, choosing t0 such that Ct0 < 1 and taking ω0 ≡ z0, (2.6) ensures that
Dω0 is a strict contraction in the ball B(u0, 2‖u0‖L∞(Ω)) in Xt0 . Indeed, for ω
and z in such a ball we have that |η| ≤ C‖u0‖L∞(Ω) and therefore we conclude
that there exists a constant C that only depends on J and u0, such that

‖Du0(ω)−Du0(z)‖Xt0
≤ Ct0‖ω − z‖Xt0

.

Hence it is enough to choose t0 such that Ct0 < 1/2 to obtain a strict con-
traction in the ball B(u0, 2‖u0‖L∞(Ω)). The proof is finished. 2

Remark 1 If p > 1, we can define the operator Dω0 in the space Yt0 =
C([0, t0]; C

k(Ω)), with the norm

‖ω‖Yt0
= max

0≤t≤t0

k∑

α=0

‖Dα
xω‖L∞(Ω).

Arguing as in (2.6) we find a similar estimate

‖Dω0(ω)−Dz0(z)‖Yt0
≤ ‖ω0 − z0‖Ck(Ω) + Ct‖ω − z‖Yt0

,

where C = C(p, ‖ω‖Yt0
, ‖z‖Yt0

, ‖J‖∞, Ω). Thus, for any ω0 ∈ Ck(Ω), Dω0 is a
strict contraction in a ball of Yt0 for t0 small enough.
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We have all the ingredients to prove the first statements of Theorem 1.1,
concerning existence and uniqueness of solutions.

Proof of Theorem 1.1(existence and uniqueness). As a consequence of
the Banach’s fixed point theorem and the previous lemma we get the existence
and uniqueness of solutions to (1.1) in the time interval [0, t0]. If ‖u‖Xt0

< ∞,

taking as initial datum u(·, t0) ∈ C(Ω) and arguing as before, it is possible to
extend the solution up to some interval [0, t1), for certain t1 > t0. Hence, we
conclude that if the maximal existence time of the solution, T , is finite then
the solution blows up in L∞(Ω)-norm, that is

lim sup
t↗T

‖u(·, t)‖L∞(Ω) = +∞.

Finally, from the equation (1.1)1 it easily follows that u verifies the following
identity,

u(x, t)− u0(x) =

t∫

0




∫

Ω

J(x− y)(u(y, s)− u(x, s)) dy + up(x, s)


 ds.

Integrating in the x variable and applying Fubini’s theorem we get

∫

Ω

u(x, t) dx−
∫

Ω

u0(x) dx =

t∫

0

∫

Ω

up(x, s) dx ds,

and the proof is completed. 2

Remark 2 If p > 1 and u0 ∈ Ck(Ω), 0 ≤ k ≤ ∞, then the solution u to (1.1)
belongs to C([0, T ); Ck(Ω)), see Remark 1.

We conclude this section with the statement of the comparison principle for
the solutions to (1.1). To this end we introduce the concept of sub and super-
solutions for this problem.

Definition 2.1 A function u ∈ C1([0, T ); C(Ω)) is a supersolution of (1.1) if
it satisfies





ut(x, t) ≥
∫

Ω

J(x− y)(u(y, t)− u(x, t)) dy + up(x, t),

u(x, 0) ≥ u0(x).

Subsolutions are defined similarly by reversing the inequalities.
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Now, we state two lemmas with a comparison principle and the maximum
principle for sub and supersolutions. The proofs can be found in [CERW], and
hence we omit them.

Lemma 2.2 Let u, u be super and subsolutions to (1.1), respectively. Then,
u(x, t) ≥ u(x, t), for every (x, t) ∈ Ω× [0, T ).

Lemma 2.3 Let u be a supersolution to (1.1). Then, if u0 ≥ 0 we have that
u(x, t) ≥ 0, for every (x, t) ∈ Ω× [0, T ) and moreover, a strict inequality holds
if u0 is nontrivial.

An analogous statement holds for subsolutions by reversing the inequalities.

3 Blow-up versus global existence. Blow-up rates.

We begin by determining the conditions that ensuring blow-up occurrence,
that is, Theorem 1.2.

Proof of Theorem 1.2 Assume that p > 1. Integrating in x ∈ Ω the equation
(1.1)1 and applying Fubini’s theorem, we get

∂

∂t

∫

Ω

u(x, t) dx =
∫

Ω

up(x, t) dx ≥ |Ω|1−p




∫

Ω

u(x, t) dx




p

.

Since p > 1 we have that
∫
Ω u(x, t) dx cannot be global; thus u cannot be

global either. Note that, by Theorem 1.1, in this case we have blow-up in
L∞(Ω)-norm. Moreover, integrating the above inequality we obtain the fol-
lowing estimate for the blow-up time

T ≤ 1

(p− 1)

( |Ω|∫
Ω u0(x) dx

)p−1

.

Conversely, suppose now that p ≤ 1. Let us consider the ODE problem





z′(t) = z(t),

z(0) = max
x∈Ω

{u0(x), 1}.

Observe that z(t) ≥ zp(t), since z(t) > 1 for every t > 0 and p ≥ 1. Therefore, z
is a global supersolution of our problem (1.1). Thus, u is global by comparison.
2
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Now we proceed with the proof of Theorem 1.3, which gives the blow up rate.

Proof of Theorem 1.3 Let T < ∞ the maximal time of existence of a
blowing up solution. Let x0 ∈ Ω be such that max

x∈Ω
u(·, t) = u(x0, t). From the

equation (1.1)1 for this point, the following estimate follows

ut(x0, t) =
∫

Ω

J(x− y)
(
u(y, t)− u(x0, t)

)
dy + up(x0, t) ≤ up(x0, t). (3.7)

Integrating (3.7) in (t, T ), and taking into account that p > 1, we obtain

max
x∈Ω

u(x, t) ≥
(

1

p− 1

) 1
p−1

(T − t)−
1

p−1 . (3.8)

To get the upper estimate we observe that for any (x, t) ∈ Ω× [0, T ) it holds

ut(x, t) ≥ −u(x, t) + up(x, t) = up(x, t)(1− u−(p−1)(x, t)).

In particular

max
x∈Ω

ut(x, t) ≥ max
x∈Ω

up(x, t)


1−

(
max
x∈Ω

u(x, t)

)−(p−1)

 .

Taking into account (3.8) in this expression we get

max
x∈Ω

ut(x, t) ≥ max
x∈Ω

up(x, t)
(
1− (p− 1)(T − t)

)
.

We integrate as before in (t, T ) to obtain

max
x∈Ω

u(x, t) ≤
(
(p− 1)(T − t)− 1

2
(p− 1)2(T − t)2

)− 1
p−1

.

Taking limit as t → T (1.4) is proved. 2

4 Blow-up sets

In this section we give some results concerning the blow-up sets for the solu-
tions to problem (1.1). In the following, we will assume that p > 1 to ensure
blow-up occurrence, and u will be a solution to (1.1) blowing up at time T . We
begin with the symmetric case, that is, the proof of Theorem 1.4. To simplify
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we will consider only the one-dimensional case, Ω = (−L,L). The radial case
is analogous, we leave the details to the reader.

First, we prove a lemma that says that if the initial condition has a unique
maximum at the origin, then the solution has a unique maximum at this point
for every t ∈ (0, T ).

Lemma 4.1 For any p, under the hypothesis on the initial condition imposed
in Theorem 1.4 we have that the solution is symmetric and such that ux < 0
in (0, L]× (0, T ).

Proof. Symmetry follows from uniqueness since w(x, t) = u(−x, t) is also a
solution to (1.1).

Denote v = ux. Then v verifies the following equation

vt(x, t) =

L∫

−L

J ′(x− y)(u(y, t)− u(x, t)) dy − v(x, t)

L∫

−L

J(x− y) dy

+pup−1(x, t)v(x, t).

From this equation it is easy to obtain a contradiction, if we assume that there
exists a point (x0, t0) ∈ (0, L]× (0, T ) at which v(x0, t0) = 0. We use here that
J ′ is odd and the symmetry of u. 2

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. The proof consists of several steps, following the
ideas of [GR] for numerical approximations of the corresponding local diffusion
problem.

Step 1. First, we prove that the only blow-up point that verifies the blow-up
estimate (1.4) is x = 0. For a fixed x0 > 0, let w(t) = u(0, t) − u(x0, t). This
function w verifies

w′(t) =

L∫

−L

J(−y)(u(y, t)− u(0, t)) dy −
L∫

−L

J(x0 − y)(u(y, t)− u(x0, t)) dy

+pξp−1(t)w(t),

where ξ(t) is a point between u(0, t) and u(x0, t). Hence

w′(t) ≥
L∫

−L

(J(−y)− J(x0 − y))u(y, t) dy − w(t) + pξp−1(t)w(t)

≥ −w(t) + pξp−1(t)w(t).
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Integrating we have

ln(w)(t)− ln(w)(t0) ≥
t∫

t0

(−1 + pξp−1(s)) ds.

Now we argue by contradiction. Assume that (T − t)
1

p−1 u(x0, t) → Cp . Since
u(x0, t) ≤ ξ(t) ≤ u(0, t), we get,

lim
t→T

ξ(t)(T − t)
1

p−1 = Cp ,

and then we just have to observe that

t∫

t0

(−1 + pξp−1(s)) ds ≥ p

t∫

t0

(Cp−1
p − ε)

(T − s)
ds− C = −p(Cp−1

p − ε) ln(T − t)− C.

Hence

w(t) ≥ C(T − t)−p(Cp−1
p −ε) = C(T − t)−

p
p−1

+pε.

Using this fact, we have

0 = lim
t→T

(T − t)
1

p−1 w(t) ≥ C lim
t→T

(T − t)
1

p−1
− p

p−1
+pε = +∞,

a contradiction that proves our claim.

Step 2. We conclude by showing that the only possible blowing up point is
the origin. To this end, let us perform the following change of variables

z(x, s) = (T − t)
1

p−1 u(x, t), (T − t) = e−s. (4.9)

This function z verifies

zs(x, s) = e−s

L∫

−L

J(x− y)(z(y, s)− z(x, s)) dy − 1

p− 1
z(x, s) + zp(x, s).

Note that the blow-up rate of u implies that z(x, s) ≤ C for every (x, s) ∈
[−L,L]× (− ln(T ),∞).

Now we observe that, if there exists s0 such that zp(x, s0) − 1
p−1

z(x, s0) <

−Ce−s0 , then z(x, s) → 0 as s →∞. This fact can be proved as in Lemma 4.2
of [GR] using that z(x, s) is bounded and verifies

zs(x, s) ≤ Ce−s − 1

p− 1
z(x, s) + zp(x, s). (4.10)
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Moreover, if there exists s0 such that zp(x, s0) − 1
p−1

z(x, s0) > Ce−s0 , then

z(x, s) blows up in finite time s̃. This follows from Lemma 4.3 in [GR] using
that

zs(x, s) ≥ −Ce−s − 1

p− 1
z(x, s) + zp(x, s).

Since for x 6= 0, z(x, s) is bounded and does not converge to Cp (thanks to
step 1) we conclude that z(x, s) → 0, as s → +∞.

We study next the asymptotic behaviour of z(x, s). To this end, given ε > 0,
using that z(x, s) → 0 in (4.10), we get

zs(x, s) ≤ Ce−s −
(

1

p− 1
− ε

)
z(x, s).

By a comparison argument, as in [GR], it follows that

z(x, s) ≤ C1e
−s + C2e

−( 1
p−1

−ε)s. (4.11)

Now going back to the equation verified by z(x, t) we obtain,

(e
1

p−1
sz(x, s))s = e

1
p−1

s


e−s

L∫

−L

J(x− y)(z(y, s)− z(x, s)) dy + zp(x, s)


 .

Integrating we get

z(x, s) = e−
1

p−1
s


C1 +

s∫

s0

e−
p−2
p−1

σ




L∫

−L

J(x− y)(z(y)− z(x))dy + eσzp


 dσ


 .

From (4.11) it follows that eszp(x, s) → 0, as s →∞ and since z is bounded,
we conclude,

z(x, s) ≤ e−
1

p−1
s


C1 + C2

s∫

s0

e−
p−2
p−1

σdσ


 .

Using that p > 2, we have

z(x, s) ≤ C3e
− 1

p−1
s.

This implies that u(x, t) verifies

u(x, t) = e
1

p−1
sz(x, s) ≤ C3.

The proof is now complete. 2

Now we show that in a general domain Ω and p > 2 we can find an initial
condition with blow-up set localized around a given point in Ω.
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Proof of Theorem 1.5 Given x0 ∈ Ω and ε > 0 we want to construct an
initial condition u0 such that

B(u) ⊂ Bε(x0) = {x ∈ Ω : ‖x− x0‖ < ε}. (4.12)

To this end we will consider u0 concentrated near x0 and small away from x0.

Let ϕ be a nonnegative smooth function such that

supp(ϕ) ⊂ Bε/2(x0), and ϕ(x) > 0 for x ∈ Bε/2(x0).

Now, let
u0(x) = Mϕ(x) + δ.

We want to choose M large and δ small in such a way that (4.12) holds.

First, note that, thanks to the estimate (1.3),

T ≤ 1

(p− 1)

( |Ω|∫
Ω u0(x) dx

)p−1

≤ C(Ω, p, ϕ)

Mp−1
,

taking M large enough we can assume that T is as small as we need.

Now, using the upper bound for the blow-up rate

max
x∈Ω

u(x, t) ≤
(
(p− 1)(T − t)− 1

2
(p− 1)2(T − t)2

)− 1
p−1

≤ C (T − t)−
1

p−1 ,

we obtain, for any x̄ ∈ Ω,

ut(x̄, t) =
∫

Ω

J(x̄− y)(u(y, t)− u(x̄, t)) dy + up(x̄, t)

≤
∫

Ω

J(x̄− y)u(y, t) dy + up(x̄, t)

≤ C(Ω, J, p) (T − t)−
1

p−1 + up(x̄, t).

Therefore u(x̄, t) is a subsolution to

wt(t) = C(Ω, J, p) (T − t)−
1

p−1 + wp(t), (4.13)

and hence, if u(x̄, 0) ≤ w(0), we have

u(x̄, t) ≤ w(t). (4.14)
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Now we just have to prove that a solution w to (4.13) beginning with w(0) = δ
remains bounded up to t = T , provided that δ and T are small enough. To
see this we use ideas from [GR]. Let

z(s) = (T − t)1/(p−1)w(t), s = − ln(T − t).

It is not difficult to see that z(s) verifies

z′(s) = Ce−s − 1

p− 1
z(s) + zp(s), z(− ln T ) = T 1/(p−1)δ.

Note that for T and δ small (T is small if M is large) it holds that z′(− ln T ) <
0. Indeed, we need

CT − 1

p− 1
δT

1
p−1 + δpT

p
p−1 < 0.

Here, we are using that p > 2. From this fact it is easy to prove that z′(s) < 0
for all s > − ln T and therefore z(s) → 0 as s →∞, see [GR]. Going back to
the equation verified by z we obtain that, using again that p > 2,

z(s) ≤ Ce−
1

p−1
s.

In terms of w(t) this bound implies that w(t) ≤ C, for 0 ≤ t < T . From
the boundedness of w and (4.14) we get u(x̄, t) ≤ w(t) ≤ C for every x̄ ∈
Ω \Bε(x0), as we wished. 2

5 Numerical experiments.

Finally, we discretize the problem in the spacial variable and obtain an ODE
system. We take Ω = [−3, 3] and −3 = x−N < .... < xN = 3, N = 100, a
partition of Ω. We consider the following ODE system





u′i(t) =
N∑

j=−N

J(xi − xj)(uj(t)− ui(t)) + (ui)
p(t)

ui(0) = u0(xi).

We choose p = 3 and

J(s) =





1 for |s| ≤ 1/10,

0 for 1/10 ≤ |s| ≤ 3.
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In Figure 1 we show the evolution in time of a solution beginning with a
symmetric initial condition with a unique maximum, as required in the hy-
pothesis of Theorem 1.4, u0(x) = 9 − x2. The computed blow-up time is
T ≈ 6.092 × 10−3. We observe that the solution is blowing up only at the
origin.
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Figure 1. Evolution in time, symmetric datum.

In Figure 2 we show the evolution of the logarithm of the maximum of the
solution, u(0, t), vs. the logarithm of (T − t)−1, in dashed line. We can ap-
preciate that the slope of the graph is approximately 1/2 = 1/(p − 1), the
exponent that appears in the blow-up rate. Also, with a continuous line and
in a dashed-pointed line we show the evolution of the two adjacent nodes, u1

and u2 (also in logarithmic scale). We can appreciate that they are bounded
(the slopes of the curves become horizontal near t = T ).
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Figure 2. Blow-up rate.
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Next, we choose a non-symmetric initial condition very large near the point
x0 = 1, u0(x) = 1/2 + 100(1 − |x − 1|)+, and show that the blow-up set is
localized in a small neighborhood of that point x0 = 1, Figure 3.
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Figure 3. Evolution in time, non-symmetric datum.

Finally, we take p = 3/2 and the same non-symmetric initial condition. We
denote by k the index of the node where the solution attains its maximum. As
can be observed in Figure 4 the solution blows up (with the precise blow-up
rate 1/(p−1) = 2) at a single point, xk. Therefore, our numerical experiments
support the conjecture that Theorem 1.5 also holds for 1 < p ≤ 2.
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Figure 4. Blow-up rates of the maximum and the two adjacent nodes for
p = 3/2 and non-symmetric datum.
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