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Abstract. We study the limit as p→∞ of the �rst non-zero eigenvalue
λp of the p-Laplacian with Neumann boundary conditions in a smooth

bounded domain U ⊂ Rn. We prove that λ∞ := limp→+∞ λ
1/p
p =

2/diam(U), where diam(U) denotes the diameter of U with respect to
the geodesic distance in U . We can think of λ∞ as the �rst eigenvalue
of the ∞-Laplacian with Neumann boundary conditions. We also study
the regularity of λ∞ as a function of the domain U proving that under
a smooth perturbation Ut of U by di�eomorphisms close to the identity
there holds that λ∞(Ut) = λ∞(U)+O(t). Although λ∞(Ut) is in general
not di�erentiable at t = 0, we prove that in some cases it is so with an
explicit formula for the derivative.

1. introduction

Denote by λp the �rst non-zero eigenvalue of the p-Laplacian with Neu-
mann boundary conditions in a smooth bounded domain U ⊂ Rn. The aim
of this paper is two-fold. We �rst study the asymptotic behaviour of λp as
p→∞, obtaining that

λ∞ := lim
p→+∞

λ1/p
p =

2

diam(U)
,

where diam(U) denotes the diameter of U with respect to the geodesic dis-
tance in U (see (12) below), and also identify the variational limit problem
de�ning λ∞. Analogous results have been obtained previously for the �rst
eigenvalue of the p-Laplacian with Dirichlet or Steklov boundary conditions.
Next, we study the regularity of λ∞ = λ∞(U) with respect to U . Consider-
ing smooth perturbations Ut of U by di�eomorphisms close to the identity,
we prove that λ∞(Ut) = λ∞(U) + O(t). Notice that λ(Ut) is in general not
di�erentiable at t = 0. However, we prove that it is when diam(U) is reached
at a unique pair of points.

The limit as p → ∞ of the �rst eigenvalue λp,D of the p-Laplacian with
Dirichlet boundary condition was studied in [15], [14] (see also [3] for an
anisotropic version). In those papers the authors prove that

(1) λ∞,D := lim
p→∞

λ
1/p
p,D = inf

v∈W 1,∞
0 (Ω)

‖∇v‖L∞(Ω)

‖v‖L∞(Ω)
=

1

R
,

where R is the largest possible radius of a ball contained in U . In addition,
we have existence of extremals, i.e., functions where the above in�mum is
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attained. These extremals can be constructed taking the limit as p → ∞
in the eigenfunctions of the p−laplacian eigenvalue problem (see [14]) and
are viscosity solutions of the following eigenvalue problem (called the in�nity
eigenvalue problem in the literature):{

min {|Du| − λ∞,Du, ∆∞u} = 0 in U,
u = 0 on ∂U.

The limit operator limp→∞∆p = ∆∞ is the ∞-Laplacian given by

∆∞u = −〈D2uDu,Du〉 = −
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi
.

This fact can be understood in the sense that solutions to ∆pvp = 0 with a
Dirichlet data vp = f on ∂Ω converge as p→∞ to the solution to ∆∞v = 0
with v = f on ∂Ω in the viscosity sense (see [2], [5] and [7]). This oper-
ator appears naturally when one considers absolutely minimizing Lipschitz
extensions in Ω of a boundary data f (see [1], [2], and [13]).

Recently the authors in [6] relate λ∞,D with the Monge-Kantorovich dis-
tance W1. Recall that the Monge-Kantorovich distance W1(µ, ν) between
two probability measures µ and ν over Ū is de�ned by

(2) W1(µ, ν) = max
v∈W 1,∞(U), ‖∇v‖∞≤1

∫
U
v (dµ− dν).

It was proved in [6] that

(3) λ−1
∞,D = sup

µ∈P (U)
W1(µ, P (∂U)),

where P (U) and P (∂U) denotes the set of probability measures over Ū and
∂U . Notice that the maximum is easily seen to be reached at δx where x ∈ U
is a most inner point so that we can recover (1) from (3).

The case of Steklov boundary condition has also been investigated recently.
Indeed the authors in [9] (see also [17] for a slightly di�erent problem) studied
the behaviour as p → +∞ of the so-called variational eigenvalues λk,p,S ,
k ≥ 1, of the p-Laplacian with a Steklov boundary condition. In particular
they proved that

lim
p→+∞

λ
1/p
1,p,S = 1 and λ2,∞,S := lim

p→+∞
λ

1/p
2,p,S =

2

diam(U,Rn)
,

where here diam(U,Rn) denotes the diameter of U for the usual Euclidean
distance in Rn, and also identify the limit problem de�ning λ2,∞,S .

The purpose of this paper is to complete these studies considering the
case of the Neumann boundary condition. It is known (see [16]) that the
�rst eigenvalue of the p-Laplacian with Neumann boundary condition in a
smooth bounded domain U ⊂ Rn is 0 with eigenspace ∼ R, and that it is
isolated. The �rst non-zero eigenvalue λp of the p-Laplacian is then de�ned
by the minimization problem

(4) λp = inf
u∈W 1,p(U)

{∫
U
|∇u|p dx :

∫
U
|u|p dx = 1,

∫
U
|u|p−2u dx = 0

}
.
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According to [16], λp can also be characterised using Ljusternik-Schnirelman's
genus by the following min-max formula

(5) λp = inf
A∈Ap,2

max
u∈A

∫
U
|∇u|p dx∫
U
|u|p dx

where

Ap,2 = {A ⊂W 1,p(U), A is compact, A = −A, γ(A) ≥ 2},
and γ(A) = inf {n ∈ N, ∃φ ∈ C(A,Rn\{0}) odd } is the genus of A. By
standard arguments the in�mum in (4) is attained by some up ∈ W 1,p(U)
satisfying the problem

(6)
∆pup = λp|up|p−2up in U,

|∇up|p−2∂νup = 0 on ∂U,

where ∆pu = −div(|∇u|p−2∇u). According to [16][thm 4.1] and [18], up ∈
C1,α(Ū) for some α > 0.

We �rst identify the limit problem obtained by taking the limit p→ +∞
in (4) and provide some information on the asymptotic behaviour of the up.

Theorem 1. There holds

(7) lim
p→+∞

λ1/p
p = λ∞,

where λp is de�ned by (4), and

(8) λ∞ := inf

{
‖∇u‖L∞(U); u ∈W 1,∞(U) s.t. max

U
u = −min

U
u = 1

}
.

Moreover if up is a normalized minimizer for λp, then, up to a subsequence,
up converge in C(Ū) to some minimizer u∞ ∈ W 1,∞(U) of λ∞ which is a
solution of

F (u,∇u,D2u) = 0 in U,

∂u

∂ν
= 0 on ∂U,

(9)

in the viscosity sense, where

(10) F (u, η,A) =


min {−(Aη, η), |η| − λ∞u} in {u > 0},
max {−(Aη, η),−|η| − λ∞u} in {u < 0},
−(Aη, η) in {u = 0}.

Our second result gives the value of λ∞. First notice that if U is not
connected then considering a constant function equal to 1 in one connected
component and −1 in another one, we obtain that λ∞ = 0. Thus, from now
on we will assume that U is connected. The value of λ∞ turns out to be
related to the intrinsic or geodesic diameter of U that we now de�ne. Given
two points x, y ∈ Ū we denote by d(x, y) their intrinsic or geodesic distance
de�ned by

(11) d(x, y) = inf
γ∈Γ(x,y)

Long(γ),
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the in�mum being taken over the class Γ(x, y) of Lipschitz curves in Ū joining
x and y. The intrinsic diameter diam(U) of U is then de�ned as

(12) diam(U) := max
(x,y)∈Ū

d(x, y) = max
(x,y)∈∂U

d(x, y).

We have the following result:

Theorem 2. There holds

(13)
2

λ∞
= diam(U),

where λ∞ is de�ned in (8), and diam(U) in (12).

Consider for example the bounded lipschitz open subset U ⊂ R2 de�ned in
R2

+ as the intersection of the sets R2
+ \ D((0, 0), 1) and D((0, 1/2),

√
5/2).

Then diam(U) is attained by the arc of circle C((0, 0), 1) so that diam(U) =
π. Moreover the function de�ned in polar coordinate by u(x, y) = 2

πθ − 1

is admissible for λ∞ so that λ∞ ≤ ‖∇u‖∞ = 2
π = 2/diam(U). The reverse

inequality is easy to obtain (see Step 3.1 below).
We also expresses λ∞ as the value of a maximization problem involving

the Monge-Kantorovich distance in the spirit of (3). We denote byM(Ū) the
space of bounded measures over Ū . Given σ ∈M(Ū), we denote its positive
and negative part by σ+ and σ− so that σ = σ+ − σ−, and |σ| = σ+ + σ−.
We then have

Theorem 3. There holds

(14)
2

λ∞
= max

σ∈M(U),
∫
U σ

+=
∫
U σ
−=1

W1(σ+, σ−)

where λ∞ is de�ned in (8), and W1 in (2).

As a corollary we can recover the value of λ∞ given in theorem 2.

We now turn our attention to the study of the regularity of λ∞(U) as a
function of U . Maximization or minimization of eigenvalues with respect to
the domain is an active area of research; see the survey [11]. Notice that
the equation (9) for the eigenfunctions is not linear, not in divergence form,
and, in addition, no regularity result is known for the eigenfunctions (further
that they belong toW 1,∞(U)). Also remark that the variational quotient (8)
does not involve Lp-integrals but the L∞-norm that is not di�erentiable, and
that the diameter of U is de�ned by a sup inf problem. All these facts make
the study of the dependence of λ∞ with respect to the domain a nontrivial
task.

From now on we assume that U is connected. Given a smooth vector �eld
V on Ū , we consider the perturbed subset Ut de�ned for small t by

(15) Ut = φt(U) with φt(x) = x+ tV (x).

Our purpose is to study the regularity of the map t→ λ∞(Ut) at t = 0, and
in particular to study the existence of its derivative at t = 0, the so-called
shape-derivative. In the case of Dirichlet boundary condition this study has
been done recently in [20].

We �rst prove, following ideas from [20], that
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Theorem 4. There exists a contant C > 0 such that for |t| small

|λ∞(Ut)− λ∞(U)| ≤ Ct.

Notice that in general the function t → diam(Ut) is not di�erentiable at
t = 0 when diam(U) is attained at at least two pairs of points. For example
take U = B(0, 1) ⊂ R2 and V (x) = 2xη(|x − e2|) where e2 = (0, 1) and
η : [0,+∞) → [0, 1] is a smooth cut-o� function equal to 1 near 0. Then,
diam(U) = 2 and

diam(Ut) =

{
|(1 + 2t)e2 − (−e2)| = 2(1 + t) if t ≥ 0,

2 otherwise,

so that t → diam(Ut) is not di�erentiable at t = 0. When diam(U) is
attained at an unique pair of points but with at least two extremal curves,
the function t → diam(Ut) is still not di�erentiable at t = 0. Consider for
example the domain U ⊂ R2 bounded by the circle x2

1+x2
2 = 1 and the ellipse

x21
4 +

4x22
9 = 1. Then diam(U) is attained at the pair of points {(−2, 0), (2, 0)}

two extremal curves: the �rst one is composed of the union of the segment

[(−2, 0), (−1
2 ,
√

3
2 )], the arc of the circle C((0, 0), 1) from (−1

2 ,
√

3
2 ) to (1

2 ,
√

3
2 )

and the segment [(1
2 ,
√

3
2 ), (0, 2)]. The second one is its re�ection through

{y = 0}. Then diam(U) = 2(
√

3+ π
6 ). We now consider the di�eoemorphism

φt de�ned to be the identity except in a small neighborhood of C((0, 0), 1)
where it is

φt(x) =

{
(1− λt(x2))x, if x2 ≥ 0,

x, if x2 < 0

where λt is chosen so that φt(C((0, 0), 1) ∩ {x2 ≥ 0}) = Et ∩ {x2 ≥ 0}) with
Et : x2 + y2

(1−t)2 = 1. A short computation show that λt(x2) = tx2
2 + O(t2).

The shortest-path in φt(U) ∩ R2
+ from (−2, 0) to (2, 0) is composed of the

segment [(−2, 0), (−1
2 ,
√

3
2 (1− t))], the arc of the ellipse Et from (−1

2 ,
√

3
2 (1−

t)) to (1
2 ,
√

3
2 (1 − t)) and the segment [(1

2 ,
√

3
2 (1 − t)), (0, 2)]. Its length is

diam(U)− t(π6 +
√

3
4 ) +O(t2) which is less that diam(U) when t > 0. Hence

we can see that

diam(φt(U)) =

{
diam(U)− t(π6 +

√
3

4 ) +O(t2) if t > 0,

diam(U) if t ≤ 0,

It follows that t → diam(Ut) is not di�erentiable at t = 0. As a conclusion
for the function t → diam(Ut) to be di�erentiable at t = 0 we must assume
at least that diam(U) is attained at an unique pair of points with an unique
shortest-curve. Indeed we can prove that under a slightly stronger assump-
tion the function t → λ∞(Ut) is di�erentiable at t = 0 with an explicit
formula for the derivative.
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Theorem 5. Assume that

(1) diam(Ū) is attained at an unique pair of points (x∗, y∗),
(2) for any (x, y) ∈ ∂U × ∂U close to (x∗, y∗), there exists an unique

curve γ joining x to y such that d(x, y) = Long(γ).

Then t→ λ∞(Ut) is di�erentiable at t = 0 with derivative

(16)
d

dt
λ∞(Ut)|t=0 = − 2

diam(U)3

∫ 1

0
(DV (γ∗(s))γ∗

′
(s), γ∗

′
(s)) ds,

where γ∗ : [0, 1]→ Ū is the unique constant-speed curve joining x∗ to y∗ such
that diam(Ū) = d(x∗, y∗) = Long(γ∗).

In the particular case where γ∗ is the segment [x∗, y∗], e.g. if U is convex,
then γ∗(s) = x∗ + t(y∗ − x∗), s ∈ [0, 1], and∫ 1

0
(DV (γ∗(s))γ∗

′
(s), γ∗

′
(s)) ds =

∫ 1

0
DV (γ∗(s))γ∗

′
(s) ds.(y∗ − x∗)

=

∫ 1

0

d

ds
V (γ∗(s)) ds.(y∗ − x∗),

so that, in that case, formula (16) becomes

(17)
d

dt
λ∞(Ut)|t=0 = −2

(V (y∗)− V (x∗))(y∗ − x∗)
diam(U)3

.

Notice that if the segment (x∗, y∗) is strictly included in U then the extremal
curve for diam(Ut) is also a segment [x∗t , y

∗
t ] with x

∗
t → x∗, y∗t → y∗ and then

writing
diam(Ut) = max

(x,y)∈∂U×∂U close to (x∗,y∗)
|φt(x)− φt(y)|,

formula (17) is an easy consequence of (37) and lemma 4 below.

We eventually provide the shape-derivative formula for λp since we were
not able to �nd it in the literature.

Proposition 1.1. If λp is simple, then the function t→ λp(Ut) is di�eren-
tiable at t = 0 with

(18)
d

dt
λp(Ut)|t=0 =

∫
∂U

(|∇up|p − λp|up|p)(V, ν) dσ

where up is a normalized extremal for λp, and ν is the exterior unit normal
vector to ∂U .

In the case p = 2 we recover the usual formula (see [12] thm 5.7.2 p210).
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2. Proof of theorem 1.

We split the proof in several steps. We �rst prove that

Step 2.1. There holds

(19) lim sup
p→+∞

λ1/p
p ≤ λ∞.

Proof. Let w ∈ W 1,∞(U) be admissible for λ∞ i.e. maxw = −minU w = 1.
Since w+ and w− are linearly independent, the set

Ap := span{w−, w+} ∩ {u ∈W 1,p(U), ‖u‖W 1,p = 1}
belongs to Ap,2. It then follows from (5) that

(λp + 1)−1 ≥ min
u∈Ap

∫
U
|u|p dx = min

{G=1}
F (a, b)

where F,G : R2 → R are de�ned by

F (a, b) = |a|p‖w+‖pp + |b|p‖w−‖pp, G(a, b) = |a|p‖w+‖p
W 1,p + |b|p‖w−‖p

W 1,p .

Assume that ‖∇w+‖∞ < ‖∇w−‖∞. Writing |b|p in function of |a|p in G = 1
we obtain

(λp + 1)−1 ≥ min
|a|≤‖w+‖−1

W1,p

Cp‖w−‖pp|a|+
‖w−‖pp
‖w−‖p

W 1,p

,

Cp =
‖w+‖pp
‖w−‖pp

−
‖w+‖p

W 1,p

‖w−‖p
W 1,p

.

Recalling that maxw = −minU w = 1, we see that for p→ +∞ we have

Cp > 0⇔ ‖w
+‖W 1,∞

‖w−‖W 1,∞
< 1 + o(1)⇔ ‖∇w+‖∞ < ‖∇w−‖∞ + o(1).

which is true. Hence Cp > 0 for large p so that the minimum is reached at
a = 0. It follows that for p large,

λ
1
p
p ≤

‖∇w−‖p
‖w−‖p

Since ‖∇w+‖∞ < ‖∇w−‖∞ and minw = −1, we get

lim sup
p→+∞

λ
1
p
p ≤

‖∇w−‖∞
‖w−‖∞

≤ ‖∇w‖∞.

If ‖∇w+‖∞ > ‖∇w−‖∞, then writing |a|p in function of |b|p in G = 1 we
obtain the same as before interchanging w+ and w−. We thus obtain that

lim supp→+∞ λ
1
p
p ≤ λ′∞ where λ′∞ is de�ned as λ∞ by (8) with the additional

constraint that either ‖∇u+‖∞ > ‖∇u−‖∞ or ‖∇u+‖∞ < ‖∇u−‖∞. Notice
that if u is admissible for λ∞ then for an appropriate function η, uε = u+εη,
ε > 0, is admissible for λ′∞ and limε→0 uε = u inW 1,∞(U). Hence λ∞ = λ′∞,
which ends the proof of (19). Concerning η, if for example, ‖∇u+‖∞ =
‖∇u−‖∞, given x0 ∈ argmax |∇u+|, take η ∈ C∞(U, [0, 1]) with compact
support in a su�ciently small neighborhood of x0 and such that η(x0) = 0,
∇η(x0) = ∇u(x0). Then u−ε = u− and |∇uε(x0)|2 = (1+2ε+ε2)|∇u(x0)|2 >
|∇u(x0)|2 so that ‖∇u+

ε ‖∞ > ‖∇u+‖∞ = ‖∇u−‖∞ = ‖∇u−ε ‖∞. �
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As a second step, we prove that, up to a subsequence, up converges uni-
formly to a minimizer of λ∞.

Step 2.2. Up to a subsequence, up converge uniformly in Ū to some u∞ ∈
W 1,∞(U) which is a minimizer of λ∞ de�ned by (8). Moreover (7) holds.

Proof. Let up be a normalized minimizer for λp. We �rst notice that (uq)q≥p
is bounded in W 1,p(U) for any p. Indeed by Hölder's inequality,∫

U
|∇uq|p ≤ ‖∇uq‖pq |U |1−p/q

so that by (19),

(20) ‖∇uq‖p ≤ λ1/q
q |U |1/p−1/q ≤ Cp.

In the same way

(21) ‖uq‖p ≤ ‖uq‖q|U |1/p−1/q = |U |1/p−1/q ≤ Cp.
Taking p > n it follows by Morrey�s inequality that (uq)q>p is bounded

in some Hölder space C0,α(Ū), and then, up to a subsequence, that uq → u
in C(Ū) according to Arzela-Ascoli theorem. We can also assume that this
convergence holds weakly in W 1,p(U) for any p.

Let us prove that ‖u‖∞ = 1. Letting q → +∞ and then p→ +∞ in (21),
we see that ‖u‖∞ ≤ 1. Suppose that ‖u‖∞ ≤ 1 − 2ε < 1 for some ε > 0.
Since limp→∞ ‖up‖∞ = ‖u‖∞, we have ‖up‖∞ ≤ 1− ε for p large. Then

1 =

∫
U
|up|p dx ≤ (1− ε)p|U | → 0

as p→ +∞, which is absurd.
We now verify that maxu + minu = 0. From

∫
U |up|

p−2up dx = 0 we
obtain that ∫

{up≥0}
|up|p−1 dx =

∫
{up≤0}

|up|p−1 dx.

We already know that ‖u‖∞ = 1. Assume e.g. that maxŪ u = 1 but that
minŪ u ≥ −1 + 2ε for some ε > 0. Since up → u in C(Ū), we also have
minŪ up ≥ −1 + ε for p big. Then∫

{up≥0}
|up|p−1 dx =

∫
{up≤0}

|up|p−1 dx ≤ (1− ε)p−1|U | → 0

as p→∞. Since (up) is bounded in C(Ū) (because it converges), we obtain

1 =

∫
U
|up|p dx ≤ C

∫
U
|up|p−1 dx→ 0

which is a contradiction.
As ‖u‖∞ = 1 and maxu+ minu = 0, u is an admissible test-function for

λ∞ as de�ned in (8). It follows that λ∞ ≤ ‖∇u‖∞. Independently since
uq → u weakly in W 1,p(U) for any p ≥ 1, we also have from (20) that

‖∇u‖p ≤ lim inf
q→+∞

‖∇uq‖p ≤ |U |1/p lim inf
q→+∞

λ1/q
q ,

Letting p→ +∞, we obtain, using (19), that

λ∞ ≤ ‖∇u‖∞ ≤ lim inf
q→+∞

λ1/q
q ≤ lim sup

p→+∞
λ1/p
p ≤ λ∞
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from where we deduce the claim. �

The proof that u∞ is a viscosity solution of (9) is by now standard. We
brie�y sketch it for the reader�s convenience and refer to [14], [9], [10] for
more details. As a preliminary step we verify that

Step 2.3. For p > 2, any continuous weak solution of (6) is a viscosity
solution of (6).

Before doing the proof we introduce some notations. Denote by S the
space of symmetric matrices n×n, and consider the functions Fp : R×Rn×
S → R and Bp : ∂U × R× Rn → R de�ned for p > 2 by

Fp(u, η,A) =

{
−|η|p−2Tr(A)− (p− 2)|η|p−4(Aη, η)− λp|u|p−2u, if η 6= 0,

−λp|u|p−2u otherwise,

and Bp(x, u, η) = |η|p−2η.ν(x). Observe that Fp(u, η,B) ≤ Fp(u, η,A) if
B ≥ A.

Proof. Let u be a weak continuous solution of (6). We only verify that u is
a viscosity super-solution. The proof that u is also a sub-solution is similar.
Fix some point x0 ∈ Ū and a smooth function φ such that u−φ has a strict
minimum at x0 with u(x0) = φ(x0). We have to prove that
(22)
Fp(u(x0),∇φ(x0), D2φ(x0)) ≥ 0 if x0 ∈ U
max{Fp(u(x0),∇φ(x0), D2φ(x0)), Bp(x0, u(x0),∇φ(x0))} ≥ 0 if x0 ∈ ∂U

Assume �rst that x0 ∈ U but that (22) does not hold. Then, since u, φ and
Fp are continuous we have that

(23) ∆pφ(x)− λ|u(x)|p−2u(x) = Fp(u(x),∇φ(x), D2φ(x)) < 0 in Bx0(r)

for some r > 0. Let ψ = φ+m/2 with m = min|x−x0|=r{u(x)− φ(x)} > 0.

Then ψ(x0) − u(x0) > 0 and ψ − u < 0 on ∂Bx0(r), so that (ψ − u)+,
when extended by 0 outside Bx0(r), has support in Bx0(r). Using it as a
test-function in (23) and (6) gives∫

{ψ>u}
(|∇ψ|p−2∇ψ − |∇u|p−2∇u)(∇ψ −∇u) dx < 0.

We obtain a contradiction using the inequality (|X|p−2X − |Y |p−2Y )(X −
Y ) ≥ C|X − Y |p which holds for some C > 0 and for any X,Y ∈ Rn\{0}.
The case x0 ∈ ∂U is handled in the same way. �

We can now pass to the limit p → +∞ in (22) (and also in the corre-
sponding inequality for the subsolution case) to obtain the equation satis�ed
by u∞.

Step 2.4. The limit u∞ of the up obtained in the �rst step is a viscosity
solution of (9).

Proof. We prove that u∞ is a supersolution of (9). The proof of the subso-
lution property is similar. Fix some point x0 ∈ Ū and a smooth function φ
such that u∞ − φ has a strict minimum at x0 with u∞(x0) = φ(x0). Since
up → u∞ uniformly there exist xp ∈ argmax {up − φ} such that xp → x0.
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Assume �rst that x0 ∈ U , so that xp ∈ U for p large. If ∇φ(x0) = 0
then by de�nition of ∆∞ we have ∆∞φ(x0) = 0. We assume now that
∇φ(x0) 6= 0. As up is a viscosity solution of (6) according to the previous
step, we have

(24) Fp(xp, up(xp),∇φ(xp), D
2φ(xp)) ≥ 0.

Dividing this inequality by (p− 2)|∇φ(xp)|p−4 we obtain

(25) ∆∞φ(x0) + o(1) ≥ up(xp)|∇φ(xp)|2
 λ

1
p−2
p up(xp)

|∇φ(xp)|(p− 2)
1
p−2

p−2

.

If u∞(x0) > 0, then, recalling that λ
1
p−2
p → λ∞ (see �rst step), it follows

that we must have λ∞u∞(x0)
|∇φ(x0)| ≤ 1 i.e. |∇φ(x0)|−λ∞u∞(x0) ≥ 0. Going back

to (25) we also get ∆∞φ(x0) ≥ 0. If u∞(x0) < 0 then we rewrite (24) as

−|∇φ(xp)|−3

(p− 2)
1
p−1 |∇φ(xp)|

λ
1
p−1
p |up(xp)|

p−1

(∆∞φ(x0) + o(1)) ≤ 1.

If |∇φ(x0)|
λ∞|u∞(x0)| > 1 then we must have ∆∞φ(x0) ≥ 0. Otherwise we have

−|∇φ(x0)| − λ∞u∞(x0) ≥ 0. Eventually if u∞(x0) = 0, then up(xp)→ 0 so
that |up(xp)|p−2up(xp) ≤ up(xp)→ 0. It then follows from (24) that

|∇φ(xp)|p−2∆φ(xp) + (p− 2)|∇φ(xp)|p−4∆∞φ(xp) ≥ o(1).

Dividing this inequality by (p − 2)|∇φ(xp)|p−4 and letting p → +∞ yield
∆∞φ(x0) ≥ 0.

Assume now that x0 ∈ ∂U . We have to prove that

max {F (x0,∇φ(x0), D2φ(x0)), ∂νφ(x0)} ≥ 0.

If xp ∈ U for some subsequence then we can proceed as before to get
F (x0,∇φ(x0), D2φ(x0)) ≥ 0. Assume that xp ∈ ∂U for p big. If ∇φ(x0) = 0
then ∂νφ(x0) = 0. Otherwise, (22) holds with xp in place of x0. If (24) holds
for a subsequence we are done as before. Otherwise

Bp(xp, u(xp),∇φ(xp)) = |∇φ(xp)|p−2∂νφ(xp) ≥ 0 for p large

so that ∂νφ(x0) = limp→∞ ∂νφ(xp) ≥ 0. �

3. Proof of theorem 2

Again we divide the proof into several steps. As a �rst step, we prove that

Step 3.1. There holds λ∞ ≥ 2/diam(U).

Proof. Given some admissible test-function u for λ∞, let x ∈ Ū be a point
of maximum of u, and y ∈ Ū a point of minimum so that u(x) = 1 and
u(y) = −1. Consider also some curve γ : [0, T ]→ U joining y to x. Then

2 = u(x)− u(y) = u(γ(T ))− u(γ(0)) =

∫ T

0
∇u(γ(s))γ′(s) ds

≤ ‖∇u‖∞
∫ T

0
|γ′(s)| ds = ‖∇u‖∞Long(γ).
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Taking the in�mum over all such curves γ and all admissible u, we obtain
2 ≤ λ∞d(x, y), from which we deduce the claim. �

We now prove the reverse inequality.

Step 3.2. There holds λ∞ ≤ 2/diam(U).

Proof. We are able to prove this inequality in an elementary way only when
U is convex. Indeed in that case pick two points x0, y0 ∈ ∂U such that
diam(U) = |x0 − y0|. By extremality the vector y0 − x0 must be orthogonal
to the tangent spaces Tx0∂U and Ty0∂U of ∂U at x and y. Moreover Tx0∂U∩
∂U = {x0} and Ty0∂U ∩ ∂U = {y0} so that U lies strictly between Tx0∂U
and Ty0∂U . Indeed if there exists z ∈ Tx0∂U ∩ ∂U , z 6= x, then |z − y|2 =
|z − x|2 + |x− y|2 so that |z − y| > |x− y| - a contradiction. It follows that
the planes orthogonal to n = y0−x0

|y0−x0| which intersects U have an equation of

the form (z − x0)n = s with s ∈ (0, d), d = diam(U). Hence the function

u(z) =
2

d

(
(z − x0)n− d

2

)
, z ∈ U,

is admissible for λ∞. This yields the upper bounds. Another possible choice
of test-function is u(z) = Cy(z)+ − Cx(z)+ where

Cy(z) = 1− 2

d
|z − y|, Cx(z) = 1− 2

d
|z − y|

are the cones centered at x and y of height 1 and slope d
2 .

To obtain the result in the general case we consider the tug-of-war game
described in [21]. We use the notation from [21]. Let Y be a curve joining
x0, y0 ∈ ∂U extremal for diam(U). We consider the function F : Y → [−1, 1]
given by F (x) = −1 + Ld(x0, x), L = 2/diam(U). Then F (x0) = −1 ≤
F (x) ≤ F (y0) = 1 for any x ∈ Y , and F is Lipschitz with Lipschitz constant
L (w.r.t. the geodesic distance in Y ). We consider the tug-of-war game
with terminal set Y , pay-o� F , and running cost f ≡ 0. It is proved in [21]
that this game has a value u which turns out to be an extension of F to U
satisfying |u(x)−u(x)| ≤ Ld(x, y) for any x ∈ U\Y and y ∈ Y (see the proof
of theorem 1.4 p190 in [21]).

We now check that u is Lipschitz in U with LipU (u) = L using the idea
of the proof of theorem 1.4 in [21]. Assume that |u(x̃) − u(x̄)| > Ld(x̃, x̄)
for some points x̃, x̄ ∈ U\Y . We consider the tug-of-war game in U with
terminal set Y ′ = Y ∪ {x̄} and pay-o� F ′ = u. Then u is the value of this
new game so that, noting that LipY ′F

′ = L, we have |u(x)−u(x)| ≤ Ld(x, y)
for any x ∈ U\Y ′, y ∈ Y ′. We obtain a contradiction taking y = x̄, x = x̃.

Observe that since the terminal pay-o� F takes value in [−1, 1], we have
that ‖u‖∞ ≤ 1, and also that u(x0) = F (x0) = −1, u(y0) = F (y0) = 1
since u extends F . We can then use u as a test-funtion in (8) to obtain that
λ∞ ≤ L = 2/diam(U). �

4. Proof of theorem 3

The proof of theorem 3 follows closely the lines of [6]. Let up be an

extremal for λp normalized by ‖up‖p = 1. Then fp := |up|p−2up ∈ Lp
′
(U)
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satis�es

(26) ‖fp‖p′ = 1, and

∫
U
fp = 0.

The �rst step consists in extracting from (fp) a subsequence converging
weakly to some measure f∞ ∈ M(Ū), the weak convergence meaning that
limp→+∞

∫
Ū φfp dx =

∫
Ū φdf∞ for any φ ∈ C(Ū).

Step 4.1. Up to a subsequence, the measures fp dx converge weakly as mea-
sure in Ū to some measure f∞ supported in Ū satisfying

(27)

∫
U
f∞ = 0, and

∫
U
|f∞| = 1.

Proof. We claim that

(28) lim
p→+∞

∫
U
|fp| dx = 1.

First, in view of (26), we have that∫
U
|fp| dx ≤ ‖fp‖p′ |U |1−1/p′ = |U |1−1/p′ → 1

and then, recalling that up → u in C(Ū) with ‖u‖∞ = 1,

1 =

∫
U
upfp dx ≤ ‖up‖∞‖fp‖1 = (1 + o(1))‖fp‖1.

It follows in particular that the measures |fp| dx are bounded in M(Ū).
Since Ū is compact, we can then extract from this sequence a subsequence
converging weakly to some measure f∞ ∈ M(Ū). Passing to the limit in
(26) and (28) gives (27). �

Consider the functionals Gp, G∞ : (v, σ) ∈ C(Ū) ×M(Ū) → R ∪ {+∞}
de�ned by

Gp(v, σ) =


−
∫
U vσ, if σ ∈ Lp′(U), ‖σ‖p′ ≤ 1,

∫
U σ = 0,

and v ∈W 1,p(U), ‖∇v‖p ≤ λ1/p
p ,

+∞ otherwise,

and

G∞(v, σ) =


−
∫
U v dσ, if σ ∈M(Ū),

∫
U |σ| ≤ 1,

∫
U σ = 0,

and v ∈W 1,∞(U), ‖∇v‖∞ ≤ λ∞,
+∞ otherwise.

Endowing the space M(Ū) with the weak convergence of measure, and
C(Ū) with the uniform convergence, we can prove as in [6] that G∞ is the
limit of the Gp in the sense of Γ-convergence:

Step 4.2. The functionals Gp converge in the sense of Γ-convergence to G∞.

The proof is similar as that of Prop. 3.7 in ([6]). We sketch it for the reader's
convenience.
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Proof. Assume that (vp, σp) ∈ C(Ū)×M(Ū) converge to (v, σ). We have to
prove that

(29) lim inf
p→+∞

Gp(vp, σp) ≥ G(v, σ).

We can assume that Gp(vp, σp) <∞. We then have∫
U
vpσp dx−

∫
U
v dσ =

∫
U

(vp − v)σp dx+

∫
U
v (σp dx− dσ)→ 0

as p→ +∞. Indeed the �rst integral on the right hand side can be bounded

by ‖vp − v‖∞‖σp‖p′ |U |
1
p = o(1). Independently

∫
U σ = limp→+∞

∫
U σp = 0,

and ∫
U
|σ| =

∫
U
|σp| dx+ o(1) ≤ ‖σp‖p′ |U |

1
p + o(1) ≤ 1 + o(1)

so that
∫
U |σ| ≤ 1. For any φ ∈ Lp′(U,Rn) such that ‖φ‖p′ ≤ 1 we have∫

U
φ∇v dx = −

∫
U
v divφdx = −

∫
U
vp divφdx+ o(1) =

∫
U
φ∇vp dx+ o(1)

≤ ‖∇vp‖p + o(1) ≤ λ
1
p
p + o(1) = λ∞ + o(1),

where the o(1) does not depend on φ. Taking the supremum over all such φ
we obtain ‖∇v‖p ≤ λ∞ + o(1), so that ‖∇v‖∞ ≤ λ∞. It follows that (v, σ)
is admissible for G∞.

We now �x a pair (v, σ) admissible for G∞. We have to �nd some pair
(vp, σp) admissible for Gp which converges to (v, σ) and such that

lim sup
p→+∞

Gp(vp, σp) ≤ G∞(v, σ).

We de�ne vp = λ
1
p

λ∞|U |
1
p
v. Then vp ∈W 1,p(U) with ‖∇vp‖p ≤ λ

1
p , and vp → v

uniformly since λ
1
p → λ∞. Denoting by ρε the standard mollifying sequence

(i.e. ρε(x) = ε−nρ(x/ε) where ρ is a smooth function supported in the unit

ball with
∫
ρ = 1), we let σp = σ ∗ ρ̄1/p where ρ̄1/p =

ρ1/p
‖ρ1/p‖p′

. Then σp is a

smooth function such that∫
U
σp(x) dx =

∫
ρ̄1/p(x− y) dσ(y)dx =

∫
dσ

∫
ρ1/p(x) dx = 0,

and, since |σ|(U)| ≤ 1 and ‖ρ̄1/p‖p′ = 1,

‖σp‖p
′

p′ ≤
∫ ∫

ρ̄1/p(x− y)p
′
d|σ||σ(U)|

p′
p dx ≤ 1.

Eventually, noticing that ‖ρ1/p‖p′ = ‖ρ‖p′ → ‖ρ‖1 = 1 as p→ +∞, we have
that σp → σ as measure. It follows that (σp, vp) is admissible for Gp and
converge to (v, σ). As before we have Gp(vp, σp)→ G∞(v, σ). �

As an easy corollary we obtain that

Step 4.3. (up, fp) is a minimizer for Gp, (u∞, f∞) is a minimizer for G∞,
and

(30) G∞(u∞, f∞) = lim
p→+∞

Gp(up, fp) = −1
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Proof. Notice that the pair (up, fp) is a minimizer of Gp. Indeed given a pair
(v, σ) admissible for Gp take v̄ ∈ R such that

∫
U |v − v̄|

p−2(v − v̄) dx = 0.
Then, recalling that

∫
σ = 0 and the de�nition (4) of λp, we have

Gp(v, σ) = −
∫

(v − v̄)σ ≥ −‖v − v̄‖p‖σ‖p′

≥ −λ−1/p
p ‖∇(v − v̄)‖p = −λ−1/p

p ‖∇(v − v̄)‖p
≥ −1 = Gp(up, fp).

Moreover (up, fp)→ (u∞, f∞). It then follows from (29) that

lim inf
p→+∞

inf Gp = lim inf
p→+∞

Gp(up, fp) ≥ G∞(u∞, f∞) ≥ inf G∞.

Moreover the lim sup property (19) implies that lim sup inf Gp ≤ inf G∞. It
follows that

lim
p→+∞

inf Gp = lim
p→+∞

Gp(up, fp) = G∞(u∞, f∞) = inf G∞.

�

We can now relate λ∞ to the Monge-Kantorovich distnce W1. Recall that
if σ ∈ M(Ū), then σ± ∈ M(Ū) denote the positive and negative part of σ.
In particular σ = σ+ − σ−, and |σ| = σ+ + σ−.

Step 4.4. There holds

(31)
2

λ∞
= max

σ∈M(Ū),
∫
U σ

+=
∫
U σ

+=1
W1(σ+, σ−).

Proof. The conditions
∫
U σ = 0 and

∫
U |σ| = 1 are equivalent to

∫
U σ

+ =∫
U σ

+ = 1/2. We can therefore rewrite the fact that the pair (u∞, f∞) is a
minimizer of G∞ as

1 = −G∞(u∞, f∞)

= max
σ∈M(Ū),

∫
U σ

+=
∫
U σ

+=1/2
max

v∈W 1,∞(U), ‖∇v‖∞≤λ∞

∫
U
v(σ+ − σ−),

that is,

2

λ∞
= max

σ∈M(Ū),
∫
U σ

+=
∫
U σ

+=1
max

v∈W 1,∞(U), ‖∇v‖∞≤1

∫
U
v(σ+ − σ−).

We obtain (31) recalling the de�nition (2) of W1. �

As a corollary we can easily recover the value of λ∞ conbining (31) with
the following result:

Step 4.5. There holds

(32) max
σ∈M(Ū),

∫
U σ

+=
∫
U σ

+=1
W1(σ+, σ−) = diam(U).

The proof relies on the lemma.

Lemma 1. Given u ∈ L∞(U) we have that u ∈ W 1,∞(U) with ‖∇u‖∞ ≤ 1
if and only if u is 1-Lipschit witt respect to the distance d i.e. |u(x)−u(y)| ≤
d(x, y) for any x, y ∈ U .
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Proof. If u ∈ W 1,∞(U) with ‖∇u‖∞ ≤ 1 then given x, y ∈ U and a curve
γ : [0, 1]→ U joining x to y we have

(33) |u(x)− u(y)| ≤
∫ 1

0
|(∇u(γ(t)), γ′(t))| dt ≤

∫ 1

0
|γ′(t)| dt = Long(γ).

Taking the in�mum over all such γ gives the result. Conversely if u is 1-
Lipschitz for d then given x ∈ U we have d(x, y) = |x − y| for |x − y| small
and the result follows. �

Notice that in this lemma no regularity on U is needed - in particular U
need not to be an extension domain as required for the result stating that
u ∈W 1,∞(U) i� u is Lipschitz for the usual Euclidean distance (see [8][thm
4 - section 5.8]). Consider for instance the open subset U ⊂ R2 de�ned in
polar coordinates by U = {a < r < b,−π < θ < π}. Then U is not an
extension domain. It can be veri�ed that the function u(x) = θ belongs to
W 1,∞(U) with ‖∇u‖∞ = 1

a , u is not Lipschitz for the Euclidean distance but

is so for the geodesic distance d with supx,y∈U
u(x)−u(y)
d(x,y) = 1

a (the ≤ follows

from (33) and the = is obtained considering the points (a, π) and (a,−π)).

Proof of the Step 4.5. It then follows from the Kantorovich duality theorem
(see [22]) that the Monge-Kantorovich distance can also be expressed as

W1(µ, ν) = inf
π∈Γ(µ,ν)

∫
Ū×Ū

d(x, y) dπ(x, y),

where Γ(µ, ν) is the set of probability measures on Ū × Ū having µ and ν for
marginal distributions, and d(x, y) is the geodesic distance between x, y ∈ U
de�ned by (11).

First since

d(x, y) ≤ diam(U) for any x, y ∈ Ū ,

we obtain easily that W1(µ, ν) ≤ diam(U) for any two probability measures
µ and ν. In particular

max
σ∈M(Ū),

∫
U σ

+=
∫
U σ

+=1
W1(σ+, σ−) ≤ diam(U).

To prove the converse inequality we pick a pair of points (x0, y0) such that
d(x0, y0) = diam(U), and consider the measure σ = δx0 − δy0 . Obviously∫
σ = 0,

∫
|σ| = 2, and σ+ = δx0 , σ

− = δy0 . Noticing that

W1(δx0 , δy0) = d(x0, y0)

(see [22][Example 6.3] - indeed it is easily seen that Γ(δx0 , δy0) = {δx0⊗δy0}),
it follows that

max
σ∈M(U),

∫
U σ

+=
∫
U σ

+=1
W1(σ+, σ−) ≥W1(δx0 , δy0) = diam(U).

�
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5. Proof of theorems 4 and 5

We begin this section by some general comments on the shortest-paths
taken from [4]. We de�ne the length of a Lipschitz curves γ : [0, T ]→ Ū by

L(γ) = inf

p−1∑
i=1

|γ(ti+1)− γ(ti)|,

where the in�mum is taken over all the �nite partition 0 = t1 < .. < tp = T
of [0, T ]. It follows in particular that L is lower semi-continuous with respect
to the pointwise convergence of path (see [4] proposition 2.3.4). We denote
by Γ(x, y) the set of �nite length Lipschitz curves connecting x to y. This
set is not empty Since we assumed U connected. We then de�ne the geodesic
distance d(x, y) between two points x, y ∈ Ū as d(x, y) = infγ∈Γ(x,y) L(γ).

Following [4], (Ū , d) is a length space. Notice that a �nite length curve γ can
always be reparametrized (maybe using a nondecreasing change of parame-
ter) in order to have constant speed v in the sense that L(γ|[t,t′]) = v|t− t′|
for any t, t′ (see [4][prop. 2.5.9]). We can then assume that all the considered
curves are de�ned on [0, 1] and have constant speed. It then follows from
Arzela-Ascoli theorem and the semi-continuity of L as in [4][prop. 2.5.19]
that two points x, y ∈ Ū can always be connected by a shortest path.

Let γ : [0, 1] → Ū be a shortest path. Then γ|U is a straight line (i.e. a
geodesic of U with the Euclidean metric) and γ|∂U is a (smooth) geodesic of
∂U for the induced metric otherwise. Since a shortest path enters and leaves
∂U tangentially, we have that γ ∈ C1,1(0, 1). We will therefore restrict
Γ(x, y) to C1,1 - curves. Notice that in general a shortest-path is not C2.
Consider for instance the shortest-path from (−2, 0) to (2, 0) in R2

+\B0(1)
which is given by y = f(x) with

f(x) =

−
√

3
3 (|x| − 2) if 1

2 ≤ |x| ≤ 2,

√
1− x2 if |x| ≤ 1

2 .

Denote by n the exterior normal to ∂U . Di�erentiating (γ′, n) = 0, we
obtain the well-known relation (γ′′, n) = −(∇γ′n, γ′) where ∇ is the (covari-
ant) derivative of Rn. Recalling that γ on ∂U is a geodesic of ∂U if and only
if it has normal acceleration, it follows that

(34) γ′′ = −(∇γ′n, γ′)n on ∂U.

We �rst verify that

Lemma 2. For any x ∈ Ū and any y ∈ Rn, we have for |t| small that

|Dφt(x)y| = |y|+ |y|(DV (x)
y

|y|
,
y

|y|
)t+ |y|O(t2),

where φT is de�ned in (15) and the remainder O(t2) is uniform in x ∈ Ū
and y ∈ Rn.
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Proof. This is a consequence of

|Dφt(x)y|2 = |y + tDV (x)y|2

= |y|2 + 2t(DV (x)y, y) + t2(DV (x)y,DV (x)y)

= |y|2
(

1 + 2t(DV (x)
y

|y|
,
y

|y|
) + t2(DV (x)

y

|y|
, DV (x)

y

|y|
)

)
= |y|2

(
1 + 2t(DV (x)

y

|y|
,
y

|y|
) +O(t2)

)
,

where the coe�cient of t and the O(t2) are boundad uniformly in x ∈ Ū and
y ∈ Rn. �

Proof of theorem 4. It su�ces to prove that

(35) |diam(Ut)− diam(U)| ≤ Ct.

Writing that

diam(Ut) = diam(φt(U)) = max
x,y∈Ū

inf
γ∈Γ(x,y)

Long(φt ◦ γ),

it is easily seen that (35) will follow if we can prove that

(36) Long(φt ◦ γ) = (1 +O(t))Long(γ)

with O(t) uniform in γ ∈ Γ(x, y), x, y ∈ Ū . This follows from the following
lemma:

Lemma 3. Given a C1 curve γ : [a, b]→ Ū , we have that

Long(φt ◦ γ) =

Long(γ) + t

∫ b

a
(DV (γ(s))γ′(s), γ′(s))

ds

|γ′(s)|
+O(t2)

∫ b

a
|γ′(s)| ds,

(37)

where the O(t2) does not depend on γ.

Proof. Since

Long(φt ◦ γ) =

∫ b

a

∣∣∣∣ ddsφt(γ(s))

∣∣∣∣ dx =

∫ b

a

∣∣Dφt(γ(s))γ′(s)
∣∣ dx,

the result follows from lemma 2. �

Proof of theorem 5. We assume from now on that diam(U) has an unique
extremal curve γ∗, i.e. diam(U) = Long(γ∗). Up to reparametrizing, we can
assume that γ∗ : [0, 1] → Ū has constant-speed equal to diam(U). We let
x∗ = γ∗(0), y∗ = γ∗(1).

Let γ∗t be an extremal for Ut, i.e. diam(Ut) = Long(γ∗t ). We can assume
that γ∗t : [0, 1] → Ūt has constant-speed. Denote by nt the unit exterior

normal to Ut. Then |∇nt| ≤ Cste for |t| small. Moreover |γ∗′t | = diam(Ut) ≤
Cste in view of (35). It thus follows from (34) that

(38) ‖γ∗t ‖C1,1 ≤ C

uniformly for |t| small. We �rst prove that

Step 5.1. γ∗t C
1-converge as t→ 0 to ±γ∗.
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Proof. It follows from (38) and Arzela-Ascoli theorem that there exists a
curve γ̃ : [0, 1]→ Rn such that, up to a subsequence, γ∗t → γ̃ in C1 as t→ 0.
In particular γ̃ takes values in Ū , has constant-speed, and limt→0 Long(γ∗t ) =
Long(γ̃). According to (35), we thus have

Long(γ̃) = Long(γ∗t ) + o(1) = diam(Ut) + o(1)→ diam(U)

as t → 0. Therefore γ̃ is an constant-speed extremal for diam(U) so that
γ̃ = ±γ∗. �

Let us suppose that γ∗t → γ∗ in the C1-norm. In particular x∗t := γ∗t (0)→
x∗ and y∗t := γ∗t (1)→ y∗.

Consider K = (B̄x∗(ε0) ∩ ∂U) × (B̄y∗(ε0) ∩ ∂U) where ε0 is given in
hypothesis (2) of theorem 5. In view of (38) we can write that

diam(Ut) = max
x,y∈K

d(φt(x), φy(y)) = max
x,y∈K

inf
γ∈Γ(x,y)

Long(φt ◦ γ),

where Γ(x, y) is the set of constant-speed C1,1-curve γ : [0, 1]→ Ū , γ(0) = x,
γ(1) = y, satisfying

(39) ‖γ‖C1,1 ≤ C

for some positive constant C uniform in γ ∈ Γ(x, y), (x, y) ∈ K. We also
let Γ = ∪(x,y)∈KΓ(x, y). Notice that each Γ(x, y), (x, y) ∈ K, is compact for

the C1-norm thanks to (39).
The di�erentiability of t→ diam(Ut) at t = 0 with formula (16) will follow

from the two following lemma whose proof is similar to [19][thm.2].

Lemma 4. Let Γ be a compact metric set. Consider a map A : (γ, t) ∈
Γ× [−ε, ε]→ A(γ, t) ∈ R such that

(H1) A is continuous at any point (γ, 0), γ ∈ Γ,
(H2) for any γ ∈ Γ, there holds that

(40) A(γ, t) = A(γ, 0) + tA1(γ) + o(t),

where the o(t) is uniform in γ ∈ Γ,
(H3) A(·, 0) attains its minimum at an unique point γ∗,
(H4) A1 is continuous at γ∗ and bounded over Γ.

Then the function t → µ(t) := infγ∈ΓA(γ, t) is di�erentiable at t = 0 with
derivative

µ′(0) = A1(γ∗).

Proof. First since A(γ, t) = A(γ, 0) +O(t) with the O(t) uniform in γ ∈ Γ in
view of (H2) and (H4), it is easily seen that µ is well-de�ned and continuous
at t = 0.

Consider then positive real numbers εt = o(t) and γ∗t ∈ Γ such that
A(γ∗t , t) ≤ µ(t) + εt. Let us check that γ∗t → γ∗. Let γ̄∗ be a cluster point of
(γ∗t ). If γ̄∗ 6= γ∗ then A(γ̄∗, 0)−2η ≥ µ(0) for some η > 0, since A(., 0) has a
strict minimum at γ∗. Then A(γ̄, 0)− η ≥ µ(t) for t small. But, using (H1),
A(γ̄∗, 0) = A(γ∗t , t) + o(1) ≤ µ(t) + εt + o(1) which yields a contradiction for
t small enough.

We now prove the existence of µ′(0). First using (40)

µ(t)− µ(0) ≤ A(γ∗, t)−A(γ∗, 0) = tA1(γ∗) + o(t)
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so that, with Q(t) = µ(t)−µ(0)
t ,

lim sup
t→0+

Q(t) ≤ A1(γ∗), and lim inf
t→0−

Q(t) ≥ A1(γ∗).

Moreover, since A1 is continuous at γ∗ and γ∗t → γ∗,

µ(t)− µ(0) ≥ A(γ∗t , t)− εt −A(γ∗t , 0) = tA1(γ∗t ) + o(t)

= t(A1(γ∗) + o(1)) + o(t)

= tA1(γ∗) + o(t)

so that

lim sup
t→0−

Q(t) ≤ A1(γ∗), and lim inf
t→0+

Q(t) ≥ A1(γ∗).

This ends the proof of the lemma. �

Notice that under the same hypothesis an analogous result holds for a
maximization problem. We keep on using the notations of the previous
lemma. We now consider a family of compact subsets Γλ, λ ∈ K, of Γ, and
the map A de�ned in (40) assuming �rst that

(H1') A is continuous at any point (γ, 0), γ ∈ Γ, and (40) holds with a
remainder o(t) uniform in γ ∈ Γλ, λ ∈ K.

We also assume that the map λ→ Γλ is continuous in the sense that

(H2') if γλ ∈ Γλ converge as λ→ λ0 (for some λ0) to some γ then γ ∈ Γλ0 ,
(H3') for any γ ∈ Γλ and any sequence λn → λ, there exist γn ∈ Γλn s.t.

γn → γ.

We eventually make the following assumptions:

(H4') A(·, 0) attains its minimum over Γλ at an unique point denoted γ∗λ,
(H5') the function µ(λ, 0) := minγ∈Γλ A(γ, 0) attains its maximum at an

unique point λ∗,
(H6') A1 is continuous over Γ.

Lemma 5. Assume that assumptions (H1') - (H6') hold. Then the function
t→ m(t) := supλ∈K infγ∈Γλ A(γ, t) is di�erentiable at t = 0 with derivative

m′(0) = A1(γ∗λ∗),

where λ∗ is de�ned in (H5'), and γ∗λ∗ is de�ned in (H4').

Proof. Let µ(λ, t) = infγ∈Γλ A(γ, t), λ ∈ K, |t| < ε. For a �xed λ ∈ K, we
can apply lemma 4 with Γ = Γλ to obtain

µ(λ, t) = µ(λ, 0) +A1(γ∗λ)t+ oλ(t)

where oλ(t)→ 0 as t→ 0 for a �xed λ, and γ∗λ is de�ned in (H4'). We only
need to apply again lemma 4 tom(t) := supλ ∈ Kµ(λ, t) (more precisely the
analogous version of lemma 4 for a maximisation problem). We now check
that hypothesis (H1)-(H4) of lemma 4 hold in that case.

We �rst verify that µ is continuous at (λ, 0), λ ∈ K. Fix λn → λ and
tn → 0. First take γn ∈ Γλn such that

(41) A(γn, tn) ≤ µ(λn, tn) +
1

n
.

Up to a subsequence the γn converge to some γ belonging to γλ according
to (H2'). Since A is continuous at (γ, 0) we can pass to the limit in (41) to
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obtain lim inf µ(λn, tn) ≥ A(γ, 0) ≥ µ(λ, 0). To prove the opposite inequality
we consider, using (H3'), γn ∈ Γλn such that γn → γ∗λ. Then

µ(λ, 0) = A(γ∗λ, 0) = A(γn, tn) + o(1) ≥ µ(λn, tn) + o(1).

Passing to the limit gives lim supµ(λn, tn) ≤ µ(λ, 0).
It remains to prove that (i) the oλ(t) is uniform in λ ∈ K, and that (ii)

A1(γ∗λ) is continuous in λ.
Concerning (i), we �rst write that

oλ(t) = µ(λ, t)− µ(λ, 0)−A1(γ∗λ)t

≤ A(γ∗λ, t)−A(γ∗λ, 0)−A1(γ∗λ)t,

where γ∗λ is de�ned in (H4'). According to hypothesis (H1') the right hand
side goes to 0 as t → 0 uniformly in λ ∈ K. Independently, given η > 0 we
pick some γ∗λ,t ∈ Γλ such that µ(λ, t) ≥ A(γ∗λ,t, t)− η, and write

oλ(t) = µ(λ, t)− µ(λ, 0)−A1(γ∗λ)t

≥ A(γ∗λ,t, t)− η −A(γ∗λ,t, 0)−A1(γ∗λ)t

= (A1(γ∗λ,t)−A1(γ∗λ))t+ o(t)− η,

where the o(t) in the right hand side is uniform in λ according to (H1').
Since A1 is bounded over Γ (according to (H6') and the compactness of Γ),
we get

oλ(t) ≥ −C|t|+ o(t)− η
for any η > 0 with o(t) uniform in λ.

Concerning (ii), it su�ces to prove, in view of (H6'), that λ → γ∗λ is
continuous. Fix some λ ∈ K and a sequence λn → λ. Since Γ is compact,
the γ∗λn converge, up to a subsequence, to some γλ which belongs to Γλ
according to (H2'). Given γ̃ ∈ Γλ and γ̃λn ∈ Γλn converging to γ̃ (which
exist according to (H3')), passing to the limit in A(γ∗λn , 0) ≤ A(γ̃λn , 0) gives
A(γλ, 0) ≤ A(γ̃, 0) for any γ̃ ∈ Γλ. In view of (H4') we must have γλ = γ∗λ.
Thus γ∗λn → γ∗λ for any sequence λn → λ. �

We can now end the proof of theorem 5. Recall that γ∗ : [0, 1]→ Ū is the
unique constant-speed curve such that diam(U) = Long(γ∗).

Step 5.2. If for any (x, y) ∈ K, there exists an unique curve γ ∈ Γ(x, y)
such that d(x, y) = Long(γ), then t → diam(Ut) is di�erentiable at t = 0
with derivative

(42)
d

dt
diam(Ut)|t=0 =

1

diam(U)

∫ 1

0
(DV (γ∗(s))γ∗

′
(s), γ∗

′
(s)) ds.

Proof. We apply lemma 5 with λ = (x, y) ∈ K, Γλ = Γ(x, y) which is
compact for the C1-convergence, and, from (37),

A(γ, t) = Long(φt ◦ γ), A1(γ) =

∫ 1

0
(DV (γ(s))γ′(s), γ′(s))

ds

|γ′(s)|
.

Then according to (37) and (39), we have

A(γ, t) = A(γ, 0) +A1(γ) + o(t)
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where the remainder o(t) is uniform in γ ∈ Γλ, λ ∈ K. In particular (H1')
holds. Moreover (H2'), (H3'), (H6') hold, and (H4'), (H5') hold by assump-
tion. Thus

d

dt
diam(Ut)|t=0 = A1(γ∗)

which is (42) recalling that |γ∗′ | = diam(U). �

6. Proof of Proposition 1.1

The proof is a slight adaptation of the results in [19]. First a change of
variable in the de�nition of λp(Ut) gives

λp(Ut) = inf
u∈W 1,p(U)

∫
U
A(x,∇u, t) dx∫
U
B(x, u, t) dx

with A(x,∇u, t) = |D(x, t)∇u|pC(x, t) and B(x, u, t) = |u(x)|pC(x, t) where

C(x, t) = |det(Dφt(x)| = 1 + tdivV (x) + o(t),

D(x, t) = (Dφt(x))−1 = Id− tDV (x) + o(t).

Assuming that λp(U) is simple, and denoting by up an extremal for λp nor-
malized by ‖up‖p = 1, [19][thm 2] yields
(43)

d

dt
λp(Ut)|t=0 =

∫
U
∂tA(x,∇up, 0)− λp(U)∂tB(x, up, 0) dx

=

∫
U

(div V )|∇up|p − p|∇up|p−2(DV.∇up,∇up)− λp(U)|up|pdiv V dx.

Up to approximate up by the smooth solution up,ε of the equation (6) with

−div((ε + |∇u|2)
p−2
2 ∇u) instead of ∆pu. Taking at the end the limit as

ε → 0, we will perform the computations without worrying for the lack of
regularity of up. Multiplying (6) by V∇up and integrating by parts gives∫

U
−p|∇up|p−2(DV.∇up,∇up)− λp(U)|up|pdiv V dx

= p

∫
U
|∇up|p−2(D2upV,∇up) dx− λp(U)

∫
∂U

(V, ν)|up|p dσ

=

∫
U
div (|∇up|pV )− |∇up|pdiv V dx− λp(U)

∫
∂U

(V ν)|up|p dσ

=

∫
∂U

(|∇up|p − λp(U)|up|p)(V, ν) dσ −
∫
U
|∇up|pdiv V dx

Plugging this equality in (43) gives (18).
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